Articles | Volume 13, issue 10
https://doi.org/10.5194/essd-13-4819-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/essd-13-4819-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A review of last interglacial sea-level proxies in the western Atlantic and southwestern Caribbean, from Brazil to Honduras
Karla Rubio-Sandoval
CORRESPONDING AUTHOR
MARUM – Center for Marine Environmental Sciences, University of
Bremen, Bremen, Germany
Alessio Rovere
MARUM – Center for Marine Environmental Sciences, University of
Bremen, Bremen, Germany
Ciro Cerrone
Dipartimento di Scienze della Terra, Universitá degli Studi di
Pisa, Pisa, Italy
Paolo Stocchi
Coastal Systems
Department, NIOZ, Royal Netherlands Institute for Sea Research and Utrecht University, P.O. Box 59 1790 AB Den Burg (Texel), the
Netherlands
Thomas Lorscheid
Research Group for Earth Observation (rgeo), Department of Geography, Heidelberg University of Education, Heidelberg, Germany
Thomas Felis
MARUM – Center for Marine Environmental Sciences, University of
Bremen, Bremen, Germany
Ann-Kathrin Petersen
MARUM – Center for Marine Environmental Sciences, University of
Bremen, Bremen, Germany
Deirdre D. Ryan
MARUM – Center for Marine Environmental Sciences, University of
Bremen, Bremen, Germany
Related authors
No articles found.
Patrick Boyden, Paolo Stocchi, and Alessio Rovere
Earth Surf. Dynam., 11, 917–931, https://doi.org/10.5194/esurf-11-917-2023, https://doi.org/10.5194/esurf-11-917-2023, 2023
Short summary
Short summary
Preservation bias often hampers the extraction of sea level changes from the stratigraphic record. In this contribution, we use a forward stratigraphic model to build three synthetic subtropical fringing reefs for a site in southwestern Madagascar (Indian Ocean). Each of the three synthetic reefs represents a different ice sheet melt scenario for the Pleistocene. We then evaluate each resultant reef sequence against the observed stratigraphic record.
Rachel M. Walter, Hussein R. Sayani, Thomas Felis, Kim M. Cobb, Nerilie J. Abram, Ariella K. Arzey, Alyssa R. Atwood, Logan D. Brenner, Émilie P. Dassié, Kristine L. DeLong, Bethany Ellis, Julien Emile-Geay, Matthew J. Fischer, Nathalie F. Goodkin, Jessica A. Hargreaves, K. Halimeda Kilbourne, Hedwig Krawczyk, Nicholas P. McKay, Andrea L. Moore, Sujata A. Murty, Maria Rosabelle Ong, Riovie D. Ramos, Emma V. Reed, Dhrubajyoti Samanta, Sara C. Sanchez, Jens Zinke, and the PAGES CoralHydro2k Project Members
Earth Syst. Sci. Data, 15, 2081–2116, https://doi.org/10.5194/essd-15-2081-2023, https://doi.org/10.5194/essd-15-2081-2023, 2023
Short summary
Short summary
Accurately quantifying how the global hydrological cycle will change in the future remains challenging due to the limited availability of historical climate data from the tropics. Here we present the CoralHydro2k database – a new compilation of peer-reviewed coral-based climate records from the last 2000 years. This paper details the records included in the database and where the database can be accessed and demonstrates how the database can investigate past tropical climate variability.
Alessio Rovere, Deirdre D. Ryan, Matteo Vacchi, Andrea Dutton, Alexander R. Simms, and Colin V. Murray-Wallace
Earth Syst. Sci. Data, 15, 1–23, https://doi.org/10.5194/essd-15-1-2023, https://doi.org/10.5194/essd-15-1-2023, 2023
Short summary
Short summary
In this work, we describe WALIS, the World Atlas of Last Interglacial Shorelines. WALIS is a sea-level database that includes sea-level proxies and samples dated to marine isotope stage 5 (~ 80 to 130 ka). The database was built through topical data compilations included in a special issue in this journal.
Molly O. Patterson, Richard H. Levy, Denise K. Kulhanek, Tina van de Flierdt, Huw Horgan, Gavin B. Dunbar, Timothy R. Naish, Jeanine Ash, Alex Pyne, Darcy Mandeno, Paul Winberry, David M. Harwood, Fabio Florindo, Francisco J. Jimenez-Espejo, Andreas Läufer, Kyu-Cheul Yoo, Osamu Seki, Paolo Stocchi, Johann P. Klages, Jae Il Lee, Florence Colleoni, Yusuke Suganuma, Edward Gasson, Christian Ohneiser, José-Abel Flores, David Try, Rachel Kirkman, Daleen Koch, and the SWAIS 2C Science Team
Sci. Dril., 30, 101–112, https://doi.org/10.5194/sd-30-101-2022, https://doi.org/10.5194/sd-30-101-2022, 2022
Short summary
Short summary
How much of the West Antarctic Ice Sheet will melt and how quickly it will happen when average global temperatures exceed 2 °C is currently unknown. Given the far-reaching and international consequences of Antarctica’s future contribution to global sea level rise, the SWAIS 2C Project was developed in order to better forecast the size and timing of future changes.
Ciro Cerrone, Matteo Vacchi, Alessandro Fontana, and Alessio Rovere
Earth Syst. Sci. Data, 13, 4485–4527, https://doi.org/10.5194/essd-13-4485-2021, https://doi.org/10.5194/essd-13-4485-2021, 2021
Short summary
Short summary
The paper is a critical review and standardization of 199 published scientific papers to compile a Last Interglacial sea-level database for the Western Mediterranean sector. In the database, 396 sea-level data points associated with 401 dated samples are included. The relative sea-level data points and associated ages have been ranked on a 0 to 5 scale score.
Kathrine Maxwell, Hildegard Westphal, and Alessio Rovere
Earth Syst. Sci. Data, 13, 4313–4329, https://doi.org/10.5194/essd-13-4313-2021, https://doi.org/10.5194/essd-13-4313-2021, 2021
Short summary
Short summary
Marine Isotope Stage 5e (MIS 5e; the Last Interglacial, 125 ka) represents a period in the Earth’s geologic history when sea level was higher than present. In this paper, a standardized database was produced after screening and reviewing LIG sea-level data from published papers in Southeast Asia. We identified 43 unique sea-level indicators (42 from coral reef terraces and 1 from a tidal notch) and compiled the data in the World Atlas of Last Interglacial Shorelines (WALIS).
Deirdre D. Ryan, Alastair J. H. Clement, Nathan R. Jankowski, and Paolo Stocchi
Earth Syst. Sci. Data, 13, 3399–3437, https://doi.org/10.5194/essd-13-3399-2021, https://doi.org/10.5194/essd-13-3399-2021, 2021
Short summary
Short summary
Studies of ancient sea level and coastlines help scientists understand how coasts will respond to future sea-level rise. This work standardized the published records of sea level around New Zealand correlated with sea-level peaks within the Last Interglacial (~128 000–73 000 years ago) using the World Atlas of Last Interglacial Shorelines (WALIS) database. New Zealand has the potential to provide an important sea-level record with more detailed descriptions and improved age constraint.
