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Abstract. Although the deep-sea floor accounts for approximately 60 % of Earth’s surface, there has been little
progress in relation to deriving maps of seafloor sediment distribution based on transparent, repeatable, and au-
tomated methods such as machine learning. A new digital map of the spatial distribution of seafloor lithologies
below 500 m water depth is presented to address this shortcoming. The lithology map is accompanied by esti-
mates of the probability of the most probable class, which may be interpreted as a spatially explicit measure of
confidence in the predictions, and probabilities for the occurrence of five lithology classes (calcareous sediment,
clay, diatom ooze, lithogenous sediment, and radiolarian ooze). These map products were derived by the appli-
cation of the random-forest machine-learning algorithm to a homogenised dataset of seafloor lithology samples
and global environmental predictor variables that were selected based on the current understanding of the con-
trols on the spatial distribution of deep-sea sediments. It is expected that the map products are useful for various
purposes including, but not limited to, teaching, management, spatial planning, design of marine protected areas,
and as input for global spatial predictions of marine species distributions and seafloor sediment properties. The
map products are available at https://doi.org/10.1594/PANGAEA.911692 (Diesing, 2020).

1 Introduction

The deep-sea floor accounts for > 85 % of seafloor area (Har-
ris et al., 2014) and > 60 % of Earth’s surface. It acts as a re-
ceptor of the particle flux from the surface layers of the global
ocean, is a place of biogeochemical cycling (Snelgrove et al.,
2018), records environmental and climate conditions through
time, and provides habitat for benthic organisms (Danovaro
et al., 2014). Being able to map the spatial patterns of deep-
sea sediments is therefore a major prerequisite for many stud-
ies addressing aspects of marine biogeochemistry, deep-sea
ecology, and palaeoenvironmental reconstructions.

Until recently, maps of global deep-sea sediments were es-
sentially variants of a hand-drawn map presented by Berger
(1974) and typically depicted five to six sediment types,
namely calcareous ooze, siliceous ooze (sometimes split
into diatom ooze and radiolarian ooze), deep-sea (abyssal)
clay, terrigenous sediment, and glacial sediment. Since then,
Dutkiewicz et al. (2015) collated and homogenised approxi-
mately 14 500 samples from original cruise reports and in-
terpolated them using a support vector machine algorithm

(Cortes and Vapnik, 1995). Their map displayed the spatial
distribution of 13 lithologies across the world ocean and ex-
hibited some marked differences from earlier maps.

The controls on the distribution of deep-sea sediments
have long been discussed (e.g. Seibold and Berger, 1996):
biogenous oozes (> 30 % microscopic skeletal material by
weight) dominate on the deep-sea floor, and their composi-
tion is controlled by productivity in overlying surface ocean
waters, dissolution during sinking, and sedimentation and di-
lution with other materials. The ocean is undersaturated with
silica. Preservation of siliceous shells is therefore a func-
tion of shell thickness, sinking time (water depth), and water
temperature, as siliceous shells dissolve slower in colder wa-
ter. The dissolution of calcareous shells is increased with in-
creasing pressure (water depth) and CO2 content of the water
(decreasing temperature). The water depth at which the rate
of supply with calcium carbonate to the seafloor equals the
rate of dissolution (calcite compensation depth; CCD) varies
across ocean basins. Deep-sea clays dominate in the deepest
parts of ocean basins below the CCD. Deposition of terrige-
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Table 1. Environmental predictor variables tested in this study. PSS: practical salinity scale.

Environmental variable Statistics Unit Source

Bathymetry Mean m Sbrocco and Barber (2013)
Distance to shore Mean km Sbrocco and Barber (2013)
Sea-surface temperature Mean, min, max, and range ◦C Assis et al. (2018)
Sea-surface salinity Mean, min, max, and range PSS Assis et al. (2018)
Sea-surface dissolved oxygen Mean, min, max, and range mol m−3 Assis et al. (2018)
Sea-surface primary productivity Mean, min, max, and range g m−3 d−1 Assis et al. (2018)
Sea-surface iron concentration Mean, min, max, and range µmolm−3 Assis et al. (2018)
Sea-surface nitrate concentration Mean, min, max, and range mol m−3 Assis et al. (2018)
Sea-surface phosphate concentration Mean, min, max, and range mol m−3 Assis et al. (2018)
Sea-surface silicate concentration Mean, min, max, and range mol m−3 Assis et al. (2018)
Seafloor temperature Mean, min, max, and range ◦C Assis et al. (2018)

nous material is thought to be a function of proximity to land
(distance to shore).

