Articles | Volume 12, issue 4
https://doi.org/10.5194/essd-12-3367-2020
https://doi.org/10.5194/essd-12-3367-2020
Data description paper
 | 
11 Dec 2020
Data description paper |  | 11 Dec 2020

Deep-sea sediments of the global ocean

Markus Diesing

Related authors

Organic carbon densities and accumulation rates in surface sediments of the North Sea and Skagerrak
Markus Diesing, Terje Thorsnes, and Lilja Rún Bjarnadóttir
Biogeosciences, 18, 2139–2160, https://doi.org/10.5194/bg-18-2139-2021,https://doi.org/10.5194/bg-18-2139-2021, 2021
Short summary

Related subject area

Marine geology
The SDUST2022GRA global marine gravity anomalies recovered from radar and laser altimeter data: contribution of ICESat-2 laser altimetry
Zhen Li, Jinyun Guo, Chengcheng Zhu, Xin Liu, Cheinway Hwang, Sergey Lebedev, Xiaotao Chang, Anatoly Soloviev, and Heping Sun
Earth Syst. Sci. Data, 16, 4119–4135, https://doi.org/10.5194/essd-16-4119-2024,https://doi.org/10.5194/essd-16-4119-2024, 2024
Short summary
Demersal fishery Impacts on Sedimentary Organic Matter (DISOM): a global harmonized database of studies assessing the impacts of demersal fisheries on sediment biogeochemistry
Sarah Paradis, Justin Tiano, Emil De Borger, Antonio Pusceddu, Clare Bradshaw, Claudia Ennas, Claudia Morys, and Marija Sciberras
Earth Syst. Sci. Data, 16, 3547–3563, https://doi.org/10.5194/essd-16-3547-2024,https://doi.org/10.5194/essd-16-3547-2024, 2024
Short summary
Predictive mapping of organic carbon stocks in surficial sediments of the Canadian continental margin
Graham Epstein, Susanna D. Fuller, Dipti Hingmire, Paul G. Myers, Angelica Peña, Clark Pennelly, and Julia K. Baum
Earth Syst. Sci. Data, 16, 2165–2195, https://doi.org/10.5194/essd-16-2165-2024,https://doi.org/10.5194/essd-16-2165-2024, 2024
Short summary
SCShores: a comprehensive shoreline dataset of Spanish sandy beaches from a citizen-science monitoring programme
Rita González-Villanueva, Jesús Soriano-González, Irene Alejo, Francisco Criado-Sudau, Theocharis Plomaritis, Àngels Fernàndez-Mora, Javier Benavente, Laura Del Río, Miguel Ángel Nombela, and Elena Sánchez-García
Earth Syst. Sci. Data, 15, 4613–4629, https://doi.org/10.5194/essd-15-4613-2023,https://doi.org/10.5194/essd-15-4613-2023, 2023
Short summary
The Modern Ocean Sediment Archive and Inventory of Carbon (MOSAIC): version 2.0
Sarah Paradis, Kai Nakajima, Tessa S. Van der Voort, Hannah Gies, Aline Wildberger, Thomas M. Blattmann, Lisa Bröder, and Timothy I. Eglinton
Earth Syst. Sci. Data, 15, 4105–4125, https://doi.org/10.5194/essd-15-4105-2023,https://doi.org/10.5194/essd-15-4105-2023, 2023
Short summary

Cited articles

Assis, J., Tyberghein, L., Bosch, S., Verbruggen, H., Serrão, E. A., and De Clerck, O.: Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling, Glob. Ecol. Biogeogr., 27, 277–284, https://doi.org/10.1111/geb.12693, 2018. 
Berger, W. H.: Deep-Sea Sedimentation, in: The Geology of Continental Margins, edited by: Burk, C. A. and Drake, C. L., Springer Berlin and Heidelberg, Germany, 213–241, 1974. 
Breiman, L.: Classification And Regression Trees, Routledge, New York, USA, 1984. 
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, 2001. 
Che Hasan, R., Ierodiaconou, D., and Monk, J.: Evaluation of Four Supervised Learning Methods for Benthic Habitat Mapping Using Backscatter from Multi-Beam Sonar, Remote Sens., 4, 3427–3443, 2012. 
Download
Short summary
A new digital map of the sediment types covering the bottom of the ocean has been created. Direct observations of the seafloor sediments are few and far apart. Therefore, machine learning was used to fill those gaps between observations. This was possible because known relationships between sediment types and the environment in which they form (e.g. water depth, temperature, and salt content) could be exploited. The results are expected to provide important information for marine research.
Altmetrics
Final-revised paper
Preprint