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Abstract. Global products of remote sensing Normalized Difference Vegetation Index (NDVI) are critical to
assessing the vegetation dynamic and its impacts and feedbacks on climate change from local to global scales.
The previous versions of the Global Inventory Modeling and Mapping Studies (GIMMS) NDVT product derived
from the Advanced Very High Resolution Radiometer (AVHRR) provide global biweekly NDVI data starting
from the 1980s, being a reliable long-term NDVI time series that has been widely applied in Earth and envi-
ronmental sciences. However, the GIMMS NDVI products have several limitations (e.g., orbital drift and sensor
degradation) and cannot provide continuous data for the future. In this study, we presented a machine learn-
ing model that employed massive high-quality global Landsat NDVI samples and a data consolidation method
to generate a new version of the GIMMS NDVI product, i.e., PKU GIMMS NDVI (1982-2022), based on
AVHRR and Moderate-Resolution Imaging Spectroradiometer (MODIS) data. A total of 3.6 million Landsat
NDVI samples that were well spread across the globe were extracted for vegetation biomes in all seasons. The
PKU GIMMS NDVI exhibits higher accuracy than its predecessor (GIMMS NDVI3g) in terms of R? (0.97
over 0.94), root mean squared error (RMSE: 0.05 over 0.09), mean absolute error (MAE: 0.03 over 0.07), and
mean absolute percentage error (MAPE: 9 % over 20 %). Notably, PKU GIMMS NDVI effectively eliminates
the evident orbital drift and sensor degradation effects in tropical areas. The consolidated PKU GIMMS NDVI
has a high consistency with MODIS NDVI in terms of pixel value (R? = 0.956, RMSE = 0.048, MAE = 0.034,
and MAPE = 6.0 %) and global vegetation trend (0.9 x 10~ yr—1). The PKU GIMMS NDVI product can poten-
tially provide a more solid data basis for global change studies. The theoretical framework that employs Landsat
data samples can facilitate the generation of remote sensing products for other land surface parameters. The
PKU GIMMS NDVI product is open access and available under a Creative Commons Attribution 4.0 License at
https://doi.org/10.5281/zenodo.8253971 (Li et al., 2023).
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1 Introduction

The Normalized Difference Vegetation Index (NDVI) char-
acterizes the biophysical, biochemical, and physiological
conditions of vegetation (Rouse et al., 1974; Rondeaux et
al., 1996; Gao et al., 2000; Yin et al., 2022). As a normal-
ized ratio of the near-infrared (NIR) and red bands, it min-
imizes many forms of multiplicative noise, including soil
background, atmosphere, and sun—target—sensor geometry
(Rondeaux et al., 1996; Gao et al., 2000; Yin et al., 2022).
Due to its long archive, simplicity, and robustness, NDVI is
one of the most popular vegetation indices (VIs) that have
been widely used in the quantification of vegetation dynam-
ics (Badgley et al., 2017; Gamon et al., 2016; Joiner et al.,
2018; Li et al., 2019), terrestrial carbon and water cycles
(Zhu et al., 2021; Wang et al., 2021; Schubert et al., 2012;
Cui et al., 2021), and environmental stress and disturbances
(AghaKouchak et al., 2015; Qin et al., 2021; Peng et al,,
2020). The NDVI has been acquired from satellite sensors
since the 1970s, but it was not until the late 1990s that NDVI
data of different temporal and spatial resolutions became
steadily available from better designed and calibrated sensors
such as the Moderate-Resolution Imaging Spectroradiometer
(MODIS) (Didan, 2021), “Satellite Pour 1’Observation de la
Terre” (SPOT) VEGETATION (SPOT-VGT) (Maisongrande
et al., 2004), and Visible Infrared Imaging Radiometer (VI-
IRS) (Cao et al., 2014). For a long time before the late 1990s,
the Advanced Very High Resolution Radiometer (AVHRR)
sensor on board NOAA satellites had been the only NDVI
data source that provided frequent and continuous global
observations. Several sets of global long-term time-series
NDVI products have been released based on AVHRR, such
as the Global Inventory Modeling and Mapping Studies
(GIMMS) NDVI3g (Pinzon and Tucker, 2014), Long Term
Data Record version 4 (LTDR4) NDVI (Pedelty et al., 2007),
and Vegetation Index and Phenology version 3 (VIP3) NDVI
(Pedelty et al., 2007). These products have provided great in-
sights into how ecological processes of vegetation influence
and respond to ongoing climate change (Wang et al., 2021;
Zhu et al., 2021; Zhang et al., 2017; Piao et al., 2020; Myers-
Smith et al., 2020; Chen et al., 2019). However, uncertainties
in the NDVI products have also led to inconsistency not only
between different products but also for the same product in
different periods, placing many studies in a dilemma, partic-
ularly when characterizing long-term changes (Wang et al.,
2022; Zeng et al., 2022; Fensholt and Proud, 2012; Shen et
al., 2022).

There are several sources of uncertainties in AVHRR-
based NDVI products. The first comes from the discrepan-
cies in band settings (e.g., center wavelength and spectral re-
sponse function) within AVHRR sensors (i.e., AVHRR-2 and
AVHRR-3) as well as with other sensors (such as MODIS
and VIIRS) (Yang et al., 2021; Trishchenko et al., 2002; Pin-
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zon and Tucker, 2014; Fan and Liu, 2016). Second, NDVI
inconsistencies could also occur between the same AVHRR
sensors on board different NOAA satellites. In this case, the
sensors would have different image acquisition times and
sun—target—sensor geometries, yielding a “jump” (a sudden
change in values) phenomenon in the NDVI time series (Tian
et al., 2015; Frankenberg et al., 2021; Jiang et al., 2017; Los,
1998). For example, the AVHRR sensor on board NOAA-11
has a considerably larger NDVI than preceding and subse-
quent AVHRR sensors (Beurs and Henebry, 2004). Third, un-
certainties could be introduced by the NOAA satellite orbital
drift and AVHRR sensor degradation due to the harsh envi-
ronments in space (Wang et al., 2022). Artificial signals from
the orbital drift in humid areas were evident for the AVHRR-
based NDVI products (e.g., VIP3 NDVI, LTDR4 NDVI, and
GIMMS NDVI3g) and downstream products such as the
GIMMS Leaf Area Index (LAI3g) (Zhu et al., 2013).