Dutkiewicz et al. (2016) investigated the bathymetric and
oceanographic controls on the distribution of deep-sea sed-
iments with a quantitative machine-learning approach. The
influence of temperature, salinity, dissolved oxygen, pro-
ductivity, nitrate, phosphate, silicate at the sea surface, and
bathymetry on lithogenous sediment, clay, calcareous sed-
iment, radiolarian ooze, and diatom ooze were quantified.
They found that bathymetry, sea-surface temperature, and
sea-surface salinity had the largest control on the distribu-
tion of deep-sea sediments. Calcareous and siliceous oozes
were not linked to high surface productivity according to
their analysis. Diatom and radiolarian oozes were associated
with low sea-surface salinities and discrete sea-surface tem-
perature ranges.

The aim of this study is to derive a map of deep-sea sed-
iments of the global ocean by utilising environmental pre-
dictor variables for the development and application of a
machine-learning spatial-prediction model. Besides a cate-
gorical map giving the spatial representation of seafloor types
in the deep sea, probability surfaces for individual sediment
classes and a map displaying the probability of the most
probable class in the final prediction will also be provided.

2 Data

2.1 Predictor variables

The initial choice of the predictor variables was informed by
the current understanding of the controls on the distribution
of deep-sea sediments and the availability of data with full
coverage of the deep sea at a reasonable resolution. We not
only chose predictor variables mentioned above but also in-
cluded sea-surface iron concentration, which was not avail-
able to Dutkiewicz et al. (2016) but which is an important
nutrient for phytoplankton (Table 1). The predictor variable
raster layers from Bio-ORACLE (ocean rasters for analysis
of climate and environment; Assis et al., 2018; Tyberghein

et al., 2012) and MARSPEC (ocean climate layers for ma-
rine spatial ecology, http://www.marspec.org/, last access: 10
December 2020; Sbrocco and Barber, 2013) were utilised.
Whenever available, statistics of the variable other than mean
were downloaded. These included the minimum, maximum,
and range (maximum minus minimum).

2.2 Response variable

The response variable is seafloor lithology, a qualitative
multinomial variable. The seafloor sediment sample data
(seafloor_data.npz) from Dutkiewicz et al. (2015) were
downloaded from ftp://ftp.earthbyte.org/papers/Dutkiewicz_
etal_seafloor_lithology/iPython_notebook_and_input_data/
(last access: 7 December 2020). The original dataset con-
sisted of 13 seafloor lithology classes, while Dutkiewicz et
al. (2016) simplified these to five major classes. The latter
scheme was chosen here (Table 2), as the five major classes
agree well with lithologies typically depicted in hand-drawn
maps. For a detailed description of the original lithology
classes, refer to GSA (Geological Society of America) Data
Repository 2015271 (https://doi.org/10.1130/2015271, last
access: 7 December 2020).

3 Methods

The general workflow for building a predictive spatial model
was outlined by Guisan and Zimmermann (2000). This in-
volves five main steps: (1) development of a conceptual
model, (2) statistical formulation of the predictive model, (3)
calibration (training) of the model, (4) model predictions, and
(5) evaluation of the model results (accuracy assessment).
The conceptual model was already presented in the Introduc-
tion. The remaining steps are described in the following sec-
tions. The analysis was performed in R 3.6.1 (R Core Team,
2018) and RStudio 1.2.1335 and is documented as an exe-
cutable research compendium (ERC), see Sect. 8.
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Table 2. Seafloor lithology classes used in this study, their abbreviations, their relationships to classes in Dutkiewicz et al. (2015) and the
number and percentage of samples. Not included are ash and volcanic sand or gravel, mixed calcareous–siliceous ooze, siliceous mud, sponge
spicules, and shells and coral fragments of the original classification.