Patrick Boyden, Jennifer Weil-Accardo, Pierre Deschamps, Davide Oppo, and Alessio Rovere
Earth Syst. Sci. Data, 13, 1633–1651, https://doi.org/10.5194/essd-13-1633-2021, https://doi.org/10.5194/essd-13-1633-2021, 2021
Short summary
Short summary
Sea levels during the last interglacial (130 to 73 ka) are seen as possible process analogs for future sea-level-rise scenarios as our world warms. To this end we catalog previously published ancient shoreline elevations and chronologies in a standardized data format for East Africa and the Western Indian Ocean region. These entries were then contributed to the greater World Atlas of Last Interglacial Shorelines database.
Evan J. Gowan, Alessio Rovere, Deirdre D. Ryan, Sebastian Richiano, Alejandro Montes, Marta Pappalardo, and Marina L. Aguirre
Earth Syst. Sci. Data, 13, 171–197, https://doi.org/10.5194/essd-13-171-2021, https://doi.org/10.5194/essd-13-171-2021, 2021
Short summary
Short summary
During the last interglacial (130 to 115 ka), global sea level was higher than present. The World Atlas of Last Interglacial Shorelines (WALIS) has been created to document this. In this paper, we have compiled data for southeastern South America. There are landforms that indicate that sea level was 5 to 25 m higher than present during this time period. However, the quality of these data is hampered by limitations on elevation measurements, chronology, and geological descriptions.
Maren Bender, Thomas Mann, Paolo Stocchi, Dominik Kneer, Tilo Schöne, Julia Illigner, Jamaluddin Jompa, and Alessio Rovere
Clim. Past, 16, 1187–1205, https://doi.org/10.5194/cp-16-1187-2020, https://doi.org/10.5194/cp-16-1187-2020, 2020
Short summary
Short summary
This paper presents 24 new sea-level index points in the Spermonde Archipelago, Indonesia, and the reconstruction of the local Holocene relative sea-level history in combination with glacial isostasic adjustment models. We further show the importance of surveying the height of living coral microatolls as modern analogs to the fossil ones. Other interesting aspects are the potential subsidence of one of the densely populated islands, and we present eight samples that are dated to the Common Era.
PAGES Hydro2k Consortium
Clim. Past, 13, 1851–1900, https://doi.org/10.5194/cp-13-1851-2017, https://doi.org/10.5194/cp-13-1851-2017, 2017
Short summary
Short summary
Water availability is fundamental to societies and ecosystems, but our understanding of variations in hydroclimate (including extreme events, flooding, and decadal periods of drought) is limited due to a paucity of modern instrumental observations. We review how proxy records of past climate and climate model simulations can be used in tandem to understand hydroclimate variability over the last 2000 years and how these tools can also inform risk assessments of future hydroclimatic extremes.
André Düsterhus, Alessio Rovere, Anders E. Carlson, Benjamin P. Horton, Volker Klemann, Lev Tarasov, Natasha L. M. Barlow, Tom Bradwell, Jorie Clark, Andrea Dutton, W. Roland Gehrels, Fiona D. Hibbert, Marc P. Hijma, Nicole Khan, Robert E. Kopp, Dorit Sivan, and Torbjörn E. Törnqvist
Clim. Past, 12, 911–921, https://doi.org/10.5194/cp-12-911-2016, https://doi.org/10.5194/cp-12-911-2016, 2016
Short summary
Short summary
This review/position paper addresses problems in creating new interdisciplinary databases for palaeo-climatological sea-level and ice-sheet data and gives an overview on new advances to tackle them. The focus therein is to define and explain strategies and highlight their importance to allow further progress in these fields. It also offers important insights into the general problem of designing competitive databases which are also applicable to other communities within the palaeo-environment.
B. de Boer, P. Stocchi, and R. S. W. van de Wal
Geosci. Model Dev., 7, 2141–2156, https://doi.org/10.5194/gmd-7-2141-2014, https://doi.org/10.5194/gmd-7-2141-2014, 2014
C. Giry, T. Felis, M. Kölling, W. Wei, G. Lohmann, and S. Scheffers
Clim. Past, 9, 841–858, https://doi.org/10.5194/cp-9-841-2013, https://doi.org/10.5194/cp-9-841-2013, 2013
Related subject area
Marine geology
The SDUST2022GRA global marine gravity anomalies recovered from radar and laser altimeter data: contribution of ICESat-2 laser altimetry
Demersal fishery Impacts on Sedimentary Organic Matter (DISOM): a global harmonized database of studies assessing the impacts of demersal fisheries on sediment biogeochemistry
Predictive mapping of organic carbon stocks in surficial sediments of the Canadian continental margin
SCShores: a comprehensive shoreline dataset of Spanish sandy beaches from a citizen-science monitoring programme
The Modern Ocean Sediment Archive and Inventory of Carbon (MOSAIC): version 2.0
Large freshwater-influx-induced salinity gradient and diagenetic changes in the northern Indian Ocean dominate the stable oxygen isotopic variation in Globigerinoides ruber
Beach-face slope dataset for Australia
Last interglacial sea-level proxies in the Korean Peninsula
Last Interglacial sea-level proxies in the western Mediterranean
A standardized database of Last Interglacial (MIS 5e) sea-level indicators in Southeast Asia
A global database of marine isotope substage 5a and 5c marine terraces and paleoshoreline indicators
The last interglacial sea-level record of Aotearoa New Zealand
Last interglacial sea levels within the Gulf of Mexico and northwestern Caribbean Sea
Deep-sea sediments of the global ocean
Measurements of hydrodynamics, sediment, morphology and benthos on Ameland ebb-tidal delta and lower shoreface
Global distribution of nearshore slopes with implications for coastal retreat
Data set of submerged sand deposits organised in an interoperable spatial data infrastructure (Western Sardinia, Mediterranean Sea)
Thickness of marine Holocene sediment in the Gulf of Trieste (northern Adriatic Sea)
The GIK-Archive of sediment core radiographs with documentation
Zhen Li, Jinyun Guo, Chengcheng Zhu, Xin Liu, Cheinway Hwang, Sergey Lebedev, Xiaotao Chang, Anatoly Soloviev, and Heping Sun
Earth Syst. Sci. Data, 16, 4119–4135, https://doi.org/10.5194/essd-16-4119-2024, https://doi.org/10.5194/essd-16-4119-2024, 2024
Short summary
Short summary
A new global marine gravity model, SDUST2022GRA, is recovered from radar and laser altimeter data. The accuracy of SDUST2022GRA is 4.43 mGal on a global scale, which is at least 0.22 mGal better than that of other models. The spatial resolution of SDUST2022GRA is approximately 20 km in a certain region, slightly superior to other models. These assessments suggest that SDUST2022GRA is a reliable global marine gravity anomaly model.
Sarah Paradis, Justin Tiano, Emil De Borger, Antonio Pusceddu, Clare Bradshaw, Claudia Ennas, Claudia Morys, and Marija Sciberras
Earth Syst. Sci. Data, 16, 3547–3563, https://doi.org/10.5194/essd-16-3547-2024, https://doi.org/10.5194/essd-16-3547-2024, 2024
Short summary
Short summary
DISOM is a database that compiles data of 71 independent studies that assess the effect of demersal fisheries on sedimentological and biogeochemical properties. This database also provides crucial metadata (i.e. environmental and fishing descriptors) needed to understand the effects of demersal fisheries in a global context.
