Articles | Volume 12, issue 4
https://doi.org/10.5194/essd-12-3001-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-12-3001-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Key landscapes for conservation land cover and change monitoring, thematic and validation datasets for sub-Saharan Africa
Zoltan Szantoi
CORRESPONDING AUTHOR
European Commission, Joint Research Centre, 21027 Ispra, Italy
Department of Geography and Environmental Studies, Stellenbosch University, Stellenbosch 7602, South Africa
Andreas Brink
European Commission, Joint Research Centre, 21027 Ispra, Italy
Andrea Lupi
European Commission, Joint Research Centre, 21027 Ispra, Italy
Claudio Mammone
e-Geos – an ASI/Telespazio Company, Contrada Terlecchie, 75100, Matera, Italy
Gabriel Jaffrain
IGN FI – Ingénierie Géographique Numérique Française à l'International, 75012 Paris, France
Related authors
Adrià Descals, David L. A. Gaveau, Serge Wich, Zoltan Szantoi, and Erik Meijaard
Earth Syst. Sci. Data, 16, 5111–5129, https://doi.org/10.5194/essd-16-5111-2024, https://doi.org/10.5194/essd-16-5111-2024, 2024
Short summary
Short summary
This study provides a 10 m global oil palm extent layer for 2021 and a 30 m oil palm planting-year layer from 1990 to 2021. The oil palm extent layer was produced using a convolutional neural network that identified industrial and smallholder plantations using Sentinel-1 data. The oil palm planting year was developed using a methodology specifically designed to detect the early stages of oil palm development in the Landsat time series.
Kristof Van Tricht, Jeroen Degerickx, Sven Gilliams, Daniele Zanaga, Marjorie Battude, Alex Grosu, Joost Brombacher, Myroslava Lesiv, Juan Carlos Laso Bayas, Santosh Karanam, Steffen Fritz, Inbal Becker-Reshef, Belén Franch, Bertran Mollà-Bononad, Hendrik Boogaard, Arun Kumar Pratihast, Benjamin Koetz, and Zoltan Szantoi
Earth Syst. Sci. Data, 15, 5491–5515, https://doi.org/10.5194/essd-15-5491-2023, https://doi.org/10.5194/essd-15-5491-2023, 2023
Short summary
Short summary
WorldCereal is a global mapping system that addresses food security challenges. It provides seasonal updates on crop areas and irrigation practices, enabling informed decision-making for sustainable agriculture. Our global products offer insights into temporary crop extent, seasonal crop type maps, and seasonal irrigation patterns. WorldCereal is an open-source tool that utilizes space-based technologies, revolutionizing global agricultural mapping.
Adrià Descals, Serge Wich, Zoltan Szantoi, Matthew J. Struebig, Rona Dennis, Zoe Hatton, Thina Ariffin, Nabillah Unus, David L. A. Gaveau, and Erik Meijaard
Earth Syst. Sci. Data, 15, 3991–4010, https://doi.org/10.5194/essd-15-3991-2023, https://doi.org/10.5194/essd-15-3991-2023, 2023
Short summary
Short summary
The spatial extent of coconut palm is understudied despite its increasing demand and associated impacts. We present the first global coconut palm layer at 20 m resolution. The layer was produced using deep learning and remotely sensed data. The global coconut area estimate is 12.31 Mha for dense coconut palm, but the estimate is 3 times larger when sparse coconut palm is considered. This means that coconut production can likely increase on the lands currently allocated to coconut palm.
G. Mosomtai, J. L. Kasiiti, R. M. Murithi, P. Sandström, T. Landmann, O. W. Lwande, O. A. Hassan, C. Ahlm, R. Sang, M. Evander, Z. Szantoi, and G. Ottavianelli
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-1-2023, 211–216, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-211-2023, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-211-2023, 2023
Zoltan Szantoi, Andreas Brink, and Andrea Lupi
Earth Syst. Sci. Data, 13, 3767–3789, https://doi.org/10.5194/essd-13-3767-2021, https://doi.org/10.5194/essd-13-3767-2021, 2021
Short summary
Short summary
The ever-evolving landscapes in the African, Caribbean and Pacific regions should be monitored for land cover changes. The Global Land Monitoring Service of the Copernicus Programme, and in particular the Hot Spot Monitoring activity, developed a satellite-imagery-based workflow to monitor such areas. Here, we present a total of 852 025 km2 of areas mapped with up to 32 land cover classes. Thematic land cover and land cover change maps, as well as validation datasets, are presented.