For long-term vegetation trend analysis, an accurate global
NDVI product requires us to address the abovementioned un-
certainties well, particularly the ones related to temporal in-
consistency. Some efforts have thus been made in past years
(Tucker et al., 2005; Jiang et al., 2008; Doelling et al., 2007,
Cao et al., 2004). One strategy performed NDVI calibration
using the data acquired when NOAA orbital drift or AVHRR
sensor degradation had not occurred. For example, Jiang et
al. (2008) used NDVI in the inaugural year of NOAA satel-
lites as a baseline to calibrate NDVI of other years. The other
strategy calibrated AVHRR NDVI with other sensors with
overlapping observation periods with AVHRR. Pinzon and
Tucker (2014) used SeaWiFS NDVI data as a benchmark
to evaluate the consistency of GIMMS NDVIg data with
a Bayesian approach. Other studies have employed SPOT-
VGT NDVI data (Tucker et al., 2005), Meteosat-8 NDVI data
(Doelling et al., 2007), MODIS NDVI data (Cao et al., 2004),
or VIIRS data (Yang et al., 2021) to calibrate the other NDVI
products derived from AVHRR sensors. The basic assump-
tion behind the two strategies is that the calibration models
and parameters derived from one or more overlapping peri-
ods must be static through time. This is not necessarily true
because the performance of satellite sensors could be a func-
tion of multiple factors that are not limited to their internal
settings and seasonality (Kogan, 1995). Without a sufficient
understanding of product accuracy in all periods, uncertain-
ties in AVHRR NDVI calibration can hardly be determined.

The Landsat data have the potential to evaluate and cal-
ibrate global NDVI products in all periods. As one of the
earliest satellite missions, Landsat satellite series have pro-
vided the longest space-based record of Earth’s land since
the 1970s (Roy et al., 2016; Wulder et al., 2019, 2016). Land-
sat sensors have a high spatial resolution; low frequencies of
sensor change; and, in particular, high accuracy and consis-
tency in geometric and radiometric properties (Zhang et al.,
2021; Weng et al., 2014; Dong et al., 2020; Storey et al.,
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2014). Verification results from pseudo-invariant calibration
sites (PICS) (such as desert, water, ice, and snow) showed
that the temporal variations of top-of-atmosphere (TOA) re-
flectance were less than 2 % for most Landsat sensors (except
for Landsat 5 TM at SWIR 2 which is 3 %) during their or-
bit time (Helder et al., 2013). Although the relatively small
field of view and long revisit period have limited Landsat for
global applications (Maisongrande et al., 2004), its excellent
temporal consistency has aided some important studies of
vegetation trend via sample analysis, such as in the Arctic re-
gion from 1984 to 2016 (Berner et al., 2020). In recent years,
an increasing number of studies have used Landsat data for
global dataset production via tools such as the Google Earth
Engine (GEE) platform (Zhang et al., 2022; Cao et al., 2021).

In this context, this study uses long-term Landsat data to
develop a new version of the GIMMS NDVI product (PKU
GIMMS NDVI) (1982-2022) from the GIMMS NDVI3g
(current version) (1982-2015) and MODIS NDVI products
(2003-2022). We first cross-calibrate NDVI data from dif-
ferent Landsat missions and extract a mass of high-quality
Landsat NDVI samples worldwide for all periods (1984—
2015). Based on the samples, we generate the PKU GIMMS
NDVI using biome-specific back-propagation neural net-
work (BPNN) models with GIMMS NDVI3g data and se-
lected explanatory variables (the longitude and latitude, as-
sociated month, and the NOAA number and years since
launch). Then, the temporal coverage of PKU GIMMS NDVI
is extended to the year 2022 by consolidating with the
MODIS NDVI product using a pixel-by-pixel random for-
est (RF) regression method. Results of Landsat NDVI cross-
calibration are reported. We directly validate PKU GIMMS
NDVT’s accuracy via independent Landsat NDVI samples
and compare it with GIMMS NDVI3g. We also examine the
accuracy distribution in space for both products and demon-
strate the performance of PKU GIMMS NDVI in alleviat-
ing uncertainties from the orbital drift and sensor degrada-
tion. The consolidation of PKU GIMMS NDVI with MODIS
NDVI and the performance of consolidated PKU GIMMS
NDVTI in characterizing vegetation trends are also evaluated.

2 Data

Four global satellite products were used in this study: Land-
sat Surface Reflectance data (Collection 1 Tier 1) (Masek et
al., 2006; Vermote et al., 2016), the MODIS Land Cover
Type product (V6.1) (Friedl et al., 2002), the GIMMS
NDVI3g product (V1.0) (Pinzon and Tucker, 2014), and the
MODIS NDVI product (V6.1) (Didan, 2021). The Landsat
Surface Reflectance data were used to generate NDVI sam-
ples. The MODIS Land Cover Type product was used to la-
bel NDVI samples with vegetation biome types. The GIMMS
NDVI3g product was the main data source from which our
PKU GIMMS NDVI product would be created. The MODIS
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NDVI product was used to extend the temporal coverage of
the generated PKU GIMMS NDVI product.

2.1 Landsat Surface Reflectance data (Collection 1
Tier 1)

We obtained Landsat Surface Reflectance data between 1984
and 2015 with a spatial resolution of 30 m from the GEE plat-
form. These data comprised the Collection 1 (Tier 1) datasets
of Landsat 5 (TM), 7 (ETM+), and 8 (OLI), produced by
the United States Geological Survey (USGS). Landsat 5 was
launched in March 1984 and retired in January 2013. Land-
sat 7 and 8 were launched in April 1999 and February 2013,
respectively, and are still in operation. The USGS uses the
Landsat Ecosystem Disturbance Adaptive Processing System
(Masek et al., 2006) to perform atmospheric and terrain cor-
rections for Landsat 5 and Landsat 7 and uses the Landsat 8
Surface Reflection code (Vermote et al., 2016) to perform
corrections for Landsat 8. Previous studies have revealed that
Landsat reflectance data have good temporal consistency that
can be used to produce a set of long-term stable benchmarks
(Helder et al., 2013). However, this study found a systematic
deviation between Landsat 5/Landsat 8 and Landsat 7. The
correction method for the systematic deviation is described
in Sect. 3.1.

2.2 GIMMS NDVI3g (V1.0) product

This study selected the latest version (third generation) of the
GIMMS NDVI dataset (GIMMS NDVI3g, V1.0) generated
from AVHRR sensors on board a series of NOAA satellites
(NOAA 7, 9, 11, 14, 16, 17, and 18) (Pinzon and Tucker,
2014). The GIMMS NDVI3g dataset has a spatial resolution
of 1/12°. A half-month maximum NDVI composite was used
to eliminate the atmospheric effects on the NDVI magnitude.
This compositing scheme resulted in two maximum NDVI
values per month. The GIMMS NDVI3g record extending
from January 1982 to December 2015 was used in this study.
Pixels with negative NDVI values that referred to snow and
other contaminated data (e.g., pixels with large inland water
bodies) and pixels of bad quality, determined by the quality
control (QC) layer, were removed from all analyses.

