Articles | Volume 13, issue 9
https://doi.org/10.5194/essd-13-4385-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-4385-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development of observation-based global multilayer soil moisture products for 1970 to 2016
Yaoping Wang
Institute for a Secure and Sustainable Environment, University of
Tennessee, Knoxville, TN 37902, USA
Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
Mingzhou Jin
Institute for a Secure and Sustainable Environment, University of
Tennessee, Knoxville, TN 37902, USA
Department of Industrial and Systems Engineering, University of
Tennessee, Knoxville, TN 37996, USA
Forrest M. Hoffman
Computational Sciences and Engineering Division and Climate Change
Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
Xiaoying Shi
Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
Stan D. Wullschleger
Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
Yongjiu Dai
School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, 519082, China
Related authors
No articles found.
Shulei Zhang, Hongbin Liang, Fang Li, Xingjie Lu, and Yongjiu Dai
Hydrol. Earth Syst. Sci., 29, 3119–3143, https://doi.org/10.5194/hess-29-3119-2025, https://doi.org/10.5194/hess-29-3119-2025, 2025
Short summary
Short summary
This study enhances irrigation modeling in the Common Land Model by capturing the full irrigation process, detailing water supplies from various sources, and enabling bidirectional coupling between water demand and supply. The proposed model accurately simulates irrigation water withdrawals, energy fluxes, river flow, and crop yields. It offers insights into irrigation-related climate impacts and water scarcity, contributing to sustainable water management and improved Earth system modeling.
Yue Li, Gang Tang, Eleanor O’Rourke, Samar Minallah, Martim Mas e Braga, Sophie Nowicki, Robin S. Smith, David M. Lawrence, George C. Hurtt, Daniele Peano, Gesa Meyer, Birgit Hassler, Jiafu Mao, Yongkang Xue, and Martin Juckes
EGUsphere, https://doi.org/10.5194/egusphere-2025-3207, https://doi.org/10.5194/egusphere-2025-3207, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Land and Land Ice Theme Opportunities describe a list that contains 25 variable groups with 716 variables, which are potentially available to the broad scientific audience for performing analysis in land-atmosphere coupling, hydrological processes and freshwater systems, glacier and ice sheet mass balance and their influence on the sea levels, land use, and plant phenology.
Alex C. Ruane, Charlotte L. Pascoe, Claas Teichmann, David J. Brayshaw, Carlo Buontempo, Ibrahima Diouf, Jesus Fernandez, Paula L. M. Gonzalez, Birgit Hassler, Vanessa Hernaman, Ulas Im, Doroteaciro Iovino, Martin Juckes, Iréne L. Lake, Timothy Lam, Xiaomao Lin, Jiafu Mao, Negin Nazarian, Sylvie Parey, Indrani Roy, Wan-Ling Tseng, Briony Turner, Andrew Wiebe, Lei Zhao, and Damaris Zurell
EGUsphere, https://doi.org/10.5194/egusphere-2025-3408, https://doi.org/10.5194/egusphere-2025-3408, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This paper describes how the Coupled Model Intercomparison Project organized its 7th phase (CMIP7) to encourage the production of Earth system model outputs relevant for impacts and adaptation. Community engagement identified 13 opportunities for application across human and natural systems, 60 variable groups and 539 unique variables. We also show how simulations can more efficiently meet applications needs by targeting appropriate resolution, time slices, experiments and variable groups.
Forrest M. Hoffman, Birgit Hassler, Ranjini Swaminathan, Jared Lewis, Bouwe Andela, Nathaniel Collier, Dóra Hegedűs, Jiwoo Lee, Charlotte Pascoe, Mika Pflüger, Martina Stockhause, Paul Ullrich, Min Xu, Lisa Bock, Felicity Chun, Bettina K. Gier, Douglas I. Kelley, Axel Lauer, Julien Lenhardt, Manuel Schlund, Mohanan G. Sreeush, Katja Weigel, Ed Blockley, Rebecca Beadling, Romain Beucher, Demiso D. Dugassa, Valerio Lembo, Jianhua Lu, Swen Brands, Jerry Tjiputra, Elizaveta Malinina, Brian Mederios, Enrico Scoccimarro, Jeremy Walton, Philip Kershaw, André L. Marquez, Malcolm J. Roberts, Eleanor O’Rourke, Elisabeth Dingley, Briony Turner, Helene Hewitt, and John P. Dunne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2685, https://doi.org/10.5194/egusphere-2025-2685, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
As Earth system models become more complex, rapid and comprehensive evaluation through comparison with observational data is necessary. The upcoming Assessment Fast Track for the Seventh Phase of the Coupled Model Intercomparison Project (CMIP7) will require fast analysis. This paper describes a new Rapid Evaluation Framework (REF) that was developed for the Assessment Fast Track that will be run at the Earth System Grid Federation (ESGF) to inform the community about the performance of models.
Chen Yang, Zitong Jia, Wenjie Xu, Zhongwang Wei, Xiaolang Zhang, Yiguang Zou, Jeffrey McDonnell, Laura Condon, Yongjiu Dai, and Reed Maxwell
Hydrol. Earth Syst. Sci., 29, 2201–2218, https://doi.org/10.5194/hess-29-2201-2025, https://doi.org/10.5194/hess-29-2201-2025, 2025
Short summary
Short summary
We developed the first high-resolution, integrated surface water–groundwater hydrologic model of the entirety of continental China using ParFlow. The model shows good performance in terms of streamflow and water table depth when compared to global data products and observations. It is essential for water resources management and decision-making in China within a consistent framework in the changing world. It also has significant implications for similar modeling in other places in the world.
