Articles | Volume 12, issue 4
https://doi.org/10.5194/essd-12-2647-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-12-2647-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
ARIOS: a database for ocean acidification assessment in the Iberian upwelling system (1976–2018)
Xosé Antonio Padin
CORRESPONDING AUTHOR
Instituto de Investigaciones Marinas, IIM-CSIC, 36208 Vigo, Spain
Antón Velo
Instituto de Investigaciones Marinas, IIM-CSIC, 36208 Vigo, Spain
Fiz F. Pérez
Instituto de Investigaciones Marinas, IIM-CSIC, 36208 Vigo, Spain
Related authors
Li-Qing Jiang, Amanda Fay, Jens Daniel Müller, Lydia Keppler, Dustin Carroll, Siv K. Lauvset, Tim DeVries, Judith Hauck, Christian Rödenbeck, Luke Gregor, Nicolas Metzl, Andrea J. Fassbender, Jean-Pierre Gattuso, Peter Landschützer, Rik Wanninkhof, Christopher Sabine, Simone R. Alin, Mario Hoppema, Are Olsen, Matthew P. Humphreys, Kumiko Azetsu-Scott, Dorothee C. E. Bakker, Leticia Barbero, Nicholas R. Bates, Nicole Besemer, Henry C. Bittig, Albert E. Boyd, Daniel Broullón, Wei-Jun Cai, Brendan R. Carter, Thi-Tuyet-Trang Chau, Chen-Tung Arthur Chen, Frédéric Cyr, John E. Dore, Ian Enochs, Richard A. Feely, Hernan E. Garcia, Marion Gehlen, Lucas Gloege, Melchor González-Dávila, Nicolas Gruber, Yosuke Iida, Masao Ishii, Esther Kennedy, Alex Kozyr, Nico Lange, Claire Lo Monaco, Derek P. Manzello, Galen A. McKinley, Natalie M. Monacci, Xose A. Padin, Ana M. Palacio-Castro, Fiz F. Pérez, Alizée Roobaert, J. Magdalena Santana-Casiano, Jonathan Sharp, Adrienne Sutton, Jim Swift, Toste Tanhua, Maciej Telszewski, Jens Terhaar, Ruben van Hooidonk, Anton Velo, Andrew J. Watson, Angelicque E. White, Zelun Wu, Hyelim Yoo, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-255, https://doi.org/10.5194/essd-2025-255, 2025
Preprint under review for ESSD
Short summary
Short summary
This review article provides an overview of 60 existing ocean carbonate chemistry data products, encompassing a broad range of types, including compilations of cruise datasets, gap-filled observational products, model simulations, and more. It is designed to help researchers identify and access the data products that best support their scientific objectives, thereby facilitating progress in understanding the ocean's changing carbonate chemistry.
Susana Flecha, Mercedes de la Paz, Fiz Fernández Pérez, Núria Marbà, Carlos Morell, Eva Alou-Font, Joaquín Tintoré, and Iris E. Hendriks
Ocean Sci., 21, 1515–1532, https://doi.org/10.5194/os-21-1515-2025, https://doi.org/10.5194/os-21-1515-2025, 2025
Short summary
Short summary
Nitrous oxide (N2O), a potent greenhouse gas, is understudied in coastal zones. We present N2O concentrations and air–sea fluxes from the Balearic coast (2018–2023). Concentrations varied slightly across sites, with areas acting as weak sources or being near equilibrium. Temperature was the main driver of seasonal changes. These findings improve our understanding of coastal N2O emissions.
Li-Qing Jiang, Amanda Fay, Jens Daniel Müller, Lydia Keppler, Dustin Carroll, Siv K. Lauvset, Tim DeVries, Judith Hauck, Christian Rödenbeck, Luke Gregor, Nicolas Metzl, Andrea J. Fassbender, Jean-Pierre Gattuso, Peter Landschützer, Rik Wanninkhof, Christopher Sabine, Simone R. Alin, Mario Hoppema, Are Olsen, Matthew P. Humphreys, Kumiko Azetsu-Scott, Dorothee C. E. Bakker, Leticia Barbero, Nicholas R. Bates, Nicole Besemer, Henry C. Bittig, Albert E. Boyd, Daniel Broullón, Wei-Jun Cai, Brendan R. Carter, Thi-Tuyet-Trang Chau, Chen-Tung Arthur Chen, Frédéric Cyr, John E. Dore, Ian Enochs, Richard A. Feely, Hernan E. Garcia, Marion Gehlen, Lucas Gloege, Melchor González-Dávila, Nicolas Gruber, Yosuke Iida, Masao Ishii, Esther Kennedy, Alex Kozyr, Nico Lange, Claire Lo Monaco, Derek P. Manzello, Galen A. McKinley, Natalie M. Monacci, Xose A. Padin, Ana M. Palacio-Castro, Fiz F. Pérez, Alizée Roobaert, J. Magdalena Santana-Casiano, Jonathan Sharp, Adrienne Sutton, Jim Swift, Toste Tanhua, Maciej Telszewski, Jens Terhaar, Ruben van Hooidonk, Anton Velo, Andrew J. Watson, Angelicque E. White, Zelun Wu, Hyelim Yoo, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-255, https://doi.org/10.5194/essd-2025-255, 2025
Preprint under review for ESSD
Short summary
Short summary
This review article provides an overview of 60 existing ocean carbonate chemistry data products, encompassing a broad range of types, including compilations of cruise datasets, gap-filled observational products, model simulations, and more. It is designed to help researchers identify and access the data products that best support their scientific objectives, thereby facilitating progress in understanding the ocean's changing carbonate chemistry.