2.3 MODIS Vegetation Index product (MOD13C1, V6.1)

The MODIS Vegetation Index product (MOD13C1) (Didan,
2021) is accessible at NASA’s Earth Observing System Data
and Information System (EOSDIS) (https://search.earthdata.
nasa.gov/, last access: September 2023). Compared to old
versions, the latest MOD13C1 version 6.1 provides several
algorithmic improvements and corrects the sensor degrada-
tion effect well (Zhang et al., 2017). As the MODIS NDVI
product was used to consolidate with PKU GIMMS NDVI,
we chose MODI13C1 over other MODIS Vegetation Index
products because it was derived from MODIS Terra, which
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has been available since 2000 and has a close temporal
(16d) and spatial resolution (0.05°) compared to those of
PKU GIMMS NDVI (half-month and 1/12°). This study
employed the year-round global MODI13C1 during 2003—
2022. MOD13C1 provides a pixel reliability layer that dis-
tinguishes good-quality data from no data, marginal data,
snow/ice, and cloudy and estimated data. To match the tem-
poral and spatial resolutions, we first performed a time-
weighted aggregation method on MOD13Cl1 to produce an
NDVI product at a temporal resolution of half-month. The
method was adopted from Zhu et al. (2013). Its central idea is
to assign weights to all MOD13Cl1 scenes that could tempo-
rally intersect with a particular half-month interval, where the
weight depends on the possibility of intersection. The half-
month NDVI product was finally calculated as the weighted
sum of the scenes. We then performed nearest-neighbor sam-
pling to upscale the spatial resolution to 1,/12°.

2.4 MODIS Land Cover Type products (MCD12Q1 and
MCD12C1, V6.1)

The MODIS Land Cover Type products provide global maps
of land cover for each year between 2001-2019 (Friedl et
al., 2002). It has five legacy classification schemes, including
the International Geosphere-Biosphere Programme (IGBP)
classification system, the University of Maryland (UMD)
classification system, the Leaf Area Index (LAI) classifica-
tion system, the Biome-BGC (biogeochemical cycle) clas-
sification system, the plant functional type (PFT) classifica-
tion system, and the FAO Land Cover Classification System
(LCCS) classification system. The LAI classification scheme
was used in this study. The LAI classification scheme has 11
classes, including eight natural vegetation types (evergreen
needleleaf forests (ENF), evergreen broadleaf forests (EBF),
deciduous needleleaf forests (DNF), deciduous broadleaf
forests (DBF), shrublands (SHR), savannas (SAV), grass-
lands (GRA), croplands (CRO)) and three non-vegetated
lands (water bodies (WAT), non-vegetated lands (NVG), and
urban and built-up lands (URB)). In data analysis, we also
merged the natural vegetation types into one global vegeta-
tion biome (GLO). This study employed two MODIS Land
Cover Type products with different spatial resolutions, i.e.,
500m (MCD12Q1; Friedl and Sulla-Menashe, 2022a) and
0.05° (MCD12C1; Friedl and Sulla-Menashe, 2022b). The
MCDI12Q1 was used to select sample locations for Land-
sat NDVI cross-calibration (Sect. 3.1.1). The MCD12C1 was
used to establish biome-specific BPNN models with GIMMS
NDVI3g after being spatially aggregated to 1/12° using the
nearest-neighbor resampling method (Sect. 3.2.2). The veg-
etation biome type with the highest frequency from 2001-
2019 was considered the vegetation biome type from 1982—
2022. This could be a margin of error, but it is the best option.
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3 Methodology

A schematic overview of the methodology involves four
key steps as illustrated in Fig. 1: (1) Landsat sensor cross-
calibration to create temporally consistent Landsat data as
a benchmark; (2) generation of PKU GIMMS NDVI from
GIMMS NDVI3g using per-biome Landsat NDVI samples,
BPNN models, and other explanatory variables; (3) consol-
idation of PKU GIMMS NDVI with MODIS NDVI to ex-
tend the temporal coverage of PKU GIMMS NDVI to the
year 2022; and (4) evaluation of PKU GIMMS NDVI in
terms of its performance in temporal and spatial accuracies
and in eliminating the orbital drift and sensor degradation.

3.1 Cross-calibrating NDVIs among Landsat sensors

Systematic deviation exists in the NDVI between Landsat 5,
Landsat 7, and Landsat 8 (Berner et al., 2020). Specifically,
the NDVI derived from Landsat 5 is smaller than that from
Landsat 7, and the NDVI from Landsat 7 is smaller than that
of Landsat 8 (Berner et al., 2020) (Fig. 2a and c). The sys-
tematic deviations were first removed as the Landsat NDVI
served as a benchmark in this study. We adopted the method
by Berner et al. (2020) that used BPNN to calibrate Land-
sat 5 and Landsat 8 to the Landsat 7 level. The reason for
considering Landsat 7 as the benchmark is that Landsat 7
has overlapping periods with both Landsat 5 and Landsat 8.

3.1.1 Sample locations

For the Landsat sensor cross-calibration, 100 000 sample lo-
cations were randomly selected for each vegetation biome
type from the MCD12Q1. For each sample (500 m resolu-
tion), a matrix of 20 x 20 Landsat pixels (30 m resolution)
was extracted at the sample center from Landsat 5, Landsat 7,
and Landsat 8 images acquired between 1984 and 2015. The
Landsat pixels at each sample location were further refined
to guarantee that only high-quality clear-sky measurements
were included in our study.

First, all Landsat data during August 1991 and Decem-
ber 1992 when Mount Pinatubo erupted were excluded. Sec-
ond, the abundance of aerosols and thin clouds was used
to determine the quality of the sample location (and associ-
ated Landsat pixels). If many of the pixels had a high atmo-
spheric opacity (provided by Landsat products), the whole
sample location was removed. For Landsat 5 and Landsat 7,
the threshold of average atmospheric opacity was set to 0.3.
For Landsat 8, the percentage of clear pixels (which have an
atmospheric opacity index of 1) must be higher than 80 %
(320 pixels). Third, the quality of the Landsat scene, the
cloud contamination, and the radiation magnitude were used
to determine the quality of individual pixels. A pixel was
marked as low-quality if (1) the associated Landsat scene had
excessive cloud coverage (> 80 %); (2) the pixel was con-
taminated by clouds, cloud shadows, water, or snow judged
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Figure 1. Schematic diagram of the generation and evaluation of the PKU GIMMS NDVI product.

by the CF Mask algorithm (Foga et al., 2017; Zhu et al.,
2015); or (3) the pixel had implausibly high (> 1) or ex-
tremely low (0.001) surface reflectance due to radiation sat-
uration and atmospheric adjustment. This study removed the
whole sample location if the percentage of high-quality pix-
els was lower than 90 % (360 pixels).

NDVI was calculated and averaged from high-quality pix-
els at the remaining sample locations. The sample locations
were divided into 80 % for model training and 20 % for
model evaluation.