Zhongwang Wei, Qingchen Xu, Fan Bai, Xionghui Xu, Zixin Wei, Wenzong Dong, Hongbin Liang, Nan Wei, Xingjie Lu, Lu Li, Shupeng Zhang, Hua Yuan, Laibo Liu, and Yongjiu Dai
EGUsphere, https://doi.org/10.5194/egusphere-2025-1380, https://doi.org/10.5194/egusphere-2025-1380, 2025
Short summary
Short summary
Land surface models are used for simulating earth's surface interacts with the atmosphere. As models grow more complex and detailed, researchers need better tools to evaluate their performance. OpenBench, a new software system that makes evaluation process more comprehensive and efficient. It stands out by incorporating various factors and working with data at any scale which enabling scientists to incorporate new types of models and measurements as our understanding of Earth’s systems evolves.
Shuyang Guo, Yongjiu Dai, Hua Yuan, and Hongbin Liang
EGUsphere, https://doi.org/10.5194/egusphere-2025-230, https://doi.org/10.5194/egusphere-2025-230, 2025
Short summary
Short summary
The Snow, Ice, and Aerosol Radiation Model Version 4 has only been used to evaluate bare ice albedo in land surface models, with necessary ice property data lacking quality control. We integrated this model into our land surface model and improved bare ice properties using quality-controlled satellite data. Our findings show regional warming and reduced snow cover in Greenland’s bare ice region, driven by changes in bare ice properties through the bare ice-snow-albedo feedback.
Gaosong Shi, Wenye Sun, Wei Shangguan, Zhongwang Wei, Hua Yuan, Lu Li, Xiaolin Sun, Ye Zhang, Hongbin Liang, Danxi Li, Feini Huang, Qingliang Li, and Yongjiu Dai
Earth Syst. Sci. Data, 17, 517–543, https://doi.org/10.5194/essd-17-517-2025, https://doi.org/10.5194/essd-17-517-2025, 2025
Short summary
Short summary
In this study, we developed the second version of China's high-resolution soil information grid using legacy soil samples and advanced machine learning. This version predicts over 20 soil properties at six depths, providing accurate soil variation maps across China. It outperforms previous versions and global products, offering valuable data for hydrological and ecological analyses and Earth system modelling, enhancing our understanding of soil roles in environmental processes.
Jiahao Shi, Hua Yuan, Wanyi Lin, Wenzong Dong, Hongbin Liang, Zhuo Liu, Jianxin Zeng, Haolin Zhang, Nan Wei, Zhongwang Wei, Shupeng Zhang, Shaofeng Liu, Xingjie Lu, and Yongjiu Dai
Earth Syst. Sci. Data, 17, 117–134, https://doi.org/10.5194/essd-17-117-2025, https://doi.org/10.5194/essd-17-117-2025, 2025
Short summary
Short summary
Flux tower data are widely recognized as benchmarking data for land surface models, but insufficient emphasis on and deficiency in site attribute data limits their true value. We collect site-observed vegetation, soil, and topography data from various sources. The final dataset encompasses 90 sites globally, with relatively complete site attribute data and high-quality flux validation data. This work has provided more reliable site attribute data, benefiting land surface model development.
Yangzi Che, Xuecao Li, Xiaoping Liu, Yuhao Wang, Weilin Liao, Xianwei Zheng, Xucai Zhang, Xiaocong Xu, Qian Shi, Jiajun Zhu, Honghui Zhang, Hua Yuan, and Yongjiu Dai
Earth Syst. Sci. Data, 16, 5357–5374, https://doi.org/10.5194/essd-16-5357-2024, https://doi.org/10.5194/essd-16-5357-2024, 2024
Short summary
Short summary
Most existing building height products are limited with respect to either spatial resolution or coverage, not to mention the spatial heterogeneity introduced by global building forms. Using Earth Observation (EO) datasets for 2020, we developed a global height dataset at the individual building scale. The dataset provides spatially explicit information on 3D building morphology, supporting both macro- and microanalysis of urban areas.
Kamal Nyaupane, Umakant Mishra, Feng Tao, Kyongmin Yeo, William J. Riley, Forrest M. Hoffman, and Sagar Gautam
Biogeosciences, 21, 5173–5183, https://doi.org/10.5194/bg-21-5173-2024, https://doi.org/10.5194/bg-21-5173-2024, 2024
Short summary
Short summary
Representing soil organic carbon (SOC) dynamics in Earth system models (ESMs) is a key source of uncertainty in predicting carbon–climate feedbacks. Using machine learning, we develop and compare predictive relationships in observations (Obs) and ESMs. We find different relationships between environmental factors and SOC stocks in Obs and ESMs. SOC prediction in ESMs may be improved by representing the functional relationships of environmental controllers in a way consistent with observations.
Rongyun Tang, Mingzhou Jin, Jiafu Mao, Daniel M. Ricciuto, Anping Chen, and Yulong Zhang
Geosci. Model Dev., 17, 1525–1542, https://doi.org/10.5194/gmd-17-1525-2024, https://doi.org/10.5194/gmd-17-1525-2024, 2024
Short summary
Short summary
Carbon-rich boreal peatlands are at risk of burning. The reproducibility and predictability of rare peatland fire events are investigated by constructing a two-step error-correcting machine learning framework to tackle such complex systems. Fire occurrence and impacts are highly predictable with our approach. Factor-controlling simulations revealed that temperature, moisture, and freeze–thaw cycles control boreal peatland fires, indicating thermal impacts on causing peat fires.