Lithology class Abbreviation Relation to Dutkiewicz et al. (2015) No. of observations

Calcareous sediment Calc.Sed Calcareous ooze 5251 (50.3 %)
Fine-grained calcareous sediment

Clay Clay Clay 3714 (35.6 %)

Diatom ooze Dia.Ooze Diatom ooze 623 (6.0 %)

Lithogenous sediment Lith.Sed Gravel and coarser 751 (7.2 %)
Sand
Silt

Radiolarian ooze Rad.Ooze Radiolarian ooze 99 (0.9 %)

3.1 Data pre-processing

The raster layers (predictor variables) were stacked, lim-
ited to water depths below 500 m, projected to a Wagner
IV global equal-area projection with a pixel resolution of
10 km× 10 km, and scaled.

The sample data (response variable) were pre-processed in
the following way: only samples of the five major lithologies
(Table 2) deeper than 500 m were used, and duplicates were
removed from the original sample dataset. The number of
records was therefore reduced from 14 400 to 10 438. The
data were projected to a Wagner IV projection. Locations of
the sample locations and their respective lithology class are
shown in Fig. 1. Predictor variable values were extracted for
every sample location. The class frequencies are shown in
Table 2.

3.2 Predictor variable selection

Variable selection reduces the number of predictor variables
to a subset that is relevant to the problem. The aims of vari-
able selection are threefold: (1) to improve the prediction per-
formance, (2) to enable faster predictions, and (3) to increase
the interpretability of the model (Guyon and Elisseeff, 2003).
It is generally advisable to reduce high-dimension datasets
to uncorrelated important variables (Millard and Richardson,
2015). Here, a two-step approach was utilised to achieve this
goal. The first step identifies those variables that are relevant
to the problem. The second step minimises redundancy in the
remaining predictor variables.

Initially, the Boruta variable selection wrapper algorithm
(Kursa and Rudnicki, 2010) was employed to identify all po-
tentially important predictor variables. Wrapper algorithms
identify relevant features by performing multiple runs of
predictive models, testing the performance of different sub-
sets (Guyon and Elisseeff, 2003). The Boruta algorithm cre-
ates so-called shadow variables by copying and randomising
predictor variables. Variable importance scores for predic-

tor and shadow variables are subsequently computed with
the random-forest algorithm (see below). The maximum-
importance score among the shadow variables (MZSA) is
determined, and for every predictor variable, a two-sided test
of equality is performed with the MZSA. Predictor variables
that have a variable importance score significantly higher
than the MZSA are deemed important, while those with a
variable importance score significantly lower than the MZSA
are deemed unimportant. Tentative variables have a vari-
able importance score that is not significantly different from
the MZSA. Increasing the maximum number of iterations
(maxRuns) might resolve tentative variables (Kursa and Rud-
nicki, 2010). Only important variables were retained for fur-
ther analysis.

The Boruta algorithm is an “all-relevant” feature selec-
tion method (Nilsson et al., 2007), which identifies all pre-
dictors that might be relevant for classification (Kursa and
Rudnicki, 2010). It does not address the question of redun-
dancy in the predictor variable data, which would be required
for “minimal-optimal” feature selection (Nilsson et al., 2007)
usually preferred for model building. To limit redundancy,
a second step seeks to identify predictor variables that are
correlated with other predictors of higher importance. To
achieve this, the Boruta importance score was used to rank
the remaining predictor variables. Beginning with the most
important variable, correlated variables with lower impor-
tance were subsequently removed. Values of the correlation
coefficient r were trialled between 0.1 and 1 with a step size
of 0.01 to find an appropriate r value that strikes a balance
between prediction performance and model interpretability.