Adrià Descals, Serge Wich, Erik Meijaard, David L. A. Gaveau, Stephen Peedell, and Zoltan Szantoi
Earth Syst. Sci. Data, 13, 1211–1231, https://doi.org/10.5194/essd-13-1211-2021, https://doi.org/10.5194/essd-13-1211-2021, 2021
Short summary
Short summary
Decision-making for sustainable vegetable oil production requires accurate global oil crop maps. We used high-resolution satellite data to train a deep learning model that accurately classified industrial and smallholder oil palm, the main oil-producing crop. Our results outperformed previous studies and proved the suitability of deep learning for land use mapping. The global oil palm area was 21±0.42 Mha for 2019; however, young and sparse plantations were not included in this estimate.
Myroslava Lesiv, Steffen Fritz, Martina Dürauer, Ivelina Georgieva, Marcel Buchhorn, Luc Bertels, Nandika Tsendbazar, Ruben Van De Kerchove, Daniele Zanaga, Dmitry Schepaschenko, Linda See, Martin Herold, Bruno Smets, Michael Cherlet, Andreas Brink, and Ian McCallum
Earth Syst. Sci. Data, 17, 6149–6155, https://doi.org/10.5194/essd-17-6149-2025, https://doi.org/10.5194/essd-17-6149-2025, 2025
Short summary
Short summary
This paper presents a unique global reference data set for land cover mapping at a 10 m resolution, aligned with Sentinel-2 imagery for the year 2015. It contains more than 16.5 million data records at a 10 m resolution (or 165 K data records at 100 m) and information on 12 different land cover classes. The data set was collected by a group of experts through visual interpretation of very high resolution imagery, along with other sources of information provided in the Geo-Wiki platform.
Adrià Descals, David L. A. Gaveau, Serge Wich, Zoltan Szantoi, and Erik Meijaard
Earth Syst. Sci. Data, 16, 5111–5129, https://doi.org/10.5194/essd-16-5111-2024, https://doi.org/10.5194/essd-16-5111-2024, 2024
Short summary
Short summary
This study provides a 10 m global oil palm extent layer for 2021 and a 30 m oil palm planting-year layer from 1990 to 2021. The oil palm extent layer was produced using a convolutional neural network that identified industrial and smallholder plantations using Sentinel-1 data. The oil palm planting year was developed using a methodology specifically designed to detect the early stages of oil palm development in the Landsat time series.
Kristof Van Tricht, Jeroen Degerickx, Sven Gilliams, Daniele Zanaga, Marjorie Battude, Alex Grosu, Joost Brombacher, Myroslava Lesiv, Juan Carlos Laso Bayas, Santosh Karanam, Steffen Fritz, Inbal Becker-Reshef, Belén Franch, Bertran Mollà-Bononad, Hendrik Boogaard, Arun Kumar Pratihast, Benjamin Koetz, and Zoltan Szantoi
Earth Syst. Sci. Data, 15, 5491–5515, https://doi.org/10.5194/essd-15-5491-2023, https://doi.org/10.5194/essd-15-5491-2023, 2023
Short summary
Short summary
WorldCereal is a global mapping system that addresses food security challenges. It provides seasonal updates on crop areas and irrigation practices, enabling informed decision-making for sustainable agriculture. Our global products offer insights into temporary crop extent, seasonal crop type maps, and seasonal irrigation patterns. WorldCereal is an open-source tool that utilizes space-based technologies, revolutionizing global agricultural mapping.
Adrià Descals, Serge Wich, Zoltan Szantoi, Matthew J. Struebig, Rona Dennis, Zoe Hatton, Thina Ariffin, Nabillah Unus, David L. A. Gaveau, and Erik Meijaard
Earth Syst. Sci. Data, 15, 3991–4010, https://doi.org/10.5194/essd-15-3991-2023, https://doi.org/10.5194/essd-15-3991-2023, 2023
Short summary
Short summary
The spatial extent of coconut palm is understudied despite its increasing demand and associated impacts. We present the first global coconut palm layer at 20 m resolution. The layer was produced using deep learning and remotely sensed data. The global coconut area estimate is 12.31 Mha for dense coconut palm, but the estimate is 3 times larger when sparse coconut palm is considered. This means that coconut production can likely increase on the lands currently allocated to coconut palm.