Graham Epstein, Susanna D. Fuller, Dipti Hingmire, Paul G. Myers, Angelica Peña, Clark Pennelly, and Julia K. Baum
Earth Syst. Sci. Data, 16, 2165–2195, https://doi.org/10.5194/essd-16-2165-2024, https://doi.org/10.5194/essd-16-2165-2024, 2024
Short summary
Short summary
Improved mapping of surficial seabed sediment organic carbon is vital for best-practice marine management. Here, using systematic data review, data unification process and machine learning techniques, the first national predictive maps were produced for Canada at 200 m resolution. We show fine-scale spatial variation of organic carbon across the continental margin and estimate the total standing stock in the top 30 cm of the sediment to be 10.9 Gt.
Rita González-Villanueva, Jesús Soriano-González, Irene Alejo, Francisco Criado-Sudau, Theocharis Plomaritis, Àngels Fernàndez-Mora, Javier Benavente, Laura Del Río, Miguel Ángel Nombela, and Elena Sánchez-García
Earth Syst. Sci. Data, 15, 4613–4629, https://doi.org/10.5194/essd-15-4613-2023, https://doi.org/10.5194/essd-15-4613-2023, 2023
Short summary
Short summary
Sandy beaches, shaped by tides, waves, and winds, constantly change. Studying these changes is crucial for coastal management, but obtaining detailed shoreline data is difficult and costly. Our paper introduces a unique dataset of high-resolution shorelines from five Spanish beaches collected through the CoastSnap citizen-science program. With 1721 shorelines, our dataset provides valuable information for coastal studies.
Sarah Paradis, Kai Nakajima, Tessa S. Van der Voort, Hannah Gies, Aline Wildberger, Thomas M. Blattmann, Lisa Bröder, and Timothy I. Eglinton
Earth Syst. Sci. Data, 15, 4105–4125, https://doi.org/10.5194/essd-15-4105-2023, https://doi.org/10.5194/essd-15-4105-2023, 2023
Short summary
Short summary
MOSAIC is a database of global organic carbon in marine sediments. This new version holds more than 21 000 sediment cores and includes new variables to interpret organic carbon distribution, such as sedimentological parameters and biomarker signatures. MOSAIC also stores data from specific sediment and molecular fractions to better understand organic carbon degradation and ageing. This database is continuously expanding, and version control will allow reproducible research outputs.
Rajeev Saraswat, Thejasino Suokhrie, Dinesh K. Naik, Dharmendra P. Singh, Syed M. Saalim, Mohd Salman, Gavendra Kumar, Sudhira R. Bhadra, Mahyar Mohtadi, Sujata R. Kurtarkar, and Abhayanand S. Maurya
Earth Syst. Sci. Data, 15, 171–187, https://doi.org/10.5194/essd-15-171-2023, https://doi.org/10.5194/essd-15-171-2023, 2023
Short summary
Short summary
Much effort is made to project monsoon changes by reconstructing the past. The stable oxygen isotopic ratio of marine calcareous organisms is frequently used to reconstruct past monsoons. Here, we use the published and new stable oxygen isotopic data to demonstrate a diagenetic effect and a strong salinity influence on the oxygen isotopic ratio of foraminifera in the northern Indian Ocean. We also provide updated calibration equations to deduce monsoons from the oxygen isotopic ratio.
Kilian Vos, Wen Deng, Mitchell Dean Harley, Ian Lloyd Turner, and Kristen Dena Marie Splinter
Earth Syst. Sci. Data, 14, 1345–1357, https://doi.org/10.5194/essd-14-1345-2022, https://doi.org/10.5194/essd-14-1345-2022, 2022
Short summary
Short summary
Along the world's coastlines, we find sandy beaches that are constantly reshaped by ocean waves and tides. The way the incoming waves interact with the sandy beach is dictated by the slope of the beach face. Yet, despite their importance in coastal sciences, beach-face slope data remain unavailable along most coastlines. Here we use satellite remote sensing to present a new dataset of beach-face slopes for the Australian continent, covering 13 200 km of sandy coast.
Woo Hun Ryang, Alexander R. Simms, Hyun Ho Yoon, Seung Soo Chun, and Gee Soo Kong
Earth Syst. Sci. Data, 14, 117–142, https://doi.org/10.5194/essd-14-117-2022, https://doi.org/10.5194/essd-14-117-2022, 2022
Short summary
Short summary
This work is part of the World Atlas of Last Interglacial Shorelines (WALIS), whose aim is to construct a database of Last Interglacial (LIG) relative sea-level (RSL) indicators from across the globe. This paper reviews the LIG sea-level constraints from the Korean Peninsula entered into the online WALIS database. This paper including the dataset will contribute to reconstructing global LIG sea-level changes and regional LIG RSL in the Korean Peninsula.
Ciro Cerrone, Matteo Vacchi, Alessandro Fontana, and Alessio Rovere
Earth Syst. Sci. Data, 13, 4485–4527, https://doi.org/10.5194/essd-13-4485-2021, https://doi.org/10.5194/essd-13-4485-2021, 2021
Short summary
Short summary
The paper is a critical review and standardization of 199 published scientific papers to compile a Last Interglacial sea-level database for the Western Mediterranean sector. In the database, 396 sea-level data points associated with 401 dated samples are included. The relative sea-level data points and associated ages have been ranked on a 0 to 5 scale score.
Kathrine Maxwell, Hildegard Westphal, and Alessio Rovere
Earth Syst. Sci. Data, 13, 4313–4329, https://doi.org/10.5194/essd-13-4313-2021, https://doi.org/10.5194/essd-13-4313-2021, 2021
Short summary
Short summary
Marine Isotope Stage 5e (MIS 5e; the Last Interglacial, 125 ka) represents a period in the Earth’s geologic history when sea level was higher than present. In this paper, a standardized database was produced after screening and reviewing LIG sea-level data from published papers in Southeast Asia. We identified 43 unique sea-level indicators (42 from coral reef terraces and 1 from a tidal notch) and compiled the data in the World Atlas of Last Interglacial Shorelines (WALIS).
Schmitty B. Thompson and Jessica R. Creveling
Earth Syst. Sci. Data, 13, 3467–3490, https://doi.org/10.5194/essd-13-3467-2021, https://doi.org/10.5194/essd-13-3467-2021, 2021
Short summary
Short summary
The elevations of geological indicators of past sea level inform paleoclimate reconstructions of interglacial intervals, including changes in ice volume and equivalent sea level rise and fall. In this review article, we summarize previously reported elevations and chronologies of a global set of ~80 000- and ~100 000-year-old interglacial shorelines and compile these in the open-source World Atlas of Last Interglacial Shorelines (WALIS) database for further paleoclimate analysis.
