Articles | Volume 14, issue 11
https://doi.org/10.5194/essd-14-4967-2022
https://doi.org/10.5194/essd-14-4967-2022
Data description paper
 | 
11 Nov 2022
Data description paper |  | 11 Nov 2022

SiDroForest: a comprehensive forest inventory of Siberian boreal forest investigations including drone-based point clouds, individually labeled trees, synthetically generated tree crowns, and Sentinel-2 labeled image patches

Femke van Geffen, Birgit Heim, Frederic Brieger, Rongwei Geng, Iuliia A. Shevtsova, Luise Schulte, Simone M. Stuenzi, Nadine Bernhardt, Elena I. Troeva, Luidmila A. Pestryakova, Evgenii S. Zakharov, Bringfried Pflug, Ulrike Herzschuh, and Stefan Kruse

Related authors

BorFIT: A Novel LiDAR-Based Training Dataset for Individual Tree Segmentation and Species Detection in northern boreal Forests
Jacob Schladebach, Birgit Heim, Léa Enguehard, Mareike Wieczorek, Jakob Broers, Robert Jackisch, Josias Gloy, Kunyan Hao, James Tretton, Anna Gorshunova, and Stefan Kruse
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-340,https://doi.org/10.5194/essd-2025-340, 2025
Preprint under review for ESSD
Short summary
Disentangling future effects of climate change and forest disturbance on vegetation composition and land surface properties of the boreal forest
Lucia S. Layritz, Konstantin Gregor, Andreas Krause, Stefan Kruse, Benjamin F. Meyer, Thomas A. M. Pugh, and Anja Rammig
Biogeosciences, 22, 3635–3660, https://doi.org/10.5194/bg-22-3635-2025,https://doi.org/10.5194/bg-22-3635-2025, 2025
Short summary
Newly dated permafrost deposits and their paleoecological inventory reveal an Eemian much warmer than today in Arctic Siberia
Lutz Schirrmeister, Margret C. Fuchs, Thomas Opel, Andrei Andreev, Frank Kienast, Andrea Schneider, Larisa Nazarova, Larisa Frolova, Svetlana Kuzmina, Tatiana Kuznetsova, Vladimir Tumskoy, Heidrun Matthes, Gerrit Lohmann, Guido Grosse, Viktor Kunitsky, Hanno Meyer, Heike H. Zimmermann, Ulrike Herzschuh, Thomas Böhmer, Stuart Umbo, Sevi Modestou, Sebastian F. M. Breitenbach, Anfisa Pismeniuk, Georg Schwamborn, Stephanie Kusch, and Sebastian Wetterich
Clim. Past, 21, 1143–1184, https://doi.org/10.5194/cp-21-1143-2025,https://doi.org/10.5194/cp-21-1143-2025, 2025
Short summary
Quantitative climate reconstruction from sedimentary ancient DNA: framework, validation and application
Ulrike Herzschuh, Thomas Böhmer, Weihan Jia, and Simeon Lisovski
EGUsphere, https://doi.org/10.5194/egusphere-2025-2678,https://doi.org/10.5194/egusphere-2025-2678, 2025
Short summary
Global biome changes over the last 21 000 years inferred from model–data comparisons
Chenzhi Li, Anne Dallmeyer, Jian Ni, Manuel Chevalier, Matteo Willeit, Andrei A. Andreev, Xianyong Cao, Laura Schild, Birgit Heim, Mareike Wieczorek, and Ulrike Herzschuh
Clim. Past, 21, 1001–1024, https://doi.org/10.5194/cp-21-1001-2025,https://doi.org/10.5194/cp-21-1001-2025, 2025
Short summary

Cited articles

Abdi, A. M.: Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data, GISci Remote Sens., 57, 1–20, https://doi.org/10.1080/15481603.2019.1650447, 2020. 
ABoVE Science Definition Team: A Concise Experiment Plan for the Arctic-Boreal Vulnerability Experiment, ORNL DAAC, Oak Ridge, Tennessee, USA, [data set], https://doi.org/10.3334/ORNLDAAC/1617, 2014. 
Agisoft LLC: Agisoft PhotoScan Professional, Version 1.4.3; Agisoft LLC: St. Petersburg, Russia, 2018. 
Alexander, H., Paulson, A., DeMarco, J., Hewitt, R., Lichstein, J., Loranty, M., Mack, M., McEwan, R., Borth, E., Frankenberg, S., and Robinson, S.: Fire influences on forest recovery and associated climate feedbacks in Siberian Larch Forests, Russia, 2018–2019, Arctic Data Center, https://doi.org/10.18739/A2XG9FB90, 2020. 
Astola, H., Seitsonen, L., Halme, E., Molinier, M., and Lönnqvist, A.: Deep Neural Networks with Transfer Learning for Forest Variable Estimation Using Sentinel-2 Imagery in Boreal Forest, Remote Sens.-Basel, 13, 2392, https://doi.org/10.3390/rs13122392, 2021. 
Download
Short summary
SiDroForest is an attempt to remedy data scarcity regarding vegetation data in the circumpolar region, whilst providing adjusted and labeled data for machine learning and upscaling practices. SiDroForest contains four datasets that include SfM point clouds, individually labeled trees, synthetic tree crowns and labeled Sentinel-2 patches that provide insights into the vegetation composition and forest structure of two important vegetation transition zones in Siberia, Russia.
Share
Altmetrics
Final-revised paper
Preprint