3.1.2 Cross-calibration using BPNN models

BPNN is one of the most popular and established artificial
neural network (ANN) algorithms used in ecological studies
(Hong et al., 2021; Meng et al., 2020; Yang et al., 2018). An
ANN is a machine learning algorithm inspired by the struc-
ture and function of biological neural networks. A typical

https://doi.org/10.5194/essd-15-4181-2023

ANN comprises input (explanatory variables), output (target
variable), and hidden layers, each containing artificial neu-
rons whose numbers range from several to hundreds. In the
model training of BPNN, signals flow from the input layer
to the output layer, after likely passing through several hid-
den layers. Errors in the output layer propagate backward to
the previous layers until they satisfy the user-defined thresh-
old, and the network attempts to minimize the discrepancies
between observations and predictions.

This study used NDVI sample locations (500 m resolu-
tion) in the overlapping periods between Landsat 7 and Land-
sat 5/Landsat 8 to train BPNN models. The models were then
extrapolated to calibrate Landsat 5 and Landsat 8 in non-
overlapping periods. The extrapolation to non-overlapping
periods was reliable on the basis that the optical sensors on
board Landsat satellites are temporally consistent with them-
selves, and the reflectance data have been geometrically and
radiometrically calibrated well (Irons et al., 2012; Wulder et

Earth Syst. Sci. Data, 15, 41814203, 2023
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Figure 2. The efficiency of NDVI cross-calibration between Landsat sensors. (a) Landsat 7 NDVI vs. uncalibrated Landsat 5 NDVI.
(b) Landsat 7 NDVI vs. calibrated Landsat 5 NDVI. (¢) Landsat 7 NDVI vs. uncalibrated Landsat 8 NDVI. (d) Landsat 7 NDVI vs. calibrated
Landsat 8 NDVI. The red line is the regression line, and the diagonal orange line represents a 1 : 1 relationship. The size of the NDVI interval
in the maps is 0.01. NDVI intervals with sample number < 10 were omitted.

al., 2019, 2016). Specifically, NDVI values from Landsat 7
and Landsat 5/Landsat 8 were paired at each sample location
(Sect. 3.1.1) if their acquisition times were less than 10d. In
total, 12718 863 sample pairs were obtained for all vegeta-
tion biome types. When training the BPNN model, the NDVI
of Landsat 5/Landsat 8 was used as the explanatory variable,
and the NDVI of Landsat 7 was the target variable. We also
included the image acquisition time (day of the year) and the
sample location’s spatial coordinates (longitude and latitude)
as covariates to explain potential seasonal and regional vari-
ations in the samples.

3.2 Generation of the PKU GIMMS NDVI
3.2.1 Landsat NDVI samples

The cross-calibrated Landsat data were used to calibrate the
GIMMS NDVI3g product. Landsat data are known for their
unparalleled radiometric and geometric accuracy and stabil-
ity, as well as their longest continuity, global coverage, and
relatively high spatial resolution (Wulder et al., 2019, 2016).

Earth Syst. Sci. Data, 15, 4181-4203, 2023

A total of 40000 sample locations were randomly selected
from the GIMMS NDVI3g product with a spatial resolu-
tion of 1/12°. Then at a time step of half-month, we iden-
tified sample locations with high-quality GIMMS NDVI3g
data (QC =0) and uniformly placed 9 matrices of 20 x 20
Landsat pixels within each location (1/12°). Landsat pixel
values were extracted from all available scenes. Their qual-
ity was examined in the same way as Sect. 3.1.1. We re-
moved all matrices whose proportion of high-quality pix-
els < 90 % (360 pixels). The sample locations at a particular
time were treated as Landsat NDVI samples if more than half
(i.e. > =5) of nine matrices remained. The sample value was
calculated as the average NDVI from high-quality Landsat
pixels. The samples were also divided into 80 % for model
training and 20 % for NDVI product evaluation.

3.2.2 BPNN models with GIMMS NDVI3g and other
explanatory variables

With the Landsat NDVI samples (1/12° resolution), the
BPNN model was also used to calibrate the GIMMS NDVI3g

https://doi.org/10.5194/essd-15-4181-2023
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product. In the BPNN model, GIMMS NDVI3g data from
1984 to 2015 were used as an explanatory variable, and the
Landsat NDVI was the target variable. We also included
other explanatory variables associated with spatial, tempo-
ral, and satellite information. The spatial information (longi-
tude and latitude) accounts for the spatial autocorrelation in
image samples, temporal information (month) accounts for
vegetation dynamics, and satellite information (NOAA satel-
lite number and years since its launch) accounts for issues
from NOAA orbit drift and AVHRR sensor degradation. One
BPNN model was built for each of the eight vegetation biome
types. GIMMS NDVI3g was first explored as a single ex-
planatory variable in the BPNN model, and other explanatory
variables were added in an enumerative order. In detail, five
feature combinations were set up to evaluate their impacts
on the BPNN model: (S1) NDVI alone; (S2) NDVI and spa-
tial information (longitude and latitude); (S3) NDVI, spatial
information, and time information (month); (S4) NDVI, spa-
tial information, time information, and NOAA satellite num-
ber; and (S5) NDVI, spatial information, time information,
NOAA satellite number, and years since its launch. The op-
timal parameters for each enumeration were derived through
10-fold cross-verification. The final BPNN model for NDVI
calibration was determined with an appropriate set of ex-
planatory variables and the optimal parameters.

3.3 Consolidation of the PKU GIMMS NDVI and MODIS
NDVI

Over the past 2 decades, GIMMS NDVI3g products have
been extensively utilized for spatiotemporal dynamic mon-
itoring of vegetation, carbon and water cycles of ecosystems,
and other related studies. They have provided powerful data
support for several significant conclusions in Earth and en-
vironmental sciences. However, the latest data in GIMMS
NDVI3g is until 2015 and no further upgrades will be pro-
vided. This study extended the temporal coverage of GIMMS
NDVI3g so that the investigation of recent responses and
feedback of vegetation to climate change can be possible.
The MODIS NDVI product has excellent precision, tempo-
ral consistency, and a long-time span. It is considered the best
medium-high resolution global NDVI produced over the past
2 decades. It could be utilized as an effective extension of the
PKU GIMMS NDVI.