3.3 Environmental space

It is generally preferable to apply a suitable sampling de-
sign for model calibration and evaluation. This would en-
sure that the environmental variable space is sampled in a
representative way. Various methods have been proposed to
optimise sampling effort, including stratified random, gen-
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Figure 1. Locations of samples used in this study based on data from Dutkiewicz et al. (2015). Land masses are derived from ESRI (2010).
Hillshade topography is derived from GEBCO (2015).

eralised random tessellation stratified (Stevens and Olsen,
2003), and conditioned Latin hypercube sampling (Minasny
and McBratney, 2006) among others. However, such ap-
proaches are not feasible here due to time and financial con-
straints. Instead, we utilised available (legacy) sampling data.
It might nevertheless be prudent to assess to what extent the
selected samples cover the environmental space of the pre-
dictor variables. This was achieved by creating a random
subsample (n= 10 000) of the selected environmental pre-
dictor variables and displaying the density distribution of the
random subsample together with the density distribution of
environmental variables based on the observations. This al-
lows for a qualitative check to what degree the environmental
space is sampled in a representative way.

3.4 Random-forest classification model

The random-forest (RF) prediction algorithm (Breiman,
2001) was chosen for the analysis due to its high predic-
tive performance in a number of domains (Che Hasan et al.,
2012; Cutler et al., 2007; Diesing et al., 2017; Diesing and
Thorsnes, 2018; Huang et al., 2014; Prasad et al., 2006). The
RF is an ensemble technique based on classification trees
(Breiman, 1984). Randomness is introduced in two ways:
by constructing each tree from a bootstrapped sample of the
training data and by using a random subset of the predictor
variables at each split in the tree-growing process. As a re-
sult, every tree in the forest is unique. By aggregating the
predictions over a large number of uncorrelated trees, pre-
diction variance is reduced and accuracy improved (James et

al., 2013, p. 316). The “votes” for a specific class can be in-
terpreted as a measure of probability for that class occurring
in a specific location. The final prediction is determined by
the class with the highest probability (vote count) to occur in
a specific location. The “randomForest” package (Liaw and
Wiener, 2002) was used to perform the analysis.

RF generally performs well with default settings, i.e. with-
out the tuning of parameters. Initial tuning of the number of
trees in the forest (ntree) and the number of variables to con-
sider at any given split (mtry) showed a very limited impact
on model performance, while at the same time the tuning pro-
cess was very time-consuming. It was therefore decided to
use the default parameter values.

The response variable is highly imbalanced (Table 2). This
was accounted for by utilising a balanced version of RF
(Chen et al., 2004). This is achieved by specifying the strata
and sampsize arguments of the randomForest() function. The
strata are the lithology classes, and the sample size is deter-
mined by c · nmin, where c is the number of lithology classes
(seven) and nmin is the number of samples in the least fre-
quent class. Hence, downsampling is applied when grow-
ing individual trees. However, each sample is drawn from all
available observations, as many trees are grown, making this
scheme likely more effective than downsampling the dataset
prior to model building.

RF also provides a relative estimate of predictor variable
importance. The importance() function of the randomForest
package allows to assess variable importance as the mean
decrease in either accuracy or node purity. However, the lat-
ter approach might be biased when predictor variables vary
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in their scale of measurement or their number of categories
(Strobl et al., 2007) and was not used here. Variable impor-
tance is therefore measured as the mean decrease in accu-
racy associated with each variable when it is assigned ran-
dom but realistic values and the rest of the variables are left
unchanged. The worse a model performs when a predictor is
randomised, the more important that predictor is in predict-
ing the response variable. The mean decrease in accuracy was
left unscaled as recommended by Strobl and Zeileis (2008)
and is reported as a fraction ranging from 0 to 1. By default,
individual trees of the forest are built using sampling with
replacement (replace=TRUE). However, it has been shown
that this choice might lead to bias in predictor variable impor-
tance measures (Strobl et al., 2007). It was therefore opted to
use sampling without replacement.