Deirdre D. Ryan, Alastair J. H. Clement, Nathan R. Jankowski, and Paolo Stocchi
Earth Syst. Sci. Data, 13, 3399–3437, https://doi.org/10.5194/essd-13-3399-2021, https://doi.org/10.5194/essd-13-3399-2021, 2021
Short summary
Short summary
Studies of ancient sea level and coastlines help scientists understand how coasts will respond to future sea-level rise. This work standardized the published records of sea level around New Zealand correlated with sea-level peaks within the Last Interglacial (~128 000–73 000 years ago) using the World Atlas of Last Interglacial Shorelines (WALIS) database. New Zealand has the potential to provide an important sea-level record with more detailed descriptions and improved age constraint.
Alexander R. Simms
Earth Syst. Sci. Data, 13, 1419–1439, https://doi.org/10.5194/essd-13-1419-2021, https://doi.org/10.5194/essd-13-1419-2021, 2021
Short summary
Short summary
This study is part of a larger community effort to catalogue the elevation of sea levels approximately 120 000 years ago – a time period when global temperatures were generally warmer than they are today. For this specific study I summarized the work of other scientists who had determined the age and elevations of ancient shorelines and coral reefs from across the Gulf of Mexico and Yucatán Peninsula.
Markus Diesing
Earth Syst. Sci. Data, 12, 3367–3381, https://doi.org/10.5194/essd-12-3367-2020, https://doi.org/10.5194/essd-12-3367-2020, 2020
Short summary
Short summary
A new digital map of the sediment types covering the bottom of the ocean has been created. Direct observations of the seafloor sediments are few and far apart. Therefore, machine learning was used to fill those gaps between observations. This was possible because known relationships between sediment types and the environment in which they form (e.g. water depth, temperature, and salt content) could be exploited. The results are expected to provide important information for marine research.
Bram C. van Prooijen, Marion F. S. Tissier, Floris P. de Wit, Stuart G. Pearson, Laura B. Brakenhoff, Marcel C. G. van Maarseveen, Maarten van der Vegt, Jan-Willem Mol, Frank Kok, Harriette Holzhauer, Jebbe J. van der Werf, Tommer Vermaas, Matthijs Gawehn, Bart Grasmeijer, Edwin P. L. Elias, Pieter Koen Tonnon, Giorgio Santinelli, José A. A. Antolínez, Paul Lodewijk M. de Vet, Ad J. H. M. Reniers, Zheng Bing Wang, Cornelis den Heijer, Carola van Gelder-Maas, Rinse J. A. Wilmink, Cor A. Schipper, and Harry de Looff
Earth Syst. Sci. Data, 12, 2775–2786, https://doi.org/10.5194/essd-12-2775-2020, https://doi.org/10.5194/essd-12-2775-2020, 2020
Short summary
Short summary
To protect the Dutch coastal zone, sand is nourished and disposed at strategic locations. Simple questions like where, how, how much and when to nourish the sand are not straightforward to answer. This is especially the case around the Wadden Sea islands where sediment transport pathways are complicated. Therefore, a large-scale field campaign has been carried out on the seaward side of Ameland Inlet. Sediment transport, hydrodynamics, morphology and fauna in the bed were measured.
Panagiotis Athanasiou, Ap van Dongeren, Alessio Giardino, Michalis Vousdoukas, Sandra Gaytan-Aguilar, and Roshanka Ranasinghe
Earth Syst. Sci. Data, 11, 1515–1529, https://doi.org/10.5194/essd-11-1515-2019, https://doi.org/10.5194/essd-11-1515-2019, 2019
Short summary
Short summary
This dataset provides the spatial distribution of nearshore slopes at a resolution of 1 km along the global coastline. The calculation was based on available global topo-bathymetric datasets and ocean wave reanalysis. The calculated slopes show skill in capturing the spatial variability of the nearshore slopes when compared against local observations. The importance of this variability is presented with a global coastal retreat assessment for an arbitrary sea level rise scenario.
Walter Brambilla, Alessandro Conforti, Simone Simeone, Paola Carrara, Simone Lanucara, and Giovanni De Falco
Earth Syst. Sci. Data, 11, 515–527, https://doi.org/10.5194/essd-11-515-2019, https://doi.org/10.5194/essd-11-515-2019, 2019
Short summary
Short summary
The expected sea level rise by the year 2100 will determine an adaptation of the whole coastal system and the land retreat of the shoreline. Future scenarios coupled with the improvement of mining technologies will favour increased exploitation of sand deposits for nourishment. This work summarises a large data set of geophysical and sedimentological data that maps the spatial features of submerged sand deposits and is a useful tool in future climate change scenarios.
Ana Trobec, Martina Busetti, Fabrizio Zgur, Luca Baradello, Alberto Babich, Andrea Cova, Emiliano Gordini, Roberto Romeo, Isabella Tomini, Sašo Poglajen, Paolo Diviacco, and Marko Vrabec
Earth Syst. Sci. Data, 10, 1077–1092, https://doi.org/10.5194/essd-10-1077-2018, https://doi.org/10.5194/essd-10-1077-2018, 2018
Short summary
Short summary
Following the last glacial period the sea level started rising rapidly. The sea started entering the Gulf of Trieste approximately 10000 years ago and since then marine Holocene sediment has been depositing. We wanted to understand how thick this sediment is, so we used modern scientific equipment which lets us determine the depth of the seafloor and the sediment below. The sediment is thickest in the SE part of the gulf (approx. 5 m). In the other parts it is very thin, except near the coast.
Hannes Grobe, Kyaw Winn, Friedrich Werner, Amelie Driemel, Stefanie Schumacher, and Rainer Sieger
Earth Syst. Sci. Data, 9, 969–976, https://doi.org/10.5194/essd-9-969-2017, https://doi.org/10.5194/essd-9-969-2017, 2017
Short summary
Short summary
A unique archive of radiographs from ocean floor sediments was produced during five decades of marine geological work at the Geological-Paleontological Institute, Kiel University. The content of 18 500 images was digitized, uploaded to the data library PANGAEA, georeferenced and completed with metadata. With this publication the images are made available to the scientific community under a CC-BY licence, which is open-access and citable with the persistent identifier https://doi.org/10.1594/PANGAEA.854841.
Cited articles
Alexander, C. S.: The marine terraces of Aruba, Bonaire, and Curaçao,
Netherlands Antilles, Ann. Assoc. Am. Geogr.,
51, 102–123, 1961.
Almeida, F. D.: Geologia e petrologia do Arquipelago de Fernando de Noronha:
[Brazil] Div. Geologia e Mineralogia do Depto. Nac. Prod. Mineral. Mon.
XIII, 181 pp., Brazil, 1955.
Angulo, R. J., Pessenda, L. C. R., and de Souza, M. C.: O significado das
datações ao 14C na reconstrução de paleoníveis marinhos
e na evolução das barreiras quaternárias do litoral paranaense,
Revista Brasileira de Geociências, 32, 95–106, 2002.
Angulo, R. J., Lessa, G. C., and de Souza, M. C.: A critical review of
mid-to late-Holocene sea-level fluctuations on the eastern Brazilian
coastline, Quaternary Sci. Rev., 25, 486–506, 2006.
Angulo, R. J., de Souza, M. C., Fernandes, L. A., and Disaró, S. T.:
Quaternary sea-level changes and aeolianites in the Fernando de Noronha
archipelago, northeastern Brazil, Quaternary Int., 305, 15–30,
2013.