David Curbelo-Hernández, Fiz F. Pérez, Melchor González-Dávila, Sergey V. Gladyshev, Aridane G. González, David González-Santana, Antón Velo, Alexey Sokov, and J. Magdalena Santana-Casiano
Biogeosciences, 21, 5561–5589, https://doi.org/10.5194/bg-21-5561-2024, https://doi.org/10.5194/bg-21-5561-2024, 2024
Short summary
Short summary
The study evaluated CO2–carbonate system dynamics in the North Atlantic subpolar gyre during 2009–2019. Significant ocean acidification, largely due to rising anthropogenic CO2 levels, was found. Cooling, freshening, and enhanced convective processes intensified this trend, affecting calcite and aragonite saturation. The findings contribute to a deeper understanding of ocean acidification and improve our knowledge about its impact on marine ecosystems.
Herlé Mercier, Damien Desbruyères, Pascale Lherminier, Antón Velo, Lidia Carracedo, Marcos Fontela, and Fiz F. Pérez
Ocean Sci., 20, 779–797, https://doi.org/10.5194/os-20-779-2024, https://doi.org/10.5194/os-20-779-2024, 2024
Short summary
Short summary
We study the Atlantic Meridional Overturning Circulation (AMOC) measured between Greenland and Portugal between 1993–2021. We identify changes in AMOC limb volume and velocity as two major drivers of AMOC variability at subpolar latitudes. Volume variations dominate on the seasonal timescale, while velocity variations are more important on the decadal timescale. This decomposition proves useful for understanding the origin of the differences between AMOC time series from different analyses.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 16, 2047–2072, https://doi.org/10.5194/essd-16-2047-2024, https://doi.org/10.5194/essd-16-2047-2024, 2024
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2023 is the fifth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1108 hydrographic cruises covering the world's oceans from 1972 to 2021.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Revised manuscript not accepted
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Simone Alin, Marta Álvarez, Kumiko Azetsu-Scott, Leticia Barbero, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Li-Qing Jiang, Steve D. Jones, Claire Lo Monaco, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 14, 5543–5572, https://doi.org/10.5194/essd-14-5543-2022, https://doi.org/10.5194/essd-14-5543-2022, 2022
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2022 is the fourth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1085 hydrographic cruises covering the world's oceans from 1972 to 2021.
Gilles Reverdin, Claire Waelbroeck, Catherine Pierre, Camille Akhoudas, Giovanni Aloisi, Marion Benetti, Bernard Bourlès, Magnus Danielsen, Jérôme Demange, Denis Diverrès, Jean-Claude Gascard, Marie-Noëlle Houssais, Hervé Le Goff, Pascale Lherminier, Claire Lo Monaco, Herlé Mercier, Nicolas Metzl, Simon Morisset, Aïcha Naamar, Thierry Reynaud, Jean-Baptiste Sallée, Virginie Thierry, Susan E. Hartman, Edward W. Mawji, Solveig Olafsdottir, Torsten Kanzow, Anton Velo, Antje Voelker, Igor Yashayaev, F. Alexander Haumann, Melanie J. Leng, Carol Arrowsmith, and Michael Meredith
Earth Syst. Sci. Data, 14, 2721–2735, https://doi.org/10.5194/essd-14-2721-2022, https://doi.org/10.5194/essd-14-2721-2022, 2022
Short summary
Short summary
The CISE-LOCEAN seawater stable isotope dataset has close to 8000 data entries. The δ18O and δD isotopic data measured at LOCEAN have uncertainties of at most 0.05 ‰ and 0.25 ‰, respectively. Some data were adjusted to correct for evaporation. The internal consistency indicates that the data can be used to investigate time and space variability to within 0.03 ‰ and 0.15 ‰ in δ18O–δD17; comparisons with data analyzed in other institutions suggest larger differences with other datasets.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Steve D. Jones, Maren K. Karlsen, Claire Lo Monaco, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 13, 5565–5589, https://doi.org/10.5194/essd-13-5565-2021, https://doi.org/10.5194/essd-13-5565-2021, 2021
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2021 is the third update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 989 hydrographic cruises covering the world's oceans from 1972 to 2020.