3.5 Spatial cross-validation

Detailed guidelines for optimising sampling design for accu-
racy assessment have been developed (Olofsson et al., 2014;
Stehman and Foody, 2019). However, this would require col-
lecting new samples after modelling, which was not feasi-
ble given the geographic scope. Cross-validation schemes
are frequently used to deal with such situations. It can be
assumed that the response variable is spatially structured to
some extent, and cross-validation therefore requires account-
ing for the spatial structure (Roberts et al., 2017). Here, a
spatial leave-one-out cross-validation (S-LOO CV) scheme
was applied. In a conventional LOO CV, a single observa-
tion is removed from the dataset, and all other observations
(n− 1) are used to train the model. The class of the withheld
observation is then predicted using the n− 1 model. This is
repeated for every observation in the dataset, producing ob-
served and predicted classes at every location. In a S-LOO
CV scheme, a buffer is placed around the withheld obser-
vation, and training data from within this buffer are omit-
ted from both model training and testing so that there are no
training data proximal to the test. The S-LOO CV scheme
used here was adapted from Misiuk et al. (2019). The buffer
size was estimated with the spatialAutoRange() function of
the “blockCV” package (Valavi et al., 2018).

3.6 Accuracy assessment

The accuracy of the model was assessed based on a confu-
sion matrix that was derived by the S-LOO CV. Overall ac-
curacy and the balanced error rate (BER) were used to evalu-
ate the global accuracy of the model, while error of omission
and error of commission were selected as class-specific met-
rics of accuracy. The overall accuracy gives the percentage of
cases correctly allocated and is calculated by dividing the to-
tal number of correct allocations by the total number of sam-
ples (Congalton, 1991). The BER is the average of the error
rate for each class (Luts et al., 2010). The error of omission is
the number of incorrectly classified samples of one class di-

vided by the total number of reference samples of that class.
The error of commission is the number of incorrectly classi-
fied samples of one class divided by the total number of sam-
ples that were classified as that class (Story and Congalton,
1986). The overall accuracy, its 95 % confidence intervals,
and a one-sided test to evaluate whether the overall accuracy
was significantly higher than the no information rate (NIR)
were calculated by applying the confusionMatrix() function
of the “caret” package (Kuhn, 2008). The confidence interval
is estimated using a binomial test. The NIR is taken to be the
proportion of the most frequent class. Errors of omission and
commission are not provided by the function but can be cal-
culated from the confusion matrix. The BER was calculated
with the BER() function of the package “measures” (Probst,
2018).

4 Results

4.1 Variable selection

The Boruta algorithm was run with maxRuns= 500 iter-
ations and a p value of 0.05, leaving no variables unre-
solved (i.e. tentative). All 38 predictor variables initially in-
cluded in the model were deemed important according to the
Boruta analysis (Fig. 2). Based on a plot of the RF out-of-
bag (OOB) error estimates over the correlation coefficient r ,
a value of 0.5 was selected (Fig. 3). This selection ensured
high model performance while at the same time minimis-
ing the number of predictor variables. Subsequent correlation
analysis reduced the number of retained predictor variables
to eight. These were bathymetry (MS_bathy_5m), distance
to shore (MS_biogeo5_dist_shore_5m), sea-surface temper-
ature range (BO2_temprange_ss), sea-surface maximum pri-
mary productivity (BO2_ppmax_ss), seafloor minimum tem-
perature (BO2_tempmin_bdmean), sea-surface maximum
salinity (BO2_salinitymax_ss), sea-surface salinity range
(BO2_salinityrange_ss), and sea-surface minimum silicate
(BO2_silicatemin_ss). The strongest correlation between the
remaining predictor variables (Fig. 4) was found between
bathymetry and seafloor minimum temperature (r = 0.38),
sea-surface maximum salinity and sea-surface minimum sili-
cate (r =−0.36), and bathymetry and distance to shore (r =
−0.33). Maps of the selected predictor variables are shown
in Fig. A1.

4.2 Environmental space

The environmental space (Fig. 5) is generally sampled ade-
quately, although there is a tendency for an overrepresenta-
tion of shallower water depths and areas closer to land. Sea-
surface temperature range, sea-surface maximum primary
productivity, seafloor minimum temperature, and sea-surface
maximum salinity are all slightly biased towards higher val-
ues. Sea-surface salinity range and sea-surface minimum sil-
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Figure 2. Results of the Boruta variable selection process. All environmental predictor variables had an importance significantly higher than
the shadow variables (shadowMin, shadowMean, and shadowMax).