Kelsey T. Foster, Wu Sun, Yoichi P. Shiga, Jiafu Mao, and Anna M. Michalak
Biogeosciences, 21, 869–891, https://doi.org/10.5194/bg-21-869-2024, https://doi.org/10.5194/bg-21-869-2024, 2024
Short summary
Short summary
Assessing agreement between bottom-up and top-down methods across spatial scales can provide insights into the relationship between ensemble spread (difference across models) and model accuracy (difference between model estimates and reality). We find that ensemble spread is unlikely to be a good indicator of actual uncertainty in the North American carbon balance. However, models that are consistent with atmospheric constraints show stronger agreement between top-down and bottom-up estimates.
Chao Wang, Stephen Leisz, Li Li, Xiaoying Shi, Jiafu Mao, Yi Zheng, and Anping Chen
Earth Syst. Dynam., 15, 75–90, https://doi.org/10.5194/esd-15-75-2024, https://doi.org/10.5194/esd-15-75-2024, 2024
Short summary
Short summary
Climate change can significantly impact river runoff; however, predicting future runoff is challenging. Using historical runoff gauge data to evaluate model performances in runoff simulations for the Mekong River, we quantify future runoff changes in the Mekong River with the best simulation combination. Results suggest a significant increase in the annual runoff, along with varied seasonal distributions, thus heightening the need for adapted water resource management measures.
Nathan Alec Conroy, Jeffrey M. Heikoop, Emma Lathrop, Dea Musa, Brent D. Newman, Chonggang Xu, Rachael E. McCaully, Carli A. Arendt, Verity G. Salmon, Amy Breen, Vladimir Romanovsky, Katrina E. Bennett, Cathy J. Wilson, and Stan D. Wullschleger
The Cryosphere, 17, 3987–4006, https://doi.org/10.5194/tc-17-3987-2023, https://doi.org/10.5194/tc-17-3987-2023, 2023
Short summary
Short summary
This study combines field observations, non-parametric statistical analyses, and thermodynamic modeling to characterize the environmental causes of the spatial variability in soil pore water solute concentrations across two Arctic catchments with varying extents of permafrost. Vegetation type, soil moisture and redox conditions, weathering and hydrologic transport, and mineral solubility were all found to be the primary drivers of the existing spatial variability of some soil pore water solutes.
Xiaojuan Yang, Peter Thornton, Daniel Ricciuto, Yilong Wang, and Forrest Hoffman
Biogeosciences, 20, 2813–2836, https://doi.org/10.5194/bg-20-2813-2023, https://doi.org/10.5194/bg-20-2813-2023, 2023
Short summary
Short summary
We evaluated the performance of a land surface model (ELMv1-CNP) that includes both nitrogen (N) and phosphorus (P) limitation on carbon cycle processes. We show that ELMv1-CNP produces realistic estimates of present-day carbon pools and fluxes. We show that global C sources and sinks are significantly affected by P limitation. Our study suggests that introduction of P limitation in land surface models is likely to have substantial consequences for projections of future carbon uptake.
Doaa Aboelyazeed, Chonggang Xu, Forrest M. Hoffman, Jiangtao Liu, Alex W. Jones, Chris Rackauckas, Kathryn Lawson, and Chaopeng Shen
Biogeosciences, 20, 2671–2692, https://doi.org/10.5194/bg-20-2671-2023, https://doi.org/10.5194/bg-20-2671-2023, 2023
Short summary
Short summary
Photosynthesis is critical for life and has been affected by the changing climate. Many parameters come into play while modeling, but traditional calibration approaches face many issues. Our framework trains coupled neural networks to provide parameters to a photosynthesis model. Using big data, we independently found parameter values that were correlated with those in the literature while giving higher correlation and reduced biases in photosynthesis rates.
Bharat Sharma, Jitendra Kumar, Auroop R. Ganguly, and Forrest M. Hoffman
Biogeosciences, 20, 1829–1841, https://doi.org/10.5194/bg-20-1829-2023, https://doi.org/10.5194/bg-20-1829-2023, 2023
Short summary
Short summary
Rising atmospheric carbon dioxide increases vegetation growth and causes more heatwaves and droughts. The impact of such climate extremes is detrimental to terrestrial carbon uptake capacity. We found that due to overall climate warming, about 88 % of the world's regions towards the end of 2100 will show anomalous losses in net biospheric productivity (NBP) rather than gains. More than 50 % of all negative NBP extremes were driven by the compound effect of dry, hot, and fire conditions.
Qingliang Li, Gaosong Shi, Wei Shangguan, Vahid Nourani, Jianduo Li, Lu Li, Feini Huang, Ye Zhang, Chunyan Wang, Dagang Wang, Jianxiu Qiu, Xingjie Lu, and Yongjiu Dai
Earth Syst. Sci. Data, 14, 5267–5286, https://doi.org/10.5194/essd-14-5267-2022, https://doi.org/10.5194/essd-14-5267-2022, 2022
Short summary
Short summary
SMCI1.0 is a 1 km resolution dataset of daily soil moisture over China for 2000–2020 derived through machine learning trained with in situ measurements of 1789 stations, meteorological forcings, and land surface variables. It contains 10 soil layers with 10 cm intervals up to 100 cm deep. Evaluated by in situ data, the error (ubRMSE) ranges from 0.045 to 0.051, and the correlation (R) range is 0.866-0.893. Compared with ERA5-Land, SMAP-L4, and SoMo.ml, SIMI1.0 has higher accuracy and resolution.