J.-A. Morand, G. Jaffrain, C. Sannier, and J.-L. Weber
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-1-2023, 203–210, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-203-2023, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-203-2023, 2023
G. Mosomtai, J. L. Kasiiti, R. M. Murithi, P. Sandström, T. Landmann, O. W. Lwande, O. A. Hassan, C. Ahlm, R. Sang, M. Evander, Z. Szantoi, and G. Ottavianelli
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-1-2023, 211–216, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-211-2023, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-211-2023, 2023
Zoltan Szantoi, Andreas Brink, and Andrea Lupi
Earth Syst. Sci. Data, 13, 3767–3789, https://doi.org/10.5194/essd-13-3767-2021, https://doi.org/10.5194/essd-13-3767-2021, 2021
Short summary
Short summary
The ever-evolving landscapes in the African, Caribbean and Pacific regions should be monitored for land cover changes. The Global Land Monitoring Service of the Copernicus Programme, and in particular the Hot Spot Monitoring activity, developed a satellite-imagery-based workflow to monitor such areas. Here, we present a total of 852 025 km2 of areas mapped with up to 32 land cover classes. Thematic land cover and land cover change maps, as well as validation datasets, are presented.
Adrià Descals, Serge Wich, Erik Meijaard, David L. A. Gaveau, Stephen Peedell, and Zoltan Szantoi
Earth Syst. Sci. Data, 13, 1211–1231, https://doi.org/10.5194/essd-13-1211-2021, https://doi.org/10.5194/essd-13-1211-2021, 2021
Short summary
Short summary
Decision-making for sustainable vegetable oil production requires accurate global oil crop maps. We used high-resolution satellite data to train a deep learning model that accurately classified industrial and smallholder oil palm, the main oil-producing crop. Our results outperformed previous studies and proved the suitability of deep learning for land use mapping. The global oil palm area was 21±0.42 Mha for 2019; however, young and sparse plantations were not included in this estimate.
Cited articles
Brink, A. B. and Eva, H. D.:
Monitoring 25 years of land cover change dynamics in Africa: A sample based remote sensing approach,
Appl. Geogr.,
29, 501–512, https://doi.org/10.1016/j.apgeog.2008.10.0, 2009.
Brink, A., Eva, H., and Bodart, C.:
Is Africa Losing Its Natural Vegetation? Monitoring Trajectories of Land-Cover Change Using Landsat Imagery, in: Remote Sensing of Land Use and Land Cover, Principles and Applications, edited by: Giri, C., vol. 20120991, 369–376, CRC Press, Boca Raton, FL., 2012.
Di Gregorio, A.:
Land cover classification system: classification concepts and user manual: LCCS, Software version 2,
Food and Agriculture Organization of the United Nations, Rome, 2005.
Di Minin, E., Slotow, R., Hunter, L. T. B., Montesino Pouzols, F., Toivonen, T., Verburg, P. H., Leader-Williams, N., Petracca, L., and Moilanen, A.:
Global priorities for national carnivore conservation under land use change,
Sci. Rep.-UK,
6, 23814, https://doi.org/10.1038/srep23814, 2016.
Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N. D., Wikramanayake, E., Hahn, N., Palminteri, S., Hedao, P., Noss, R., Hansen, M., Locke, H., Ellis, E. C., Jones, B., Barber, C. V., Hayes, R., Kormos, C., Martin, V., Crist, E., Sechrest, W., Price, L., Baillie, J. E. M., Weeden, D., Suckling, K., Davis, C., Sizer, N., Moore, R., Thau, D., Birch, T., Potapov, P., Turubanova, S., Tyukavina, A., de Souza, N., Pintea, L., Brito, J. C., Llewellyn, O. A., Miller, A. G., Patzelt, A., Ghazanfar, S. A., Timberlake, J., Klöser, H., Shennan-Farpón, Y., Kindt, R., Lillesø, J.-P. B., van Breugel, P., Graudal, L., Voge, M., Al-Shammari, K. F., and Saleem, M.:
An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm,
BioScience,
67, 534–545, https://doi.org/10.1093/biosci/bix014, 2017.
European Commission:
Science for the AU-EU Partnership building knowledge for sustainable development,
Joint Research Centre, Publications Office of the European Union, Luxembourg, ISBN 978-92-79-86961-7, JRC107753, https://doi.org/10.2760/360029, 2018.