Figure 3. Influence of r value on the out-of-bag error of a random-
forest model with default parameters. The size of the circles indi-
cates the number of selected predictor variables (Npreds).

icate are the environmental variables that are most closely
represented by the samples.

4.3 Model accuracy

The confusion matrix based on the S-LOO CV is shown in
Table 3. The overall accuracy of the model is 59.4 %, with
95 % confidence limits of 58.4 % and 60.3 %. This is signif-
icantly higher (p<2.2× 10−16) than the NIR (50.3 %). The
BER is 0.54. The two dominant classes, calcareous sediment

Figure 4. Correlation plot showing the correlation coefficients of
the selected predictor variables.

and clay, have the lowest error of commission with 18.3 %
and 33.1 %, respectively. Calcareous sediment is most fre-
quently misclassified as clay and vice versa. All other classes
have high errors of commission (>70 %). Errors of omis-
sion are slightly higher than those of commission for the fre-
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Figure 5. A visual check to what extent the samples cover the environmental space. Blue: samples; red: environmental data.

quently occurring lithologies calcareous sediment and clay,
while lower for the rare classes diatom ooze, lithogenous sed-
iment, and radiolarian ooze.

4.4 Spatial distribution of deep-sea sediments

Probability surfaces of individual sediment classes with ver-
bal descriptions of likelihood (Mastrandrea et al., 2011)
based on the estimated probabilities are displayed in Fig. 6.
For any given pixel on the map, the final lithology class is
that one with the highest probability. The probability of the
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Table 3. Confusion matrix. Observed (reference) classes are in columns; predicted classes are in rows.

Calc.Sed Clay Dia.Ooze Lith.Sed Rad.Ooze Row total Error of commission

Calc.Sed 3727 685 8 134 10 4564 0.183
Clay 773 2008 48 159 14 3002 0.331
Dia.Ooze 235 210 295 295 34 1069 0.724
Lith.Sed 273 434 112 127 3 949 0.866
Rad.Ooze 243 377 160 36 38 854 0.956
Column total 5251 3714 623 751 99
Error of omission 0.290 0.459 0.526 0.831 0.616

most probable class might be interpreted as a spatially ex-
plicit measure of map confidence. The resulting maps of the
spatial distribution of deep-sea sediments and their associ-
ated confidence are shown in Fig. 7. Calcareous sediment and
clay dominate throughout the Pacific, Atlantic, and Indian
oceans, whereas clay occupies the deep basins and calcare-
ous sediment is found in shallower parts of the ocean basins.
In the Southern Ocean, seafloor sediments are arranged in a
banded pattern around Antarctica, with lithogenous sediment
forming an inner ring closest to land (Fig. A2). An outer ring
of siliceous oozes (diatom ooze and radiolarian ooze) dom-
inates in the Southern Ocean. The width of this “opal belt”
(Lisitzin, 1971) varies, and in places, most notably south of
South America, it is discontinuous. Overall, map confidence
varies between 0.21 and 1. It is generally lower in the vicin-
ity of class boundaries and higher in the geographic centre of
a class.

The seafloor lithology map bears a notable resemblance
with previously published hand-drawn maps (e.g. Berger,
1974). The general patterns are very similar, e.g. the distri-
bution of calcareous sediment, clay, and diatom ooze in the
major ocean basins. Patterns of radiolarian ooze in the In-
dian Ocean resemble those in Thurman (1997: Fig. 5-22).
In the Pacific Ocean, radiolarian ooze is mapped widespread
in the vicinity of the Equator, although not in the form of
a narrow band as frequently depicted in hand-drawn maps
(Berger, 1974; Thurman, 1997).

Based on the predicted distribution of lithology classes,
calcareous sediments cover approximately 121× 106 km2 of
seabed below 500 m water depth, equivalent to 36.8 % of
the total area (Table 4). Clays are the second most fre-
quent lithology occupying 102× 106 km2 (31.0 %). Diatom
ooze, lithogenous sediment, and radiolarian ooze account for
8.5 %, 9.5 %, and 14.2 % of deep-sea floor, respectively.