Katrina E. Bennett, Greta Miller, Robert Busey, Min Chen, Emma R. Lathrop, Julian B. Dann, Mara Nutt, Ryan Crumley, Shannon L. Dillard, Baptiste Dafflon, Jitendra Kumar, W. Robert Bolton, Cathy J. Wilson, Colleen M. Iversen, and Stan D. Wullschleger
The Cryosphere, 16, 3269–3293, https://doi.org/10.5194/tc-16-3269-2022, https://doi.org/10.5194/tc-16-3269-2022, 2022
Short summary
Short summary
In the Arctic and sub-Arctic, climate shifts are changing ecosystems, resulting in alterations in snow, shrubs, and permafrost. Thicker snow under shrubs can lead to warmer permafrost because deeper snow will insulate the ground from the cold winter. In this paper, we use modeling to characterize snow to better understand the drivers of snow distribution. Eventually, this work will be used to improve models used to study future changes in Arctic and sub-Arctic snow patterns.
Ziqi Lin, Yongjiu Dai, Umakant Mishra, Guocheng Wang, Wei Shangguan, Wen Zhang, and Zhangcai Qin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-232, https://doi.org/10.5194/essd-2022-232, 2022
Manuscript not accepted for further review
Short summary
Short summary
Spatial soil organic carbon (SOC) data is critical for predictions in carbon climate feedbacks and future climate trends, but no conclusion has yet been reached on which dataset to be used for specific purposes. We evaluated the SOC estimates from five widely used global soil datasets and a regional permafrost dataset, and identify uncertainties of SOC estimates by region, biome, and data sources, hoping to help improve SOC/soil data in the future.
Rachael E. McCaully, Carli A. Arendt, Brent D. Newman, Verity G. Salmon, Jeffrey M. Heikoop, Cathy J. Wilson, Sanna Sevanto, Nathan A. Wales, George B. Perkins, Oana C. Marina, and Stan D. Wullschleger
The Cryosphere, 16, 1889–1901, https://doi.org/10.5194/tc-16-1889-2022, https://doi.org/10.5194/tc-16-1889-2022, 2022
Short summary
Short summary
Degrading permafrost and shrub expansion are critically important to tundra biogeochemistry. We observed significant variability in soil pore water NO3-N in an alder-dominated permafrost hillslope in Alaska. Proximity to alder shrubs and the presence or absence of topographic gradients and precipitation events strongly influence NO3-N availability and mobility. The highly dynamic nature of labile N on small spatiotemporal scales has implications for nutrient responses to a warming Arctic.
Martijn M. T. A. Pallandt, Jitendra Kumar, Marguerite Mauritz, Edward A. G. Schuur, Anna-Maria Virkkala, Gerardo Celis, Forrest M. Hoffman, and Mathias Göckede
Biogeosciences, 19, 559–583, https://doi.org/10.5194/bg-19-559-2022, https://doi.org/10.5194/bg-19-559-2022, 2022
Short summary
Short summary
Thawing of Arctic permafrost soils could trigger the release of vast amounts of carbon to the atmosphere, thus enhancing climate change. Our study investigated how well the current network of eddy covariance sites to monitor greenhouse gas exchange at local scales captures pan-Arctic flux patterns. We identified large coverage gaps, e.g., in Siberia, but also demonstrated that a targeted addition of relatively few sites can significantly improve network performance.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Xiaoying Shi, Daniel M. Ricciuto, Peter E. Thornton, Xiaofeng Xu, Fengming Yuan, Richard J. Norby, Anthony P. Walker, Jeffrey M. Warren, Jiafu Mao, Paul J. Hanson, Lin Meng, David Weston, and Natalie A. Griffiths
Biogeosciences, 18, 467–486, https://doi.org/10.5194/bg-18-467-2021, https://doi.org/10.5194/bg-18-467-2021, 2021
Short summary
Short summary
The Sphagnum mosses are the important species of a wetland ecosystem. To better represent the peatland ecosystem, we introduced the moss species to the land model component (ELM) of the Energy Exascale Earth System Model (E3SM) by developing water content dynamics and nonvascular photosynthetic processes for moss. We tested the model against field observations and used the model to make projections of the site's carbon cycle under warming and atmospheric CO2 concentration scenarios.
Cited articles
Al Bitar, A., Kerr, Y. H., Merlin, O., Cabot, F., Wigneron, J.-P.,
Froissard, F., Suquia, D., Petitpa, A., Piguet, B., and Martin, E.: Global
drought index from SMOS soil moisture, in: IEEE International Geoscience and
Remote Sensing Symposium, IGARSS, Melbourne, Australia, 2013.
Al Bitar, A., Mialon, A., Kerr, Y. H., Cabot, F., Richaume, P., Jacquette, E., Quesney, A., Mahmoodi, A., Tarot, S., Parrens, M., Al-Yaari, A., Pellarin, T., Rodriguez-Fernandez, N., and Wigneron, J.-P.: The global SMOS Level 3 daily soil moisture and brightness temperature maps, Earth Syst. Sci. Data, 9, 293–315, https://doi.org/10.5194/essd-9-293-2017, 2017.
Andresen, C. G., Lawrence, D. M., Wilson, C. J., McGuire, A. D., Koven, C., Schaefer, K., Jafarov, E., Peng, S., Chen, X., Gouttevin, I., Burke, E., Chadburn, S., Ji, D., Chen, G., Hayes, D., and Zhang, W.: Soil moisture and hydrology projections of the permafrost region – a model intercomparison, The Cryosphere, 14, 445–459, https://doi.org/10.5194/tc-14-445-2020, 2020.
Balsamo, G., Beljaars, A., Scipal, K., Viterbo, P., van den Hurk, B.,
Hirschi, M., and Betts, A. K.: A revised hydrology for the ECMWF model:
Verification from field site to terrestrial water storage and impact in the
integrated forecast system, J. Hydrometeorol., 10, 623–643,
https://doi.org/10.1175/2008JHM1068.1, 2009.