However, the band settings of MODIS are different from
that of AVHRR. A simple combination of these two prod-
ucts would lead to systematic inconsistencies in NDVI val-
ues. Some methods have been proposed to deal with this
issue, such as maximum-minimum stretching (Yang et al.,
2021), histogram matching (Jiang et al., 2008), and ma-
chine learning (Berner et al., 2020). In this study, we used
a pixel-wise method inspired by Mao et al. (2012) to splice
the PKU GIMMS NDVI product (1982-2015) and MODIS
NDVI product (2003-2022). The pixel-wised method has
been demonstrated more accurate than the global models
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(Yang et al., 2021). Specifically, the MODIS NDVI was
first resampled to have the same spatial resolution (1/12°)
and temporal resolution (half a month) as the PKU GIMMS
NDVI (see Sect. 2.3). Then, during the overlapping periods
(2003-2015), an 11 x 11 moving window (approximately 1°
equivalent) was placed around each pixel. All the same veg-
etation biome type with the pixel were identified, and their
NDVI values were extracted from both products. This re-
sulted in at most 1573 GIMMS-MODIS NDVI sample pairs
(11 x 11 pixels per year in 13 years) for each pixel location.
The sample pairs were further screened based on the data
quality of PKU GIMMS NDVI (quality information adopted
from GIMMS NDVI3g; see Sect. 2.2) and MODIS NDVI
(see Sect. 2.3). Based on the sample pairs, the RF regres-
sion model was constructed (Breiman, 2001), with explana-
tory variables of the PKU GIMMS NDVI and the longitude
and latitude of samples and target variable of the MODIS
NDVLI. This study found that the significance of the RF model
largely depended on the data quality of PKU GIMMS NDVI
and MODIS NDVI. As such, we used 90 % of the sample
pairs for RF establishment and 10 % for validation. R? was
calculated. The pixel-wise RF model was applied to the non-
overlapping period only when R? > 0.2 with p < 0.001; oth-
erwise, the PKU GIMMS NDVI was adjusted by aligning
its mean value to that of the MODIS NDVI. The final PKU
GIMMS NDVI product comprised the NDVI product de-
rived from GIMMS NDVI3g between 1982 and 2002 and
the MODIS NDVI product between 2003 and 2022.

3.4 Evaluation of the PKU GIMMS NDVI product

This study used a direct verification method to evaluate
our product of PKU GIMMS NDVI (Justice et al., 2000).
The PKU GIMMS NDVI (before consolidation) product was
compared to Landsat NDVI values at the remaining 20 % of
the sample locations (1/12°) for different vegetation biome
types. As a comparison, the GIMMS NDVI3g was evaluated
in the same manner. Four metrics were calculated for ac-
curacy assessment, i.e., sample number (N), R?, root mean
square error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE). R? measures the percent-
age of variations that models can explain, RMSE measures
the variance of errors, and MAE and MAPE measure abso-
lute and relative error values at the sample level.

N
>~ (NDVILangsat — NDVIgivms)
Z (NDVILandsat - NDVILandsat)2
i=1
ol Y0 (NDVILangsat — NDVIgivms )
N N

RMSE

(@)

1 N
MAE = 3 " INDVILangsat ~ NDVIGims| 3)

i=1
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1 N
MAPE % = NZ

i=1

NDVILandsat — NDVIgimms

x 100% (4)
NDVILandsal

The spatial distribution of R? was analyzed for the PKU
GIMMS NDVI and GIMMS NDVI3g products in 2° x 2°
grids. To highlight the differences between AVHRR-2 and
AVHRR-3, NDVI products were evaluated in two sepa-
rate periods (AVHRR-2: 1982-2000 and AVHRR-3: 2001-
2015).

We also evaluated the performance of our PKU GIMMS
NDVI (before consolidation) product in alleviating the ef-
fects of orbital drift and sensor degradation and compared
it to the GIMMS NDVI3g product. Tian et al. (2015) ob-
served that the GIMMS NDVI3g product showed a notice-
able artefact in humid areas, which may have been caused by
the NOAA satellite orbit drift and AVHRR sensor degrada-
tion. Zhu et al. (2013) also documented the significant orbital
drift in the tropics. However, their conclusions either lacked
a quantitative analysis or were solely based on statistical ob-
servations at a regional scale because long-term, continuous,
and time-consistent benchmark data before 2000 were lack-
ing. This study used NDVI bias in the tropical vegetation
type of EBF to measure the magnitude of the orbital drift
and sensor degradation effect. The bias was calculated as the
mean value of NDVI deviation relative to Landsat NDVI in
percentage (Helder et al., 2013) (Eq. 5).

x 100% (5)

bias % — L ZN: (NDVIginms — NDVILandsar)
i=1 NDVILandsat

If there is orbital drift or sensor degradation, the bias will
drastically fluctuate; otherwise, it remains constant. Seasonal
fluctuations in the time series of NDVI bias were first re-
moved by subtracting the multi-year average at a particular
time of the year, i.e.,
bias_deseasony, ; = bias_originy,, — mean(bias_origin,), (6)
where bias_origin ; is the original NDVI bias at the time
t of the year y (e.g., the first half-month of January in
2005), mean(bias_origin,) is the multi-year average at the
time ¢ (e.g., the first half-month of January for all years), and
bias_deseason, ; is the NDVI bias after removing the sea-
sonal fluctuation. Then, inter-annual trends of the bias were
extracted via the ensemble empirical mode decomposition
(EEMD) approach (Huang et al., 1998).

The consolidation of PKU GIMMS NDVI with MODIS
NDVI was evaluated at 1000 random points for each vegeta-
tion biome type. Using MODIS NDVI as the reference, R2,
RMSE, MAE, MAPE, and bias for PKU GIMMS NDVI be-
fore and after consolidation were calculated and compared
during the overlap period (2003-2015). To evaluate the per-
formance of PKU GIMMS NDVI in characterizing vegeta-
tion trends (greening or browning), we performed linear re-
gression analysis on the time series of annual average NDVI
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at each pixel. The linear regression slope could represent a
green trend (positive slope value) or a browning trend (nega-
tive slope value). Trends from multiple NDVI products, i.e.,
GIMMS NDVI3g, MODIS NDVI, and PKU GIMMS NDVI
(before and after consolidation), were compared over their
overlapping period. The PKU GIMMS NDVI before consol-
idation was included because it represents the version of our
NDVI product that is solely based on AVHRR data, and it
can provide a more direct evaluation of the efficacy of the
BPNN model and Landsat NDVI samples.

4 Results

4.1 Cross-calibration between Landsat 7 and Landsat
5/Landsat 8

More than 12 million Landsat sample pairs (600 m reso-
lution) were acquired for Landsat sensor cross-calibration.
Based on the samples, 16 BPNN models were established
to calibrate Landsat 5 NDVI and Landsat 8 NDVI for eight
vegetation biome types. Figure 2b and d show the NDVI cal-
ibration results of Landsat 5 and Landsat 8 against Land-
sat 7. Both relationships were strong with high R?> (R?> =
0.981 for Landsat 5 and 0.985 for Landsat 8), low RMSE
(RMSE =0.034 for Landsat 5 and 0.031 for Landsat 8), low
MAE (MAE = 0.020 for Landsat 5 and 0.017 for Landsat 8),
and low MAPE (MAPE =5.87 % for Landsat 5 and 5.14 %
for Landsat 8). Compared to uncalibrated data (Fig. 2a and
¢), negative deviation in Landsat 5 NDVI and positive devia-
tion in Landsat 8 NDVTI have been efficiently eliminated.

4.2 The PKU GIMMS NDVI product

4.2.1 Spatiotemporal representativeness of the Landsat
NDVI samples

Approximately 3.6 million Landsat NDVI samples (1/12°)
from 1984 to 2015 were obtained for GIMMS NDVI3g cal-
ibration. The count and spatiotemporal distribution of the
samples primarily depended on the availability of Land-
sat images, which were affected by clouds, cloud shadows,
aerosols, climatic conditions, and other factors. The sample
count per vegetation biome type was approximately propor-
tional to its total area of coverage (Fig. 3a and b).