4.5 Predictor variable importance

The three most important predictor variables were sea-
surface maximum salinity, bathymetry, and seafloor maxi-
mum temperature with mean decreases in accuracy above
5 % (Fig. 8). These findings are similar to results from
Dutkiewicz et al. (2016), who determined sea-surface salin-
ity, sea-surface temperature, and bathymetry as the most im-

portant controls on the distribution of deep-sea sediments.
Sea-surface minimum silicate was of medium importance
(4.3 % decrease in accuracy), while sea-surface temperature
range, sea-surface maximum primary productivity, distance
to shore, and sea-surface salinity range were of lower impor-
tance (< 3 % decrease in accuracy).

5 Limitations of the approach

This study utilised legacy sampling data to make predictions
of the spatial distribution of seafloor lithologies in the deep
sea. This is the only viable approach, as it is unrealistic to
finance and execute a survey programme that samples the
global ocean with adequate density within a reasonable time-
frame. However, this approach also has some drawbacks.

The presented spatial predictions were based on forming
relationships between lithology classes and environmental
predictor variables. For such a task, it would be desirable
to cover the range of values of each of the predictor vari-
ables used in the model (Minasny and McBratney, 2006).
Although it was not possible to design a sampling survey,
it became nevertheless obvious that the environmental space
is reasonably well covered, presumably because of the rela-
tively large number of observations, which was achievable,
as there was virtually no cost associated with “collecting”
the samples. However, it might not always be the case that
a large sample dataset leads to adequate coverage of the en-
vironmental space. In such a case, it might be desirable to
draw a suitable subsample that approximates the distribution
of the environmental variables.

Data originating from many cruises over long time pe-
riods are most likely heterogeneous, which might lead to
increased uncertainty in the predictions. Sources of uncer-
tainty might relate to sampling gear type, vintage and tim-
ing of sampling, representativeness of subsampling, analyt-
ical pre-treatment, inconsistency of classification standards,
and more (van Heteren and Van Lancker, 2015). However,
Dutkiewicz et al. (2015) made efforts to homogenise the
data. From a total number of more than 200 000 samples,
they selected 14 400 based on strict quality-control criteria.
Only surface and near-surface samples that were collected
using coring, drilling, or grabbing methods were included.
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Table 4. Breakdown of areal coverage by lithology types in the global ocean below 500 m water depth.

Lithology Number of pixels Area (106 km2) Area (%)

Calcareous sediment 1 211 063 121.106 36.80
Clay 1 019 160 101.916 30.97
Diatom ooze 279 955 27.996 8.51
Lithogenous sediment 312 668 31.267 9.50
Radiolarian ooze 467 775 46.778 14.22

Sum 3 290 621 329.062 100

Figure 6. Probability surfaces of the five predicted lithologies. The verbal likelihood scale is based on Mastrandrea et al. (2011). Land
masses are derived from ESRI (2010).

Furthermore, only samples whose descriptions could be ver-
ified using original cruise reports, cruise proceedings, and
core logs were retained. Their classification scheme is delib-
erately generalised in order to successfully depict the main
types of sediments found in the global ocean and to over-
come shortcomings of inconsistent, poorly defined, and ob-

solete classification schemes and terminologies (Dutkiewicz
et al., 2015).

Additional uncertainty might be introduced through im-
precise positioning of the samples, which might lead to incor-
rect relations between the response variable and the predictor
variables. No metadata exist on the positioning accuracy or
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Figure 7. (a) Predicted lithology classes and (b) associated confidence in the predictions. Land masses are derived from ESRI (2010).

even the method of determining the position, which might
give some clues on the error associated with the recorded
positions. However, the chances that this shortcoming leads
to significant problems when making associations between
target and predictor variables are relatively low, as the cho-
sen model resolution of 10 km is relatively coarse when com-
pared with positioning accuracy.