Fritz, S., See, L., Perger, C., McCallum, I., Schill, C., Schepaschenko, D., Duerauer, M., Karner, M., Dresel, C., Laso-Bayas, J.-C., Lesiv, M., Moorthy, I., Salk, C. F., Danylo, O., Sturn, T., Albrecht, F., You, L., Kraxner, F. and Obersteiner, M.:
A global dataset of crowdsourced land cover and land use reference data,
Sci. Data,
4, 1–8, https://doi.org/10.1038/sdata.2017.75, 2017.
Gallaun, H., Steinegger, M., Wack, R., Schardt, M., Kornberger, B., and Schmitt, U.:
Remote Sensing Based Two-Stage Sampling for Accuracy Assessment and Area Estimation of Land Cover Changes,
Remote Sensing,
7, 11992–12008, https://doi.org/10.3390/rs70911992, 2015.
Geist, H. J. and Lambin, E. F.:
Proximate Causes and Underlying Driving Forces of Tropical Deforestation,
BioScience,
52, 143, https://doi.org/10.1641/0006-3568(2002)052[0143:PCAUDF]2.0.CO;2, 2002.
Hagolle, O., Huc, M., Villa Pascual, D., and Dedieu, G.:
A Multi-Temporal and Multi-Spectral Method to Estimate Aerosol Optical Thickness over Land, for the Atmospheric Correction of FormoSat-2, LandSat, VENμS and Sentinel-2 Images,
Remote Sensing,
7, 2668–2691, https://doi.org/10.3390/rs70302668, 2015.
Kebede, E., Kagochi, J., and Jolly, C. M.:
Energy consumption and economic development in Sub-Sahara Africa,
Energ. Econ.,
32, 532–537, https://doi.org/10.1016/j.eneco.2010.02.003, 2010.
MacKinnon, J., Aveling, C., Olivier, R., Murray, M., Paolini, C., and European Commission and Directorate-General for International Cooperation and Development:
Larger than elephants: inputs for an EU strategic approach to wildlife conservation in Africa: synthesis,
available at: http://dx.publications.europa.eu/10.2841/909032 (last access: 24 April 2018), 2015.
Marshall, M., Norton-Griffiths, M., Herr, H., Lamprey, R., Sheffield, J., Vagen, T., and Okotto-Okotto, J.: Continuous and consistent land use/cover change estimates using socio-ecological data, Earth Syst. Dynam., 8, 55–73, https://doi.org/10.5194/esd-8-55-2017, 2017.
Masek, J. G., Vermote, E. F., Saleous, N. E., Wolfe, R., Hall, F. G., Huemmrich, K. F., Gao, F., Kutler, J., and Lim, T.-K.:
A Landsat Surface Reflectance Dataset for North America, 1990–2000,
IEEE Geosci. Remote S.,
3, 68–72, https://doi.org/10.1109/LGRS.2005.857030, 2006.
Mora, B., Tsendbazar, N.-E., Herold, M., and Arino, O.:
Global Land Cover Mapping: Current Status and Future Trends,
in: Land Use and Land Cover Mapping in Europe, vol. 18,
edited by: Manakos, I. and Braun, M.,
Springer Netherlands, Dordrecht, 11–30, 2014.
Nissan, H., Goddard, L., de Perez, E. C., Furlow, J., Baethgen, W., Thomson, M. C., and Mason, S. J.:
On the use and misuse of climate change projections in international development,
WIREs Clim. Change,
10, e579, https://doi.org/10.1002/wcc.579, 2019.
Saah, D., Tenneson, K., Poortinga, A., Nguyen, Q., Chishtie, F., Aung, K. S., Markert, K. N., Clinton, N., Anderson, E. R., Cutter, P., Goldstein, J., Housman, I. W., Bhandari, B., Potapov, P. V., Matin, M., Uddin, K., Pham, H. N., Khanal, N., Maharjan, S., Ellenberg, W. L., Bajracharya, B., Bhargava, R., Maus, P., Patterson, M., Flores-Anderson, A. I., Silverman, J., Sovann, C., Do, P. M., Nguyen, G. V., Bounthabandit, S., Aryal, R. R., Myat, S. M., Sato, K., Lindquist, E., Kono, M., Broadhead, J., Towashiraporn, P., and Ganz, D.:
Primitives as building blocks for constructing land cover maps,
Int. J. Appl. Earth Obs.,
85, 101979, https://doi.org/10.1016/j.jag.2019.101979, 2020.