In the spatial domain, our samples covered most vegetated
regions worldwide (Fig. 3a). Meanwhile, in some regions,
the number of high-quality samples was relatively small.
These regions include (1) northern high latitudes, which
suffer from the polar night phenomenon, high solar zenith
angle, and high observation zenith angle; (2) tropical rain-
forest areas with abundant precipitation and clouds which
lower the quality of remote sensing data; and (3) the Sichuan
Basin in southwest China and areas with a temperate marine
climate (e.g., western European continent, British Isles, and
west coast of North and South America). In the time domain
(Fig. 3b), the samples of vegetation biome types showed
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Figure 3. Spatial and temporal distribution of refined Landsat NDVI samples (3.6 million). (a) Distribution of Landsat NDVI samples within
the 2° x 2° grid. (b) Percentage of samples among the eight vegetation biome types in each month. (¢) Annual variation of Landsat NDVI

sample size.

single (for most biomes except CRO) or double (CRO)
peaks depending on the time of their growing seasons. This
guaranteed sufficient samples for accurate NDVI prediction
with BPNN in the growing season. For the biomes of ENF
and DNF that are primarily distributed in the high northern
latitudes, the number of samples in winter (October to April)
was < 500. We resolved this problem by reducing the ex-
planatory variables in the BPNN model. During 1984-2015,
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the Landsat NDVI sample size generally increased from
Landsat 5 to Landsat 7 and Landsat 8 except for two periods.
Between 1999 and 2003, the sample size was significantly
larger as both Landsat 5 and Landsat 7 were available, and
between November 2011 and May 2012, very few images
were acquired when Landsat 5 was decommissioning
(https://www.usgs.gov/centers/eros/science/usgs-eros-
archive-landsat-archives-landsat-4-5-thematic-mapper-tm-
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level-1-data, last access: September 2023) and Landsat 8
was not available yet (Fig. 3c).

4.2.2 Selection of explanatory variables for the BPNN
model

The accuracy of BPNN models under different combinations
of explanatory variables (S1 to S5) is shown in Fig. 4. The
addition of spatial location significantly improved the accu-
racy of predicted NDVI for the vegetation biome types that
are distributed worldwide. The improvement has not been
observed for vegetation biome types that are relatively con-
centrated (e.g., ENF and DNF). The addition of temporal
information improved the accuracy of vegetation types with
prominent seasonal variations such as DBF and DNF. Finally,
adding the NOAA satellite number and orbit time could also
improve the accuracy of BPNN models, especially for SHR.

For the combination containing all explanatory variables
(S5), the R? of most vegetation biome types except for EBF
and ENF was > 0.8. For vegetation biomes overall, the R?
reached 0.96, and the relative error was only 11.35 %. There-
fore, all available explanatory variables, i.e., the NDVI, lon-
gitude, latitude, month, NOAA satellite number, and years
since the NOAA satellite’s launch, contributed to the BPNN
model in this study.

4.2.3 Direct validation of PKU GIMMS NDVI and
GIMMS NDVI3g

Our PKU GIMMS NDVI product (before consolidation) and
the GIMMS NDVI3g product were directly verified with
the remaining 20 % of the Landsat NDVI samples from
1984 to 2015 (Fig. 5). Overall, the accuracy of the PKU
GIMMS NDVI (R?=0.97, RMSE =0.05, MAE =0.03,
MAPE =9 %) was higher than that of the GIMMS NDVI3g
(R?>=0.94, RMSE=0.09, MAE=0.07, MAPE =20 %)
in all metrics. Among different vegetation biome types,
the NDVI quality of SHR (GIMMS NDVI3g: R*=
0.89, RMSE =0.06, MAE =0.05, MAPE =26 % and PKU
GIMMS NDVI: R?=0.92, RMSE=0.03, MAE=0.02,
MAPE =12 %) was higher than that of other biome
types. The accuracy of EBF was relatively low for both
products (GIMMS NDVI3g: R*=0.16, RMSE=0.09,
MAE = 0.07, MAPE =9 % and PKU GIMMS NDVI: R? =
0.47, RMSE =0.04, MAE =0.02, MAPE =3 %). The rea-
son was that EBF is primarily distributed in tropical areas
where the quality of remote sensing data is poor due to fre-
quent clouds and rains.

For the GIMMS NDVI3g product, the accuracy dif-
ferences between vegetation biome types were evident
(Fig. 5). The NDVI of SHR (RMSE =0.06, MAE = 0.05),
SAV (RMSE=0.10, MAE=0.08), ENF (RMSE=0.10,
MAE =0.08), and DNF (RMSE =0.12, MAE =0.09) has
been systematically overestimated (Fig. 5a). GRA and CRO
were also overestimated, mainly when NDVI values were
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high (Fig. 5a). The NDVI of EBF has a rather low accuracy
in the GIMMS NDVI3g products, with an R? of only 0.16.
For the PKU GIMMS NDVI product, its performance in dif-
ferent vegetation biome types was more stable (R?: 0.47 to
0.92; RMSE: 0.03 to 0.07; MAE: 0.02 to 0.05; MAPE: 3%
to 15 %), and the scatter points remained near the 1: 1 line
(Fig. 5). In particular, the R?> of EBF was improved to 0.47
in the PKU GIMMS NDVIL

4.2.4 Accuracy of PKU GIMMS NDVI and GIMMS
NDVI3g in space

The accuracies of the PKU GIMMS NDVI (before consoli-
dation) and GIMMS NDVI3g products exhibited strong spa-
tial heterogeneity (Fig. 6). The low-accuracy areas were pri-
marily concentrated in the tropics and high northern lati-
tudes, and the high-accuracy regions were concentrated in
the mid-latitudes of the Eurasian continent, the Great Plains
of the United States, and savanna-dominated areas of Africa
and Australia. In the tropical rainforest area where both prod-
ucts had relatively low accuracies, the PKU GIMMS NDVI
performed better, especially in Southeast Asia and the north-
western Amazon region. However, the improvement of PKU
GIMMS NDVI over GIMMS NDVI3g was not significant
along the western coast of the European continent and south-
east China, probably due to the small number of training
samples.

Probability density diagrams were drawn to show NDVI
differences between two periods (before and after 2000)
(Fig. 6e) and between two products (Fig. 6f). The accuracy of
both NDVI products after 2000 was generally higher than be-
fore 2000. The difference was more evident for the GIMMS
NDVI3g product (Fig. 6e). The PKU GIMMS NDVI im-
proved the accuracies over the GIMMS NDVI3g, especially
for the period before 2000 (Fig. 6f).