The initial choice of predictor variables was informed by
the current understanding of the controls on deep-sea sed-
imentation (Dutkiewicz et al., 2016; Seibold and Berger,
1996). Consequently, all selected predictor variables were
deemed important (Fig. 2). The three most important pre-
dictor variables (Fig. 8) are also in good agreement with
Dutkiewicz et al. (2016). However, the large errors of omis-
sion and especially commission for the rare lithologies di-
atom ooze, lithogenous sediment, and radiolarian ooze might

indicate that the environmental controls are less well repre-
sented for these sediment types. Lithogenous sediment com-
prises a wide range of grain sizes (silt, sand, gravel, and
coarser), and proximity to land might be an insufficient pre-
dictor. In fact, distance to shore had the second lowest vari-
able importance (Fig. 8).

Sedimentation rates in the deep sea typically range on the
order of 1–100 mm per 1000 years (Seibold, 1975). The sam-
ple depths in the dataset used here might have ranged from
core top to a few dm. The lithologic signal might therefore
be integrated over timescales of approximately 100 years
to a few 100 000 years. The model hindcasts to derive
the oceanographic predictors typically cover approximately
25 years, while bathymetry and distance to coast might be
nearly constant, since global sea-level rise ceased approxi-
mately 6700 years ago (Lambeck et al., 2014). Hence, there
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Figure 8. Random-forest variable importance.

likely exists a mismatch between the time intervals, although
oceanographic variables might not have changed dramati-
cally over timescales much longer than a few decades.

6 Potential usage

Despite the good agreement with previously published maps
and a reasonable overall map accuracy of approximately
60 %, there is large variation in the class-specific error as
well as the spatial distribution of map confidence. It is there-
fore recommended to always consult the information on map
confidence along with the map of seafloor lithologies.

The probability surfaces of the seven lithologies might be
used as input for spatial prediction and modelling, e.g. ma-
rine species distribution modelling on a global scale, which
typically lacks information on seafloor sediments, although
substrate type is assumed to be an important environmental
predictor. Additionally, the presented data layers might be
useful for the spatial prediction of sediment properties (e.g.
carbonate and organic carbon content).

The categorical map might serve as a resource for educa-
tion and teaching; provide context for research pertaining to
the global seafloor; support marine planning, management,
and decision-making; and underpin the design of marine pro-
tected areas globally. Additionally, the provided lithology
map might be useful for survey planning, especially in con-
junction with confidence information to target areas where
a certain lithology is most likely to occur. Conversely, areas
of low confidence could be targeted to further improve the
accuracy of and confidence in the global map of deep-sea
sediments.

7 Data availability

The input sample data (five major classes below
500 m water depth) and the presented model results
(probability surfaces of the five lithologies, lithology
map, and associated confidence map) are archived at
https://doi.org/10.1594/PANGAEA.911692 (Diesing, 2020).

8 Executable research compendium (ERC)

The analysis is documented as an executable research com-
pendium, which can be accessed at https://o2r.uni-muenster.
de/#/erc/GWME2voTDb5oeaQFuTWMCEMveKS1MiXm
(Diesing and Nüst, 2020).

9 Conclusions

Based on a homogenised dataset of seafloor lithology sam-
ples (Dutkiewicz et al., 2015) and global environmental pre-
dictor variables from Bio-ORACLE (Assis et al., 2018; Ty-
berghein et al., 2012) and MARSPEC (Sbrocco and Bar-
ber, 2013) it was possible to spatially predict the distribu-
tion of deep-sea sediments globally. The general understand-
ing about the controls on deep-sea sedimentation helped
build a spatial model that gives a good representation of
the main lithologies calcareous sediment, clay, diatom ooze,
lithogenous sediment, and radiolarian ooze. Further improve-
ments should be directed towards the controls on the distribu-
tion of rarer lithologies (diatom ooze, lithogenous sediment,
and radiolarian ooze).
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Appendix A

Figure A1. Plots of the selected scaled predictor variables.
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Figure A2. Predicted lithology classes in the Southern Ocean. Land masses are derived from ESRI (2010).
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