Balsamo, G., Albergel, C., Beljaars, A., Boussetta, S., Brun, E., Cloke, H., Dee, D., Dutra, E., Muñoz-Sabater, J., Pappenberger, F., de Rosnay, P., Stockdale, T., and Vitart, F.: ERA-Interim/Land: a global land surface reanalysis data set, Hydrol. Earth Syst. Sci., 19, 389–407, https://doi.org/10.5194/hess-19-389-2015, 2015.
Beaudoing, H., Rodell, M., and NASA/GSFC/HSL: GLDAS Noah Land Surface Model
L4 3 hourly 0.25 x 0.25 degree V2.0, Goddard Earth Sciences Data and
Information Services Center (GES DISC), Greenbelt, MD, USA, 2019.
Beck, H. E., Pan, M., Miralles, D. G., Reichle, R. H., Dorigo, W. A., Hahn, S., Sheffield, J., Karthikeyan, L., Balsamo, G., Parinussa, R. M., van Dijk, A. I. J. M., Du, J., Kimball, J. S., Vergopolan, N., and Wood, E. F.: Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors, Hydrol. Earth Syst. Sci., 25, 17–40, https://doi.org/10.5194/hess-25-17-2021, 2021.
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011.
Bishop, C. H. and Abramowitz, G.: Climate model dependence and the replicate
Earth paradigm, Clim. Dynam., 41, 885–900,
https://doi.org/10.1007/s00382-012-1610-y, 2013.
Dai, A. and Zhao, T.: Uncertainties in historical changes and future
projections of drought. Part I: estimates of historical drought changes,
Clim. Change, 144, 519–533, https://doi.org/10.1007/s10584-016-1705-2,
2017.
Dai, A., Trenberth, K. E., and Qian, T.: A global dataset of Palmer Drought
Severity Index for 1870–2002: Relationship with soil moisture and effects
of surface warming, J. Hydrometeorol., 5, 1117–1130,
https://doi.org/10.1175/jhm-386.1, 2004.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, I., Biblot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Greer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Kohler, M.,
Matricardi, M., McNally, A. P., Mong-Sanz, B. M., Morcette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J. N., and Vitart,
F.: The ERA-Interim reanalysis: Configuration and performance of the data
assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
de Rosnay, P., Drusch, M., Vasiljevic, D., Balsamo, G., Albergel, C., and
Isaksen, L.: A simplified Extended Kalman Filter for the global operational
soil moisture analysis at ECMWF, Q. J. Roy. Meteor. Soc., 139, 1199–1213,
https://doi.org/10.1002/qj.2023, 2013.
Dirmeyer, P. A., Gao, X., Zhao, M., Guo, Z., Oki, T., and Hanasaki, N.:
GSWP-2: Multimodel analysis and implications for our perception of the land
surface, B. Am. Meteorol. Soc., 87, 1381–1398,
https://doi.org/10.1175/bams-87-10-1381, 2006.
Dorigo, W., de Jeu, R., Chung, D., Parinussa, R., Liu, Y., Wagner, W., and
Fernández-Prieto, D.: Evaluating global trends (1988–2010) in harmonized
multi-satellite surface soil moisture, Geophys. Res. Lett., 39, L18405,
https://doi.org/10.1029/2012GL052988, 2012.
Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L.,
Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, P. D.,
Hirschi, M., Ikonen, J., de Jeu, R., Kidd, R., Lahoz, W., Liu, Y. Y.,
Miralles, D., Mistelbauer, T., Nicolai-Shaw, N., Parinussa, R., Pratola, C.,
Reimer, C., van der Schalie, R., Seneviratne, S. I., Smolander, T., and
Lecomte, P.: ESA CCI soil moisture for improved Earth system understanding:
State-of-the art and future directions, Remote Sens. Environ., 203,
185–215, https://doi.org/10.1016/j.rse.2017.07.001, 2017.
Dorigo, W. A., Wagner, W., Hohensinn, R., Hahn, S., Paulik, C., Xaver, A., Gruber, A., Drusch, M., Mecklenburg, S., van Oevelen, P., Robock, A., and Jackson, T.: The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements, Hydrol. Earth Syst. Sci., 15, 1675–1698, https://doi.org/10.5194/hess-15-1675-2011, 2011.
Dorigo, W. A., Xaver, A., Vreugdenhil, M., Gruber, A., Hegyiová, A.,
Sanchis-Dufau, A. D., Zamojski, D., Cordes, C., Wagner, W., and Drusch, M.:
Global automated quality control of in situ soil moisture data from the
International Soil Moisture Network, Vadose Zone J., 12, vzj2012.0097,
https://doi.org/10.2136/vzj2012.0097, 2013.
EODC (Earth Observation Data Centre for Water Resources Monitoring GmbH):
Algorithm theoretical baseline document (ATBD) supporting product version
06.1 – D2.1 version 2, Earth Observation Data Centre for Water Resources
Monitoring GmbH, available at: https://climate.esa.int/media/documents/ESA_CCI_SM_RD_D2.1_v1_ATBD_v05.2.pdf, last access: 30 July 2021.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Field, C. B., Barros, V., Stocker, T. F., and Dahe, Q. (Eds.): Managing the
risks of extreme events and disasters to advance climate change adaptation:
Special report of the intergovernmental panel on climate change, Cambridge
University Press, Cambridge, https://doi.org/10.1017/CBO9781139177245, 2012.
Friedl, M. and Sulla-Menashe, D.: MCD12C1 MODIS/Terra+Aqua land cover type
L3 global 0.05Deg CMG V006, LP DAAC [Data set],
https://doi.org/10.5067/MODIS/MCD12C1.006, 2015.