Antonioli, F., Presti, V. L., Rovere, A., Ferranti, L., Anzidei, M.,
Furlani, S., Mastronuzzi, G., Orru, P., Scicchitano, G., Sannino, G.,
Spampinato, C., Pagliarulo, R., Deiaana, G., de Sabata, E., Sansò, P.,
Vacchi, M., and Vecchio, A.: Tidal notches in Mediterranean Sea: a
comprehensive analysis, Quaternary Sci. Rev., 119, 66–84, 2015.
Audemard, F. A.: Late Quaternary marine deposits of the Paraguana peninsula,
state of Falcon, northwestern Venezuela: preliminary geological observations
and neotectonic implications, Quaternary Int., 31, 5–11, 1996a.
Audemard, F. A.: Field-trip guidebook to “The late Quaternary marine
deposits of the Paraguaná peninsula and Coro surroundings”, in: 5th
Annual CLIP Meeting, July 1996, Punta Cardon, Venezuela, 1996b.
Austermann, J., Mitrovica, J. X., Huybers, P., and Rovere, A.: Detection of
a dynamic topography signal in last interglacial sea-level records, Sci.
Adv., 3, e1700457, https://doi.org/10.1126/sciadv.1700457, 2017.
Baker, R. F. and Watkins, M.: Guidance notes for the determination of mean
high water mark for land title surveys, Professional Development Committee of the New Zeeland Institute of Surveyor, New Zeeland, 1991.
Barbosa, L. M., Bittencourt, A. C. S. P., Dominguez, J. M. L., and Martin,
L.: The Quaternary coastal deposits of the State of Alagoas: influence of
the relative sea-level changes, Quat. S. Am. A., 4, 269–290, 1986.
Barlow, N. L., McClymont, E. L., Whitehouse, P. L., Stokes, C. R., Jamieson,
S. S., Woodroffe, S. A., Bentley, M. J., Callard, S. L, Cofaigh, C. Ò.,
Evans, D. J. A., Horrocks, J. R., Lloyd, J. M., Long, A. J., Margold, M.,
Roberts, D. H., and Sanchez-Montes, M. L.: Lack of evidence for a
substantial sea-level fluctuation within the Last Interglacial, Nat.
Geosci., 11, 627–634, 2018.
Barreto, A. M. F., Bezerra, F. H. R., Suguio, K., Tatumi, S. H., Yee, M.,
Paiva, R. P., and Munita, C. S.: Late Pleistocene marine terrace deposits in
northeastern Brazil: sea-level change and tectonic implications,
Palaeogeogr. Palaeocl., 179, 57–69, 2002.
Bauch, T., Reijmer, J. J. G., McNeill, D. F., and Schäfer, P.:
Development of a Pliocene mixed-carbonate siliciclastic reef (Limon, Costa
Rica), Sediment. Geol., 239, 37–47, 2011.
Bee, B.: Rapid Quaternary uplift of marine terraces: Cabo Blanco to
Montezuma area, Península de Nicoya, Costa Rica, Geol. Soc.
Am. Bull., 89, 981–999, 1999.
Bergoeing, J. P.: El Cuaternario en Costa Rica. Proposición
cronológica, Rev. Reflexiones, 85, 207–226, 2006.
Bergoeing, J. P.: La transgresión Flandense, Revista Geográfica, 144,
229–239, 2008.
Bermudez, P. J.: Cuaternario y reciente en Venezuela, Mem. Soc. Cienc. Nat.
La Salle, 24, 43–59, 1969.
Bermudez, P. J. and Farias, J.: Contribucion al estudio del Pleistocene
marine de Venezuela, Mem. Soc. Venez. Cienc. Nat. La Salle, 35,
69–118, 1975.
Bernat, M., Martin, L., Bittencourt, A. C. S. P., and Vilas Boas, G.: Io-U
dates of a coral formation from the last interglacial age on the Brazilian
coast. Use of 229Th as a tracer, Comptes Rendus des Seances de l'Academie
des Sciences. Serie 2, 296, 197–200, 1983.
Bezerra, F. H., Ferreira, J. M., and Sousa, M. O.: Review of seismicity and
Neogene tectonics in northeastern Brazil, Revista de la Asociación
Geológica Argentina, 61, 525–535, 2006.
Bezerra, I. S. A. A., Nogueira, A. C. R., Guimarães, J. T. F., and
Truckenbrodt, W.: Late Pleistocene sea-level changes recorded in tidal and
fluvial deposits from Itaubal Formation, onshore portion of the Foz do
Amazonas Basin, Brazil, Braz. J. Geol., 45, 63–78, 2015.
Bittencourt, A. C. S. P., Martin, L., Vilas Boas, G., and Flexor, J. M.:
Quaternary marine formations of the coast of the State of Bahia (Brazil),
IGCP, São Paulo, 1979.
Bittencourt, A. C. S. P., Martin, L., Dominguez, J. M. L., and Ferreira, Y.
D. A.: Evolução paleogeográfica quaternária da costa do
Estado de Sergipe e da costa sul do Estado de Alagoas, Revista Brasileira de
Geociências, 13, 93–97, 1983.
Boyé, M. and Cruys, H.: New data on the coast sedimentary formations in
French Guiana, Geological Survey Department, Guyana, 1961.
Branco, J. C., Ângulo, R. J., de Souza, M. C., Disaró, S. T., Pupo,
D. V., Scheel-Ybert, R., Gonçalves, T., and Pessenda, L. C. R.:
Fósseis e idade de um setor da barreira pleistocênica paranaense,
Revista de Gestão Costeira Integrada, 20, 5–25, https://doi.org/10.5894/rgci-n197, 2010.
Brinkman, R. and Pons, L. J.: A pedo-geomorphological classification and
map of the Holocene sediments in the coastal plain of the three Guianas,
Stichting voor Bodemkartering Wageningen, Soil Survey Institute, Wageningen, the Netherlands, 1968.
Brocas, W. M., Felis, T., Obert, J. C., Gierz, P., Lohmann, G., Scholz, D.,
Kölling, M., and Scheffers, S. R.: Last interglacial temperature
seasonality reconstructed from tropical Atlantic corals, Earth Planet.
Sc. Lett., 449, 418–429, 2016.
Buchmann, F. S. C. and Tomazelli, L. J.: Relict nearshore shoals of Rio
Grande do Sul, southern Brazil: Origin and effects on nearby modern beaches,
J. Coastal Res., 35, 318–322, 2003.
Bürgl, H.: Contribución a la estratigrafía y litogénesis de
la Isla de San Andrés, Boletín Geológico, 7, 5–25, 1961.
Cavada-Blanco, F., Croquer, A., Villamizar, A., Arocha, D., Agudo, E.,
Villamizar, E., González, G., Boadas, H., Naveda, J., Rodríguez,
J., Pellegrini, N., and Sánchez, R.: A Survival Blueprint for the Pillar
coral, Dendrogyra cylindrus. Compilation from the Workshop “Strategic planning for the
conservation and management of the Caribbean threatened species: Dendrogyra cylindrus, Acropora palmata and A. cervicornis and
their habitat at Archipelago Los Roques National Park, South Caribbean”, 24–28
November 2015, Universidad Simon Bolivar, Caracas,
Venezuela, 2016.