4.2.5 Alleviation of the orbital drift and sensor
degradation effect

As shown in Fig. 7, the GIMMS NDVI3g product exhib-
ited evident false signals in the EBF region, which agreed
with the previous findings (Tian et al., 2015). The NDVI bias
from different NOAA satellites significantly varied, which
may cause the jump phenomenon between NOAA missions.
Before 2000, the effects of orbital drift and sensor degrada-
tion were evident at the last phases of satellite launch. This
is especially true for the NOAA 11 satellite (Fig. 7a). The
effect became relatively small for NOAA satellites launched
after 2000. In the PKU GIMMS NDVI (before consolida-
tion) product, the impact from orbital drift and sensor degra-
dation has been effectively rectified (Fig. 7b). NDVI bias did
not change significantly over time, indicating that the PKU
GIMMS NDVI product had good temporal consistency.
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Figure 4. Performance of different combinations of explanatory variables (S1 to S5) for BPNN models. Panels (a), (b), (¢), and (d) show
the R2, RMSE, MAE, and MAPE of the BPNN models, respectively. GLO represents the global vegetation biome. The combinations of
explanatory variables are (S1) NDVI alone; (S2) NDVI and spatial information (longitude and latitude); (S3) NDVI, spatial information,
and time information (month); (S4) NDVI, spatial information, time information, and NOAA satellite number; and (S5) NDVI, spatial
information, time information, NOAA satellite number, and years since its launch.
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Figure 6. Accuracies of the GIMMS NDVI3g and PKU GIMMS NDVI (before consolidation) products measured by R? for pre-MODIS

1982-2000) and MODIS (2001-2015) period. The R? was calculated
( )P

between the NDVI products and Landsat NDVI samples. Panels (a)

to (d) show the spatial distributions of R?in2°x2° grids. Non-vegetated grids and grids with less than 20 validation samples are marked
in white. Panels (e) and (f) show the probability distribution of R? differences between the two periods (before 2000 and after 2000) and

between the two products (GIMMS NDVI3g and PKU GIMMS NDVI),

4.3 Consolidated PKU GIMMS NDVI
4.3.1 Comparison with MODIS NDVI

The consolidation process improved the consistency level
between PKU GIMMS NDVI and MODIS NDVI from
acceptable (R?=0.899, RMSE=0.092, MAE =0.069,
and MAPE=12.3%) (Fig. 8a-9) to high (R?2=0.956,
RMSE =0.048, MAE=0.034, and MAPE=6.0%)
(Fig. 8b-9). Specifically, the PKU GIMMS NDVI before
data consolidation was systematically lower than MODIS
NDVI, but the relationship approached 1 : 1 after consolida-
tion. The improvement in consistency was different among
vegetation biome types. CRO and GRA had the greatest
improvement, as their MAPE decreased from 24.3 % and
20.0 % t0 9.3 % and 9.5 %, respectively (Fig. 8a and b). The
probability distribution densities of R?, MAPE, and bias
were also analyzed based on NDVI values before and after
consolidation at all samples (8000) (Fig. 9). The results

https://doi.org/10.5194/essd-15-4181-2023

respectively.

show that the R?> was improved (Fig. 9a), and the MAPE
was significantly decreased (Fig. 9b) after consolidation.

For EBF, the improvement in consistency after consolida-
tion was relatively small (MAPE: 4.9 % to 3.2 %). The pixel-
wised RF regression model for data consolidation was sig-
nificant for selected EBF locations (Fig. 10a and b), but it
was not for other locations. Due to frequent clouds and rains,
both PKU GIMMS NDVI and MODIS NDVI could present
maximum noises (Fig. 10c and d). In this case, it was deter-
mined that individual MODIS NDVI values were no longer
reliable as a benchmark in the regression model, and a simple
mean-value aligning method was adopted.

4.3.2 \Vegetation trend analysis

Figure 11 shows the distribution of slopes in the linear re-
gression for the GIMMS NDVI3g, MODIS NDVI, and PKU
GIMMS NDVI (before and after consolidation) products at
1/12° grids. Overall, these products showed similar spatial

Earth Syst. Sci. Data, 15, 4181-4203, 2023
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patterns in some global hot spots. For example, all of them
capture the greening trend in China and India. However, the
GIMMS NDVI3g products showed the opposite trend against
MODIS NDVI and PKU GIMMS NDVI products in the trop-
ical evergreen broadleaf forest regions of Africa and South-
east Asia (Fig. 11).

The time series of annual NDVI anomalies and trends from
different products are shown in Fig. 12. All products pre-
sented a similar shape of anomalies in their overlapping peri-
ods. During 1982-2015, PKU GIMMS NDVI before consol-
idation had a similar trend with GIMMS NDVI3g (0.4 x 1073
vs. 0.5x 1073 yr=!). During 2003-2015 when all NDVI
products were available, PKU GIMMS NDVT after consoli-
dation (0.9x 1072 yr~!) and MODIS NDVI (0.9x 103 yr—1)
had the same vegetation trend (trend values not shown in the
figure), slightly higher than PKU GIMMS NDVI before con-
solidation (0.7 x 1073 yr=1), followed by GIMMS NDVI3g
(0.5%x 1073 yr~1). In the EBF area, GIMMS NDVI3g showed
a browning trend since 2003 due to the impact of orbital drift
and sensor degradation (Fig. A1), which was consistent with
the research by Wang et al. (2022). In PKU GIMMS NDVI
products, the effect of orbital drift and sensor degradation has
been alleviated. It showed a greening trend in EBF, consistent
with MODIS NDVI (Fig. Al).

Earth Syst. Sci. Data, 15, 4181-4203, 2023

5 Data availability

The spatiotemporally consistent global dataset of the
GIMMS Normalized Difference Vegetation Index (PKU
GIMMS NDVI) generated in this study is openly available
at https://doi.org/10.5281/zenodo.8253971 (Li et al., 2023).
It covers the whole global vegetation area at half-month tem-
poral resolution and 1/12° spatial resolution from 1982 to
2022. It is available in geographic lat-long projection and
TIFF format. In the same repository, we have also provided
the version of PKU GIMMS NDVI before consolidation with
MODIS NDVI (1982-2015). We strongly recommend users
read the Readme file in the repository and properly handle
the fill value and the quality control flag in the dataset.

6 Discussion and conclusion

6.1 Improvements over other long-term global NDVI

products

The generation of long-term global NDVI products has been
challenging due to the uncertainties associated with the im-
pacts of satellite orbital drift and sensor degradation/calibra-
tion; artifacts related to data processing and analysis; and
effects from the atmosphere, BRDF, scale, and topography,
etc. (Zeng et al., 2022). While a lot of work remains to
be done, the current NDVI products have made substantial
progress in dealing with selected uncertainties and improv-

https://doi.org/10.5194/essd-15-4181-2023
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Figure 8. Validation of the PKU GIMMS NDVI product (a) before and (b) after consolidation. The validation was performed using 1000
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ing the data quality. Depending on the type of uncertainty,
many methods and data have been introduced with different
degrees of succession. For example, the GIMMS NDVI3g
product has primarily focused on identifying the systematic
deviations between AVHRR-2 and AVHRR-3, caused by dif-
ferences in the sensor characteristics, and on resolving the
inconsistency between AVHRR NDVI products (Pinzon and
Tucker, 2014).