Giorgi, F. and Mearns, L. O.: Calculation of average, uncertainty range, and
reliability of regional climate changes from AOGCM simulations via the
“reliability ensemble averaging” (REA) method, J. Climate, 15, 1141–1158,
https://doi.org/10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2, 2002.
Green, J. K., Seneviratne, S. I., Berg, A. M., Findell, K. L., Hagemann, S.,
Lawrence, D. M., and Gentine, P.: Large influence of soil moisture on
long-term terrestrial carbon uptake, Nature, 565, 476–479,
https://doi.org/10.1038/s41586-018-0848-x, 2019.
Gruber, A., Su, C.-H., Crow, W. T., Zwieback, S., Dorigo, W. A., and Wagner,
W.: Estimating error cross-correlations in soil moisture data sets using
extended collocation analysis, J. Geophys. Res.-Atmos., 121, 1208–1219,
https://doi.org/10.1002/2015JD024027, 2016.
Gruber, A., Crow, W. T., and Dorigo, W. A.: Assimilation of spatially sparse
in situ soil moisture networks into a continuous model domain, Water Resour.
Res., 54, 1353–1367, https://doi.org/10.1002/2017WR021277, 2018.
Gruber, A., De Lannoy, G., Albergel, C., Al-Yaari, A., Brocca, L., Calvet,
J.-C., Colliander, A., Cosh, M., Crow, W., Dorigo, W., Draper, C., Hirschi,
M., Kerr, Y., Konings, A., Lahoz, W., McColl, K., Montzka, C.,
Muñoz-Sabater, J., Peng, J., Reichle, R., Richaume, P., Rüdiger, C.,
Scanlon, T., van der Schalie, R., Wigneron, J.-P., and Wagner, W.:
Validation practices for satellite soil moisture retrievals: What are (the)
errors?, Remote Sensing of Environment, 244, 111806, https://doi.org/10.1016/j.rse.2020.111806, 2020.
Gu, X., Li, J., Chen, Y. D., Kong, D., and Liu, J.: Consistency and
discrepancy of global surface soil moisture changes from multiple
model-based data sets against satellite observations, J. Geophys. Res.-Atmos., 124, 1474–1495, https://doi.org/10.1029/2018JD029304, 2019.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
dataset, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711,
2014.
Hauser, M.: Regionmask: plotting and creation of masks of spatial regions,
Zenodo, https://doi.org/10.5281/zenodo.3585543, 2019.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Hobeichi, S., Abramowitz, G., Evans, J., and Ukkola, A.: Derived Optimal Linear Combination Evapotranspiration (DOLCE): a global gridded synthesis ET estimate, Hydrol. Earth Syst. Sci., 22, 1317–1336, https://doi.org/10.5194/hess-22-1317-2018, 2018.
Hobeichi, S., Abramowitz, G., Evans, J., and Beck, H. E.: Linear Optimal Runoff Aggregate (LORA): a global gridded synthesis runoff product, Hydrol. Earth Syst. Sci., 23, 851–870, https://doi.org/10.5194/hess-23-851-2019, 2019.
Hollander, M., Wolfe, D. A., and Chicken, E.: Nonparametric statistical
methods, 3rd ed., Wiley, 2013.
Huntzinger, D. N., Schwalm, C. R., Wei, Y., Cook, R. B., Michalak, a M.,
Schaefer, K., Jacobson, a R., Arain, M. a, Ciais, P., Fisher, J. B., Hayes,
D. J., Huang, M., Huang, S., Ito, A., Jain, a K., Lei, H., Lu, C., Maignan,
F., Mao, J., Parazoo, N. C., Peng, C., Peng, S., Poulter, B., Ricciuto, D.
M., Tian, H., Shi, X., Wang, W., Zeng, N., Zhao, F., Zhu, Q., Yang, J., and
Tao, B.: NACP MsTMIP: Global 0.5-degree model outputs in standard format,
Version 1.0, ORNL Distributed Active Archive Center,
https://doi.org/10.3334/ornldaac/1225, 2018.
Karthikeyan, L., Pan, M., Wanders, N., Kumar, D. N., and Wood, E. F.: Four
decades of microwave satellite soil moisture observations: Part 2. Product
validation and inter-satellite comparisons, Adv. Water Resour.,
109, 236–252, https://doi.org/10.1016/j.advwatres.2017.09.010, 2017.
Knoben, W. J. M., Woods, R. A., and Freer, J. E.: Global bimodal
precipitation seasonality: A systematic overview, Int. J. Climatol., 39,
558–567, https://doi.org/10.1002/joc.5786, 2019.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.:
The JRA-55 Reanalysis: General specifications and basic characteristics, J.
Meteor. Soc. Jpn., 93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015.
Kumar, S., Newman, M., Wang, Y., and Livneh, B.: Potential reemergence of
seasonal soil moisture anomalies in North America, J. Climate, 32,
2707–2734, https://doi.org/10.1175/JCLI-D-18-0540.1, 2019.
Laloyaux, P., de Boisseson, E., and Dahlgren, P.: CERA-20C: An Earth system
approach to climate reanalysis, ECMWF Newsl., 150, 25–30,
https://doi.org/10.21957/FFS36BIRJ2, 2017.
Li, L., Shangguan, W., Deng, Y., Mao, J., Pan, J., Wei, N., Yuan, H., Zhang,
S., Zhang, Y., and Dai, Y.: A causal inference model based on random forests
to identify the effect of soil moisture on precipitation, J. Hydrometeorol.,
21, 1115–1131, https://doi.org/10.1175/JHM-D-19-0209.1, 2020a.