Choubert, B.: French Guiana, Geol. Soc. Am. Mem., 65,
63–75, 1956.
Chutcharavan, P. M. and Dutton, A.: A global compilation of U-series-dated fossil coral sea-level indicators for the Last Interglacial period (Marine Isotope Stage 5e), Earth Syst. Sci. Data, 13, 3155–3178, https://doi.org/10.5194/essd-13-3155-2021, 2021.
Danielo, A.: Formes et dépôts littoraux de la côte
septentrionale du Vénézuéla, JSTOR, Annales de Geographie, 467,
68–97, 1976.
Davidson, D.: Recent Uplift of the Burica Peninsula, Panama and Costa Rica,
Recorded by Marine Terraces, e Geosciences Department, Stanford, California, 2010.
de Boer, B., Stocchi, P., and van de Wal, R. S. W.: A fully coupled 3-D ice-sheet–sea-level model: algorithm and applications, Geosci. Model Dev., 7, 2141–2156, https://doi.org/10.5194/gmd-7-2141-2014, 2014.
de Oliveira Soares, M., da Cruz Lotufo, T. M., Vieira, L. M., Salani, S.,
Hajdu, E., Matthews-Cascon, H., Leão, Z. M. A. N., and Kikuchi, P.:
Brazilian Marine Animal Forests: A New World to Discover in the Southwestern
Atlantic, in: Marine Animal Forests, Springer International Publishing,
Cham., 73–110, 2017.
Dillenburg, S. R., Barboza, E. G., Tomazelli, L. J., Ayup-Zouain, R. N.,
Hesp, P. A., and Clerot, L. C. P.: The Holocene Coastal Barriers of Rio
Grande do Sul, in: Geology and Geomorphology of Holocene Coastal Barriers of
Brazil, 53–91, Springer, Berlin, Heidelberg, 2009.
Dominguez, J. M. L., Bittencourt, A. C. S. P., Leão, Z. M. A. N., and de
Azevedo, A. E. G.: Geologia do Quaternário costeiro do estado de
Pernambuco, Revista Brasileira de Geociências, 20, 208–215, 1990.
Felis, T., Giry, C., Scholz, D., Lohmann, G., Pfeiffer, M., Pätzold, J.,
Kölling, M., and Scheffers, S. R.: Tropical Atlantic temperature
seasonality at the end of the last interglacial, Nat. Commun.,
6, 6159, https://doi.org/10.1038/ncomms7159, 2015.
Frey, R. W., Howard, J. D., and Pryor, W. A.: Ophiomorpha: its morphologic,
taxonomic, and environmental significance, Palaeogeogr.
Palaeocl., 23, 199–229, 1978.
Geister, J.: Nota sobre la edad de las calizas coralinas del Pleistoceno
marino en las Islas de San Andres y Providencia (Mar Caribe occidental,
Colombia), Mitt. Inst. Colombo-Alemán Invest. Cient., 6, 135–140, 1972.
Geister, J.: Recent coral reefs and geology history of providencia island
(western caribbean sea, colombia), Geología Colombiana, 15, 115–134,
1986.
Geister, J.: Modern reef development and Cenozoic evolution of an oceanic
island/reef complex: Isla de Providencia (Western Caribbean Sea, Colombia),
Facies, 27, 1, https://doi.org/10.1007/BF02536804, 1992.
Giannini, P. C. F., Sawakuchi, A. O., Martinho, C. T., and Tatumi, S. H.:
Eolian depositional episodes controlled by Late Quaternary relative
sea-level changes on the Imbituba–Laguna coast (southern Brazil), Mar.
Geol., 237, 143–168, 2007.
Gowan, E. J., Rovere, A., Ryan, D. D., Richiano, S., Montes, A., Pappalardo, M., and Aguirre, M. L.: Last interglacial (MIS 5e) sea-level proxies in southeastern South America, Earth Syst. Sci. Data, 13, 171–197, https://doi.org/10.5194/essd-13-171-2021, 2021.
Hamelin, B., Bard, E., Zindler, A., and Fairbanks, R. G.: mass
spectrometry of corals: How accurate is the UTh age of the last interglacial
period?, Earth Planet. Sc. Lett., 106, 169–180, 1991.
Hartt, C. F. and Agassiz, L.: Scientific Results of a Journey in Brazil by
Louis Agassiz and His Travelling Companions: Geology and Physical Geography
of Brazil, Fields, Osgood., London, 1870.
Hearty, P. J., Hollin, J. T., Neumann, A. C., O'Leary, M. J., and McCulloch,
M.: Global sea-level fluctuations during the Last Interglaciation (MIS 5e),
Quaternary Sci. Rev., 26, 2090–2112, 2007.
Herweijer, J. P. and Focke, J. W.: Late Pleistocene depositional and
denudational history of Aruba, Bonaire and Curaçao (Netherlands
Antilles), Geol. en Mijnb., 57, 177–187, 1978.
Hippolyte, J.-C. and Mann, P.: Neogene–Quaternary tectonic evolution of
the Leeward Antilles islands (Aruba, Bonaire, Curaçao) from fault
kinematic analysis, Mar. Petrol. Geol., 28, 259–277, 2011.
Horn Filho, N. O. and Simó, D. H.: The upper pleistocene of São
Francisco do Sul Island coastal plain: geomorphologic, sedimentologic and
evolutive aspects, Braz. J. Oceanogr., 56, 179–187, 2008.
Horn Filho, N. O. and Vieira, C. V.: Mapa geoevolutivo da planície
costeira da Ilha de São Francisco do Sul, SC, Brasil, 2017.
Horn Filho, N. O., Schmidt, A. D., Benedet, C., Neves, J., Pimenta, L. H.
F., Paquette, M., Alencar, R., Silva, W. B., Villela, E., Genovez, R., and
Santos, C. G.: Estudo geológico dos depósitos clásticos
quaternários superficiais da planície costeira de Santa Catarina,
Brasil, GRAVEL, 12, 41–107, 2014.
Horn Filho, N. O., Lima, A. de S., Pereira, A., Covello, C., Porto Filho,
E., Sanchez, G. M., Goés, I. M. de A., Matos, I. da S., Silva, M., and
Souza, R. R.: Roteiro geológico na planície costeira de Santa
Catarina, Brasil, Florianópolis, Edições do Bosque, 2017.
Iriondo, M.: El cuaternario de las Guayanas, Museo Provincial de Ciencias
Naturales Florentino Ameghino, Santa Fe, Argentina, 2013.
Isla, F. I. and Angulo, R. J.: Tectonic processes along the South America
coastline derived from Quaternary marine terraces, J. Coastal
Res., 32, 840–852, 2016.
Kennedy, D. M., Tannock, K. L., Crozier, M. J., and Rieser, U.: Boulders of
MIS 5 age deposited by a tsunami on the coast of Otago, New Zealand,
Sediment. Geol., 200, 222–231, 2007.
Khan, N. S., Ashe, E., Horton, B. P., Dutton, A., Kopp, R. E., Brocard, G.,
Engelhart, S. E., Hill, D. F., Peltier, W. R., Vane, C. H., and Scatena, F. N.:
Drivers of Holocene sea-level change in the Caribbean, Quaternary Sci.