The significance of the PKU GIMMS NDVI product
was the use of massive representative high-quality Landsat
NDVI samples across the globe from 1984 to 2015. More
than 12 million samples of different vegetation biome types
were extracted to create temporally consistent Landsat data
(Fig. 2), and approximately 3.6 million Landsat NDVI sam-
ples were obtained to generate PKU GIMMS NDVI. The
number, temporal coverage, and spatial coverage of the sam-
ples (Fig. 3) have been unparalleled compared to preceding
long-term NDVI products that also employed samples from
other sensors, most of which became available only after the
late 1990s (e.g., SeaWiFS: 1997-2010; SPOT-VGT: 1999-
2014; MODIS: since 2001; VIIRS: since 2012). The massive
Landsat NDVI samples paved the way for accurate Landsat
sensor cross-calibration (Fig. 2) and PKU GIMMS NDVI
generation (Figs. 5 and 6). They helped efficiently remove
the uncertainties from NOAA orbital drift and AVHRR sen-
sor degradation (Fig. 7). While this is out of the scope of the
current study, future evaluation work is suggested to compre-
hensively compare the PKU GIMMS NDVI to other global
long-term NDVI products such as the LTDR4 and VIP3.
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The improvements in PKU GIMMS NDVI may help to
clarify some discrepancies between existing NDVI products,
for instance, the vegetation trend in humid tropical regions
after 2000. In these regions, current findings from multiple
studies suggested that GIMMS-based NDVI presented a de-
creasing trend, while MODIS-based NDVI presented an in-
creasing trend (Fensholt and Proud, 2012; Tian et al., 2015;
Wang et al., 2022). Possible reasons could be the uncertain-
ties from NDVI saturation or lack of high-quality data (Fen-
sholt and Proud, 2012; Wang et al., 2022) and orbital drift
effects for GIMMS NDVI (Tian et al., 2015). In the gener-
ation of PKU GIMMS NDVI, these uncertainties have been
well accounted for, and we found an increasing NDVI trend
in tropical regions after 2000, both before and after data con-
solidation with MODIS NDVI.

6.2 Uncertainty source

Despite our efforts to improve the number and quality of the
Landsat NDVI samples, uncertainties remain. Besides those
related to the Landsat NDVI itself (such as the geometric
and radiometric errors), one major source of uncertainty is
the sample size. For certain vegetation biomes, the number
of samples in some regions (such as EBF and northern high
latitudes) may be insufficient due to the constraints in solar
zenith angle and environmental conditions. Our results indi-
cated that the accuracy of BPNN models was lower (despite
being acceptable) in the regions with fewer samples (Figs. 3
and 6). Future research in these regions should include sam-
ples from other satellite data as supplements.

Another source of uncertainty is the BNPP model. We
developed individual BPNN models for vegetation biome
types. As such, errors in the static vegetation biome map and
in the MODIS land cover product and the heterogeneity of
Earth’s surface might all diminish the model performance.
As input in the BNPP model, GIMMS NDVI3g could also
transmit its uncertainties to the PKU GIMMS NDVI. Fur-
thermore, subsequent research can include other explanatory
variables in the BPNN, such as the environmental variables
(e.g., solar radiation, temperature, and precipitation), to bet-
ter explain NDVI variations.

6.3 A summary of the PKU GIMMS NDVI product

In this study, a new version of GIMMS NDVI product, i.e.,
the PKU GIMMS NDVI, was developed using the BPNN
model, employing a large number of global high-quality
Landsat NDVI samples and a data consolidation method that
employed MODIS NDVI. The PKU GIMMS NDVI covers a
time span of 1982 to 2022, with a spatial resolution of 1/12°
and a temporal resolution of half-month. The high reliabil-
ity and high accuracy of the PKU GIMMS NDVI product is
demonstrated by the following:

— The Landsat NDVI samples used to generate the PKU
GIMMS NDVI were abundant (3.6 million), well dis-
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Figure 10. Selected EBF locations illustrating the consistency between the PKU GIMMS NDVI product (before and after consolidation) and
the MODIS NDVI product. Panels (a) and (b) show the locations with significant pixel-wised RF regression models. Panels (c¢) and (d) show
the locations with insignificant models. NDVI values outside 2 standard deviations were treated as outliers and removed.

tributed, representative, and high-quality. The inter-
comparison between NDVI of different Landsat sensors
after calibration showed high R? (> 0.98), low RMSE
(< 0.04), low MAE (< 0.02), and low MAPE (< 6 %).

Assessing against the Landsat NDVI, the PKU
GIMMS NDVTI had high overall accuracies (R? = 0.97,
RMSE =0.05, MAE =0.03, MAPE =9 %) and high
accuracies for individual vegetation biomes (R?: 0.47
to 0.92; RMSE: 0.03 to 0.07; MAE: 0.02 to 0.05;

https://doi.org/10.5194/essd-15-4181-2023

MAPE: 3% to 15%). It performed better than the
GIMMS NDVI3g (overall: R*> =0.94, RMSE = 0.09,
MAE =0.07, MAPE =20 %), especially for the trop-
ical evergreen broadleaf forests (EBF) (R2=0.16 in
the GIMMS NDVI3g; R? = 0.47 in the PKU GIMMS
NDVI).

— The PKU GIMMS NDVI efficiently removed the effects
of NOAA orbital drift and AVHRR sensor degradation.

Earth Syst. Sci. Data, 15, 4181-4203, 2023
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Figure 12. Annual anomalies and trends of PKU GIMMS NDVI (before consolidation), PKU GIMMS NDVI (after consolidation), MODIS
NDVI, and GIMMS NDVI3g. The NDVI anomalies were calculated as area-weighted annual averages.

— During the overlapping period, the consolidated PKU
GIMMS NDVI has a good agreement with MODIS
NDVI in values (R?> = 0.956, RMSE=0.048,
MAE = 0.034, and MAPE = 6.0 %) and in the vegeta-
tion trend (0.9 x 1073 yr~1).

The long-term, continuous, and reliable PKU GIMMS NDVI
for the past 40 years can provide more accurate vegetation
monitoring in the context of climate change. The framework
proposed in this study which used high-quality Landsat sam-
ples with BPNN and other explanatory variables (the lon-
gitude and latitude, associated month, and the NOAA num-
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ber and years since launch) can also benefit the development
of other remote sensing products of land surface parameters
(e.g., the development of LAI products).
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Figure A1. Annual anomalies and trends of PKU GIMMS NDVI (before consolidation), PKU GIMMS NDVI (after consolidation), MODIS
NDVI, and GIMMS NDVI3g for different vegetation biome types. The NDVI anomalies were calculated as area-weighted annual averages.
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