Li, M., Wu, P., and Ma, Z.: A comprehensive evaluation of soil moisture and
soil temperature from third-generation atmospheric and land reanalysis data
sets, Int. J. Climatol., 40, 5744–5766, https://doi.org/10.1002/joc.6549,
2020b.
Liu, Y., Liu, Y., and Wang, W.: Inter-comparison of satellite-retrieved and
Global Land Data Assimilation System-simulated soil moisture datasets for
global drought analysis, Remote Sens. Environ., 220, 1–18,
https://doi.org/10.1016/j.rse.2018.10.026, 2019.
Liu, Y. Y., Parinussa, R. M., Dorigo, W. A., De Jeu, R. A. M., Wagner, W., van Dijk, A. I. J. M., McCabe, M. F., and Evans, J. P.: Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals, Hydrol. Earth Syst. Sci., 15, 425–436, https://doi.org/10.5194/hess-15-425-2011, 2011.
Liu, Y. Y., Dorigo, W. A., Parinussa, R. M., de Jeu, R. A. M., Wagner, W.,
McCabe, M. F., Evans, J. P., and van Dijk, A. I. J. M.: Trend-preserving
blending of passive and active microwave soil moisture retrievals, Remote
Sens. Environ., 123, 280–297, https://doi.org/10.1016/j.rse.2012.03.014,
2012.
Llamas, R. M., Guevara, M., Rorabaugh, D., Taufer, M., and Vargas, R.:
Spatial gap-filling of ESA-CCI satellite-derived soil moisture based on
geostatistical techniques and multiple regression, Remote Sens., 12, 665,
https://doi.org/10.3390/rs12040665, 2020.
Loew, A., Stacke, T., Dorigo, W., de Jeu, R., and Hagemann, S.: Potential and limitations of multidecadal satellite soil moisture observations for selected climate model evaluation studies, Hydrol. Earth Syst. Sci., 17, 3523–3542, https://doi.org/10.5194/hess-17-3523-2013, 2013.
Lu, J., Carbone, G. J., and Grego, J. M.: Uncertainty and hotspots in 21st
century projections of agricultural drought from CMIP5 models, Sci. Rep., 9,
4922, https://doi.org/10.1038/s41598-019-41196-z, 2019.
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017.
McCarty, W., Coy, L., Gelaro, R., Huang, A., Merkova, D., Smith, E. B.,
Sienkiewicz, M., and Wargan, K.: MERRA-2 input observations: summary and
assessment, Goddard Space Flight Center, Greenbelt, MD, USA, 2016.
Melton, J. R., Verseghy, D. L., Sospedra-Alfonso, R., and Gruber, S.: Improving permafrost physics in the coupled Canadian Land Surface Scheme (v.3.6.2) and Canadian Terrestrial Ecosystem Model (v.2.1) (CLASS-CTEM), Geosci. Model Dev., 12, 4443–4467, https://doi.org/10.5194/gmd-12-4443-2019, 2019.
Molero, B., Leroux, D. J., Richaume, P., Kerr, Y. H., Merlin, O., Cosh, M.
H., and Bindlish, R.: Multi-timescale analysis of the spatial
representativeness of in situ soil moisture data within satellite
footprints: Soil moisture time and spatial scales, J. Geophys. Res.-Atmos.,
123, 3–21, https://doi.org/10.1002/2017JD027478, 2018.
Mystakidis, S., Davin, E. L., Gruber, N., and Seneviratne, S. I.:
Constraining future terrestrial carbon cycle projections using
observation-based water and carbon flux estimates, Glob. Change Biol., 22,
2198–2215, https://doi.org/10.1111/gcb.13217, 2016.
O, S. and Orth, R.: Global soil moisture data derived through machine
learning trained with in-situ measurements, Sci. Data, 8, 170,
https://doi.org/10.1038/s41597-021-00964-1, 2021.
Padrón, R. S., Gudmundsson, L., and Seneviratne, S. I.: Observational
constraints reduce likelihood of extreme changes in multidecadal land water
availability, Geophys. Res. Lett., 46, 736–744,
https://doi.org/10.1029/2018GL080521, 2019.
Pan, S., Pan, N., Tian, H., Friedlingstein, P., Sitch, S., Shi, H., Arora, V. K., Haverd, V., Jain, A. K., Kato, E., Lienert, S., Lombardozzi, D., Nabel, J. E. M. S., Ottlé, C., Poulter, B., Zaehle, S., and Running, S. W.: Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling, Hydrol. Earth Syst. Sci., 24, 1485–1509, https://doi.org/10.5194/hess-24-1485-2020, 2020.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: machine learning in Python, J. Mach. Learn. Res., 12,
2825–2830, 2011.
Piles, M., Ballabrera-Poy, J., and Muñoz-Sabater, J.: Dominant features
of global surface soil moisture variability observed by the SMOS satellite,
Remote Sens., 11, 95, https://doi.org/10.3390/rs11010095, 2019.
Poli, P., Hersbach, H., Dee, D. P., Berrisford, P., Simmons, A. J., Vitart,
F., Laloyaux, P., Tan, D. G. H., Peubey, C., Thépaut, J.-N.,
Trémolet, Y., Hólm, E. V., Bonavita, M., Isaksen, L., and Fisher,
M.: ERA-20C: An atmospheric reanalysis of the twentieth century, J. Climate,
29, 4083–4097, https://doi.org/10.1175/JCLI-D-15-0556.1, 2016.
Rui, H. and Beaudoing, H.: README document for NASA GLDAS version 2 data
products, NASA Goddard Space Flight Center (GES DISC), Greenbelt, MD, USA,
available at: https://disc.gsfc.nasa.gov/information/documents?title=Hydrology Documentation (last access: 30 July 2021), 2020.