Rev., 155, 13–36, 2017.
Khan, N. S., Horton, B. P., Engelhart, S., Rovere, A., Vacchi, M., Ashe, E.
L., Törnqvist, T. E., Dutton, A., Hijma, M., and Shennan, I.: Inception
of a global atlas of sea levels since the Last Glacial Maximum, Quaternary
Sci. Rev., 220, 359–371, 2019.
Kim, K. H. and Lee, D. J.: Distribution and depositional environments of
coralline lithofacies in uplifted Pleistocene coral reefs of Bonaire,
Netherlands Antilles, Journal of the Paleontological Society of Korea,
15, 115–133, 1999.
Laborel, J.: Madreporaires et hydrocoralliares recifaux des cotes
Bresiliennes. Systematique, ecologie. repartition verticale et geographique,
Results Scientifique du Campagne de Calypso, 9, 171–229, 1970.
Lighty, R. G., Macintyre, I. G., and Stuckenrath, R.: Acropora palmata reef
framework: a reliable indicator of sea level in the western Atlantic for the
past 10,000 years, Coral reefs, 1, 125–130, 1982.
Lorscheid, T. and Rovere, A.: The indicative meaning
calculator–quantification of paleo sea-level relationships by using global
wave and tide datasets, Open Geospatial Data, Software and Standards, 4,
10, https://doi.org/10.1186/s40965-019-0069-8, 2019.
Lorscheid, T., Felis, T., Stocchi, P., Obert, J. C., Scholz, D., and Rovere,
A.: Tides in the Last Interglacial: insights from notch geometry and palaeo
tidal models in Bonaire, Netherland Antilles, Sci. Rep.-UK, 7,
16241, https://doi.org/10.1038/s41598-017-16285-6, 2017.
Martin, L. and Suguio, K.: Etude Preliminaire du Quaternaire Marin:
Comparaison du Litoral de São Paulo et de Salvador de Bahia (BRESIL), Inst. Geoci., Cidade Univ. C.P. 20899, Sao Paulo, Brazil,
1976.
Martin, L., Bittencourt, A. C. S. P., and Boas, G. da S. V.: Primeira
ocorrência de corais pleistocênicos da costa brasilleira:
datação do máximo da penúltima transgressão,
Ciências da Terra, 3, 16–17, 1982.
Martin, L., Dominguez, J. M. L., and Suguío, K.: Consequence of
relative sea-level changes during the Quaternary on sandy coastal
sedimentation: examples from Brazil, in: International symposium on sea-level
changes and quaternary shorelines, 119–135, CRC Press, USA, 1986.
Martin, L., Suguio, K., and Flexor, J.-M.: Hauts niveaux marins Pleistocenes
du littoral bresilien, Palaeogeogr. Palaeocl.,
68, 231–239, 1988.
Martin, L., Flexor, J.-M., and Suguio, K.: Pleistocene wave-built terraces
of Northem Rio de Janeiro State, Brazil, 1998.
Martins, D. C., Cancelli, R. R., Lopes, R. P., Hanler, P., Testa, E. H., and
Barboza, E. G.: Ocorrência de Ophiomorpha nodosa em sedimentos pleistocênicos da
Planície Costeira da Pinheira, Santa Catarina, Brasil, Rev.
Bras. Paleontolog., 21, 79–86, 2018.
Mauz, B., Vacchi, M., Green, A., Hoffmann, G., and Cooper, A.: Beachrock: a
tool for reconstructing relative sea level in the far-field, Mar. Geol.,
362, 1–16, 2015.
Meyer, D., Bries, J., Greenstein, B., and Debrot, A.:
Preservation of in situ reef framework in regions of low hurricane
frequency: Pleistocene of Curaçao and Bonaire, southern Caribbean,
Lethaia, 36, 273–285, 2003.
Muhs, D. R., Pandolfi, J. M., Simmons, K. R., and Schumann, R. R.: Sea-level
history of past interglacial periods from uranium-series dating of corals,
Curaçao, Leeward Antilles islands, Quaternary Res., 78, 157–169,
2012.
Obert, J. C., Scholz, D., Felis, T., Brocas, W. M., Jochum, K. P., and
Andreae, M. O.: dating of Last Interglacial brain corals from
Bonaire (southern Caribbean) using bulk and theca wall material, Geochim. Cosmochim. Ac., 178, 20–40, 2016.
O'Leary, M. J., Hearty, P. J., Thompson, W. G., Raymo, M. E., Mitrovica, J.
X., and Webster, J. M.: Ice sheet collapse following a prolonged period of
stable sea level during the last interglacial, Nat. Geosci., 6,
796–800, 2013.
Pandolfi, J. M. and Jackson, J. B. C.: Community structure of Pleistocene
coral reefs of Curaçao, Netherlands Antilles, Ecol. Monogr.,
71, 49–67, 2001.
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K.: The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), J. Geophys. Res.-Sol. Ea., 117, B04406, https://doi.org/10.1029/2011JB008916, 2012.
Peltier, W. R.: Global glacial isostasy and the surface of the ice-age
Earth: the ICE-5G (VM2) model and GRACE, Annu. Rev. Earth Planet. Sc., 32,
111–149, 2004.
Pico, T.: Towards assessing the influence of sediment loading on Last
Interglacial sea level, Geophys. J. Int., 220, 384–392,
2020.
Pirazzoli, P. A.: Marine terraces, Encyclopedia of Coastal Science, Springer
Netherlands, Dordrecht, 632–633, 2005.
Polyak, V. J., Onac, B. P., Fornós, J. J., Hay, C., Asmerom, Y., Dorale,
J. A., Ginés, J., Tuccimei, P., and Ginés, A.: A highly resolved
record of relative sea level in the western Mediterranean Sea during the
last interglacial period, Nat. Geosci., 11, 860–864, 2018.
Porta, J. and de Porta, N. S.: El cuaternario marino de la isla de
Tierrabomba (Bolívar), Boletín de Geología, 4, 19–44,
1960.
Porta, J., Barrera, R., and Julià, R.: Raised marsh deposits near
Cartagena de Indias, Colombia: evidence of eustatic and climatic instability
during the late Holocene, Boletín de Geología, 30, 21–28,
2008.
Poupeau, G., Soliani, J. R. E., Rivera, A., Loss, E., and Vasconcellos,
M.: Datação por termoluminescência de alguns depósitos
arenosos costeiros do último ciclo climático, no nordeste do Rio
Grande do Sul, Pesquisas em Geociências, 21, 25–47, 1988.
Rees-Jones, J., Rink, W. J., Norris, R. J., and Litchfield, N. J.: Optical
luminescence dating of uplifted marine terraces along the Akatore Fault near
Dunedin, South Island, New Zealand, New Zeal. J. Geol.
Geop., 43, 419–424, 2000.
Rey, O.: Estratigrafía de la península de Paraguaná, Venezuela,
Rev. Fac. Ing., 11, 35–45, 1996.
Rossetti, D. F., Bezerra, F. H. R., Góes, A. M., Valeriano, M. M.,
Andrades-Filho, C. O., Mittani, J. C. R., Tatumi, S. H., and Brito-Neves, B.