Stehman, S. V.:
Impact of sample size allocation when using stratified random sampling to estimate accuracy and area of land-cover change,
Remote Sens. Lett.,
3, 111–120, https://doi.org/10.1080/01431161.2010.541950, 2012.
Strobl, P., Baumann, P., Lewis, A., Szantoi, Z., Killough, B., Purss, M. B. J., Craglia, M., Nativi, S., Held, A., and Dhu, T.:
The six faces of the data cube, in Proc. of the 2017 conference on Big Data from Space (BiDS'17), Toulouse, France, 28–30 November 2017, Luxembourg, Publications Office of the European Union, 32–35, https://doi.org/10.2760/383579, 2017.
Sylla, M. B., Pal, J. S., Wang, G. L., and Lawrence, P. J.:
Impact of land cover characterization on regional climate modeling over West Africa,
Clim. Dynam.,
46, 637–650, https://doi.org/10.1007/s00382-015-2603-4, 2016.
Szantoi, Z., Escobedo, F., Abd-Elrahman, A., Smith, S., and Pearlstine, L.:
Analyzing fine-scale wetland composition using high resolution imagery and texture features,
Int. J. Appl. Earth Obs.,
23, 204–212, https://doi.org/10/gdnfvd, 2013.
Szantoi, Z., Brink, A., Buchanan, G., Bastin, L., Lupi, A., Simonetti, D., Mayaux, P., Peedell, S., and Davy, J.:
A simple remote sensing based information system for monitoring sites of conservation importance,
Remote Sens. Ecol. Conserv.,
2, 16–24, https://doi.org/10.1002/rse2.14, 2016.
Szantoi, Z., Brink, A., Lupi, A., Mannone, C., and Jaffrain, G.:
Land cover and change thematic and validation datasets for Sub-Saharan Africa,
PANGAEA,
https://doi.org/10.1594/PANGAEA.914261, 2020a.
Szantoi, Z., Geller, G. N, Tsendbazar, N.-E., See, L., Griffiths, P., Fritz, S., Gong, P., Herold, M., Mora, B., and Obregon, A.:
Addressing the Need for Improved Land Cover Map Products for Policy Support,
Environ. Sci. Policy,
112, 28–35, https://doi.org/10.1016/j.envsci.2020.04.005, 2020b.
Tolessa, T., Senbeta, F., and Kidane, M.:
The impact of land use/land cover change on ecosystem services in the central highlands of Ethiopia,
Ecosyst. Serv.,
23, 47–54, https://doi.org/10.1016/j.ecoser.2016.11.010, 2017.
Tsendbazar, N.-E., Herold, M., de Bruin, S., Lesiv, M., Fritz, S., Van De Kerchove, R., Buchhorn, M., Duerauer, M., Szantoi, Z., and Pekel, J.-F.:
Developing and applying a multi-purpose land cover validation dataset for Africa,
Remote Sens. Environ.,
219, 298–309, https://doi.org/10.1016/j.rse.2018.10.025, 2018.
van der Meer, E.:
Carnivore conservation under land use change: the status of Zimbabwe's cheetah population after land reform,
Biodivers. Conserv.,
27, 647–663, https://doi.org/10.1007/s10531-017-1455-0, 2018.
Vondou, D. A. and Haensler, A.:
Evaluation of simulations with the regional climate model REMO over Central Africa and the effect of increased spatial resolution: Evaluation of Remo Resolution Over Central Africa,
Int. J. Climatol.,
37, 741–760, https://doi.org/10.1002/joc.5035, 2017.
Zhu, Z., Wang, S., and Woodcock, C. E.:
Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images,
Remote Sens. Environ.,
159, 269–277, https://doi.org/10.1016/j.rse.2014.12.014, 2015.
Short summary
Larger ecological zones and wildlife corridors in sub-Saharan Africa require monitoring, as social and economic demands put high pressure on them. Copernicus’ Hot-Spot Monitoring service developed a satellite-imagery-based monitoring workflow to map such areas. Here, we present a total of 560 442 km2 from which 153 665 km2 is mapped with eight land cover classes while 406 776 km2 is mapped with up to 32 classes. Besides presenting the thematic products, we also present our validation datasets.
Larger ecological zones and wildlife corridors in sub-Saharan Africa require monitoring, as...
Altmetrics
Final-revised paper
Preprint