Seabold, S. and Perktold, J.: Statsmodels: Econometric and statistical
modeling with Python, in: 9th Python in Science Conference, Austin, Texas, 28 June–3 July 2010
https://doi.org/10.25080/majora-92bf1922-011, 2010.
Sitch, S., Huntingford, C., Gedney, N., Levy, P. E., Lomas, M., Piao, S. L.,
Betts, R., Ciais, P., Cox, P., Friedlingstein, P., Jones, C. D., Prentice,
I. C., and Woodward, F. I.: Evaluation of the terrestrial carbon cycle,
future plant geography and climate-carbon cycle feedbacks using five Dynamic
Global Vegetation Models (DGVMs), Glob. Change Biol., 14, 2015–2039,
https://doi.org/10.1111/j.1365-2486.2008.01626.x, 2008.
Sospedra-Alfonso, R. and Merryfield, W. J.: Initialization and potential
predictability of soil moisture in the Canadian Seasonal to Interannual
Prediction System, J. Climate, 31, 5205–5224,
https://doi.org/10.1175/JCLI-D-17-0707.1, 2018.
Su, C.-H., Ryu, D., Dorigo, W., Zwieback, S., Gruber, A., Albergel, C.,
Reichle, R. H., and Wagner, W.: Homogeneity of a global multisatellite soil
moisture climate data record, Geophys. Res. Lett., 43, 11245–11252,
https://doi.org/10.1002/2016GL070458, 2016.
Spinoni, J., Barbosa, P., De Jager, A., McCormick, N., Naumann, G., Vogt, J.
V., Magni, D., Masante, D., and Mazzeschi, M.: A new global database of
meteorological drought events from 1951 to 2016, J. Hydrol. Reg. Stud., 22,
100593, https://doi.org/10.1016/j.ejrh.2019.100593, 2019.
Su, C.-H., Ryu, D., Dorigo, W., Zwieback, S., Gruber, A., Albergel, C.,
Reichle, R. H., and Wagner, W.: Homogeneity of a global multisatellite soil
moisture climate data record, Geophys. Res. Lett., 43, 11245–11252,
https://doi.org/10.1002/2016GL070458, 2016.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and
the experiment design, B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Tobin, K. J., Torres, R., Crow, W. T., and Bennett, M. E.: Multi-decadal analysis of root-zone soil moisture applying the exponential filter across CONUS, Hydrol. Earth Syst. Sci., 21, 4403–4417, https://doi.org/10.5194/hess-21-4403-2017, 2017.
UCAR/NCAR/CISL/TDD: The NCAR Comannd Language (Version 6.6.2) [Software],
Boulder, CO, USA, https://doi.org/10.5065/D6WD3XH5, 2019.
Wang, G., Garcia, D., Liu, Y., de Jeu, R., and Johannes Dolman, A.: A
three-dimensional gap filling method for large geophysical datasets:
Application to global satellite soil moisture observations, Environ. Model.
Softw., 30, 139–142, https://doi.org/10.1016/j.envsoft.2011.10.015, 2012.
Wang, Y.: soil_moisture_merge, Bitbucket repository [code],
https://bitbucket.org/ywang11/soil_moisture_merge/src/master/
(last access: 30 July 2021), 2020.
Wang, Y. and Mao, J.: Global multi-layer soil moisture products,
https://doi.org/10.6084/m9.figshare.13661312.v1, 2021.
Wang, Y., Leng, P., Peng, J., Marzahn, P., and Ludwig, R.: Global
assessments of two blended microwave soil moisture products CCI and SMOPS
with in-situ measurements and reanalysis data, Int. J. Appl. Earth Obs., 94, 102234,
https://doi.org/10.1016/j.jag.2020.102234, 2021a.
Wang, Z., Zhan, C., Ning, L., and Guo, H.: Evaluation of global terrestrial
evapotranspiration in CMIP6 models, Theor. Appl. Climatol., 143, 521–531,
https://doi.org/10.1007/s00704-020-03437-4, 2021b.
Wu, Z., Zhou, J., He, H., Lin, Q., Wu, X., and Xu, Z.: An advanced error
correction methodology for merging in-situ observed and model-based soil
moisture, J. Hydrol., 566, 150–163,
https://doi.org/10.1016/j.jhydrol.2018.09.018, 2018.
Yuan, S. and Quiring, S. M.: Evaluation of soil moisture in CMIP5 simulations over the contiguous United States using in situ and satellite observations, Hydrol. Earth Syst. Sci., 21, 2203–2218, https://doi.org/10.5194/hess-21-2203-2017, 2017.
Zeng, Y., Su, Z., van der Velde, R., Wang, L., Xu, K., Wang, X., and Wen,
J.: Blending satellite observed, model simulated, and in situ measured soil
moisture over Tibetan plateau, Remote Sens., 8, 268,
https://doi.org/10.3390/rs8030268, 2016.
Zhang, G. and Cook, K. H.: West African monsoon demise: Climatology,
interannual variations, and relationship to seasonal rainfall, J. Geophys.
Res.-Atmos., 119, 10175–10193, https://doi.org/10.1002/2014JD022043, 2014.
Short summary
We developed seven global soil moisture datasets (1970–2016, monthly, half-degree, and multilayer) by merging a wide range of data sources, including in situ and satellite observations, reanalysis, offline land surface model simulations, and Earth system model simulations. Given the great value of long-term, multilayer, gap-free soil moisture products to climate research and applications, we believe this paper and the presented datasets would be of interest to many different communities.
We developed seven global soil moisture datasets (1970–2016, monthly, half-degree, and...
Altmetrics
Final-revised paper
Preprint