B.: Late Quaternary sedimentation in the Paraíba Basin, Northeastern
Brazil: landform, sea level and tectonics in Eastern South America passive
margin, Palaeogeogr. Palaeocl., 300,
191–204, 2011.
Rovere, A., Raymo, M. E., Vacchi, M., Lorscheid, T., Stocchi, P.,
Gomez-Pujol, L., Harris, D. L., Casella, E., O'Leary, M. J., and Hearty, P.
J.: The analysis of Last Interglacial (MIS 5e) relative sea-level
indicators: Reconstructing sea-level in a warmer world, Earth-Sci.
Rev., 159, 404–427, 2016.
Rovere, A., Ryan, D., Murray-Wallace, C., Simms, A., Vacchi, M., Dutton, A.,
Lorscheid, T., Chutcharavan, P., Brill, D., Bartz, M., Jankowski, N.,
Mueller, D., Cohen, K., and Gowan, E.: Descriptions of database fields for
the World Atlas of Last Interglacial Shorelines (WALIS), Zenodo [data set],
https://doi.org/10.5281/zenodo.3961544, 2020.
Rubio-Sandoval, K., Rovere, A., Cerrone, C., Stocchi, P., Lorscheid, T.,
Felis, T., Petersen, A. K., and Ryan, D. D.: Last Interglacial sea-level
proxies in the Western Atlantic and Southwestern Caribbean, from Brazil to
Honduras (Version 1.02), Zenodo, https://doi.org/10.5281/zenodo.5516444, 2021.
Schellmann, G., Radtke, U., Scheffers, A., Whelan, F., and Kelletat, D.: ESR
dating of coral reef terraces on Curaçao (Netherlands Antilles) with
estimates of younger Pleistocene sea level elevations, J. Coastal
Res., 20, 947–957, 2004.
Schubert, C. and Szabo, B. J.: Uranium-series ages of pleistocene marine
deposits on the islands of Curaçao and La Blanquilla, Caribbean Sea,
Geol. Mijnbouw, 57, 325–332, 1978.
Segal, B. and Castro, C. B.: Slope preferences of reef corals (Cnidaria,
Scleractinia) in the Abrolhos Archipelago, Brazil, Bolm Mus. Nac., ns Zool.,
418, 1–10, 2000.
Shennan, I.: Interpretation of Flandrian sea-level data from the Fenland,
England, P. Geol. Assoc., 93, 53–63, 1982.
Shennan, I.: Flandrian sea-level changes in the Fenland. I: The geographical
setting and evidence of relative sea-level changes, J. Quaternary
Sci., 1, 119–153, 1986.
Shennan, I.: Holocene crustal movements and sea-level changes in Great
Britain, J. Quaternary Sci., 4, 77–89, 1989.
Shennan, I., Tooley, M. J., Davis, M. J., and Haggart, B. A.: Analysis and
interpretation of Holocene sea-level data, Nature, 302, 404–406, 1983.
Simms, A. R.: Last interglacial sea levels within the Gulf of Mexico and northwestern Caribbean Sea, Earth Syst. Sci. Data, 13, 1419–1439, https://doi.org/10.5194/essd-13-1419-2021, 2021.
Smith, D. A. and Small, H. J.: The CARIB97 high-resolution geoid height
model for the Caribbean Sea, J. Geodesy, 73, 1–9,
https://doi.org/10.1007/s001900050212, 1999.
Spada, G. and Stocchi, P.: SELEN: A Fortran 90 program for solving the
“sea-level equation”, Comput. Geosci., 33, 538–562, 2007.
Styron, R. and Pagani, M.: The GEM global active faults database,
Earthq. Spectra, 36, 160–180, 2020.
Suguio, K. and Martin, L.: Brazilian Coastline Quaternary Foriviations –
The States of São Paulo and Bahia Litoral Zone Evolutive Schemes, An.
Acad. Bras. Ciênc., 48, 325–334, 1995.
Suguio, K. and Petri, S.: Stratigraphy of the Iguapé-Cananéia
lagoonal region sedimentary deposits, São Paulo State, Brazil: part I:
field observations and grain size analysis, Boletim IG, 4, 01–20, 1973.
Suguio, K., Barreto, A. M. F., Bezerra, F. H. R., and de Oliveira, P. E.:
Síntese sobre prováveis níveis relativos do mar acima do atual
no pleistoceno do Brasil, 2005.
Suguio, K., Martin, L., and Dominguez, J. M. L.: Evolução da
planície costeira do Rio Doce (ES) durante o quaternário:
Influência das flutuações do nível do mar, 1982.
Suguio, K., Tatumi, S. H., Kowata, E. A., Munita, C. S., and Paiva, R. P.:
Upper Pleistocene deposits of the Comprida Island (São Paulo State)
dated by thermoluminescence method, An. Acad. Bras.
Ciênc., 75, 91–96, 2003.
Suguio, K., Bezerra, F. H. R., and Barreto, A. M. F.: Luminescence dated
Late Pleistocene wave-built terraces in northeastern Brazil, An.
Acad. Bras. Ciênc., 83, 907–920, 2011.
Tomazelli, L. J. and Dillenburg, S. R.: Sedimentary facies and stratigraphy
of a last interglacial coastal barrier in south Brazil, Mar. Geol.,
244, 33–45, 2007.
Tomazelli, L. J., Dillenburg, S. R., and Villwock, J. A.: Geological
evolution of Rio Grande do Sul coastal plain, southern Brazil, J.
Coastal Res., 1, 275–278, 2006.
Villwock, J. A.: Geology of the Coastal Province of Rio Grande do Sul,
Southern Brazil. A Synthesis, Pesquisas em Geociências, 16, 5–49,
1984.
Watanabe, S., Ortega, N. R. S., Ayta, W. E. F., Coaquira, J. A. H.,
Cortezao, S. U., and Arenas, J. S. A.: TL dating of sands from Ilha de
Cananeia, Radiat. Meas., 27, 373–376, 1997.
Wong, T.: Quaternary Stratigraphy of Suriname, in: Evolution des littoraux de
Guyane et de la zone caraïbe méridionale pendant le quaternaire, ORSTOM, Paris,
1992.
Wong, T. E., de Kramer, R., de Boer, P. L., Langereis, C., and Sew-A-Tjon,
J.: The influence of sea-level changes on tropical coastal lowlands; the
Pleistocene Coropina Formation, Suriname, Sediment. Geol., 216,
125–137, 2009.
Zecchin, M., Ronald, N., and Cesare, R.: Raised Pleistocene marine terraces
of the Crotone peninsula (Calabria, southern Italy): facies analysis and
organization of their deposits, Sediment. Geol., 172, 165–185, 2004.
Short summary
The Last Interglacial (LIG) is a warm period characterized by a higher-than-present sea level. For this reason, scientists use it as an analog for future climatic conditions. In this paper, we use the World Atlas of Last Interglacial Shorelines database to standardize LIG sea-level data along the coasts of the western Atlantic and mainland Caribbean, identifying 55 unique sea-level indicators.
The Last Interglacial (LIG) is a warm period characterized by a higher-than-present sea level....
Special issue
Altmetrics
Final-revised paper
Preprint