Daniel Broullón, Fiz F. Pérez, and María Dolores Doval
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-33, https://doi.org/10.5194/bg-2021-33, 2021
Publication in BG not foreseen
Short summary
Short summary
We created a weekly database of pH and total alkalinity in a coastal upwelling system between 1992 and 2019. This product is very relevant to analyze the natural variability and the anthropogenic influence in the CO2 system in order to gain knowledge about the drivers of the variability and the possible future conditions of the Ría de Vigo. Biological ocean acidification experiments can also take advantage of this product to better restrict its parameters.
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Henry C. Bittig, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Camilla S. Landa, Siv K. Lauvset, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, and Ryan J. Woosley
Earth Syst. Sci. Data, 12, 3653–3678, https://doi.org/10.5194/essd-12-3653-2020, https://doi.org/10.5194/essd-12-3653-2020, 2020
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2020 is the second update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 946 hydrographic cruises covering the world's oceans from 1972 to 2019.
Cited articles
Alonso-Perez, F. and Castro, C. G.: Benthic oxygen and nutrient fluxes in a
coastal upwelling system (Ria de Vigo, NW Iberian Peninsula): seasonal
trends and regulating factors, Mar. Ecol. Prog. Ser., 511, 17–32,
https://doi.org/10.3354/meps10915, 2014.
Alonso-Perez F., Ysebaert, T., and Castro, C. G.: Effects of suspended
mussel culture on benthic-pelagic coupling in a coastal upwelling system
(Ría de Vigo, NW Iberian Peninsula), J. Exp. Mar. Biol. Ecol., 382, 96–107, https://doi.org/10.1016/j.jembe.2009.11.008,
2010.
Alonso-Perez, F., Zúñiga, D., Arbones, B., Figueiras, F. G., and
Castro, C. G.: Benthic fluxes, net ecosystem metabolism and seafood harvest:
Completing the organic carbon balance in the Ría de Vigo (NW Spain),
Estuar. Coast. Shelf Sci., 163, 54–63,
https://doi.org/10.1016/j.ecss.2015.05.038, 2015.
Alvarez, M., Fernández, E., and Pérez, F. F.: Air-sea CO2
fluxes in a coastal embayment affected by upwelling: physical versus
biological control, Oceanol. Acta, 22, 499–515, 1999.
Alvarez-Salgado, X. A., Rosón, G., Pérez, F. F., and Pazos, Y.:
Hydrographic variability off the Rías Baixas (NW Spain) during the
upwelling season, J. Geophys. Res., 98, 14447–14455, 1993.
Alvarez-Salgado, X. A., Figueiras, F. G., Villarino, M. L., and Pazos, Y.:
Hydrodynamic and chemical conditions during onset of a red-tide assemblage
in an estuarine upwelling ecosystem, Mar. Biol., 130, 509–519, 1998.
Álvarez-Salgado, X. A., Doval, M. D., Borges, A. V, Joint, I.,
Frankignoulle, M., Woodward, E. M. S., and Figueiras, F. G.: Off-shelf fluxes
of labile materials by an upwelling filament in the NW Iberian Upwelling
System, Prog. Oceanogr., 51, 321–337, 2001.
Álvarez-Salgado, X. A., Beloso, X., Joint, I., Nogueira, E., Chou, L.,
Pérez, F. F., Groom, S., Cabanas, J. M., Rees, A. P., and Elskens, M.:
New Production of the NW Iberian Shelf during the Upwelling Season over the
period 1982–1999, Deep-Sea Res., 49, 1725–1739,
https://doi.org/10.1016/S0967-0637(02)00094-8, 2002.
Álvarez-Salgado, X. A., Figueiras, F. G., Pérez, F. F., Groom, S.,
Nogueira, E., Borges, A. V., Chou, L., Castro, C. G., Moncoiffé, G.,
Ríos, A. F., Miller, A. E. J., Frankignoulle, M., Savidge, G., and
Wollast, R.: The Portugal coastal counter current off NW Spain new insights
on its biogeochemical variability, Prog. Oceanogr., 56, 281–321,
https://doi.org/10.1016/S0079-6611(03)00007-7, 2003.
Álvarez–Salgado, X. A., Nieto-Cid, M., Piedracoba, S., Crespo, B. G.,
Gago, J., Brea, S., Teixeira, I. G., Figueiras, F. G., Garrido, J. L.,
Rosón, G., Castro, C. G., and Gilcoto, M.: Origin and fate of a bloom of
Skeletonema costatum during a winter upwelling/downwelling sequence in the
Ría de Vigo (NW Spain), J. Mar. Res., 63, 1127–1149,
https://doi.org/10.1357/002224005775247616, 2005.
Alvarez-Salgado, X. A., Nieto-Cid, M., Gago, J., Brea, S., Castro, C. G.,
Doval, M., and Pérez, F. F.: Stoichiometry of the degradation of
dissolved and particulate biogenic organic matter in the NW Iberian
upwelling, J. Geophys. Res., 111, C07017,
https://doi.org/10.1029/2004JC002473, 2006.
Alvarez-Salgado, X. A., Labarta, U., Fernández-Reiriz, M. J., Figueiras, F. G., Rosón, G., Piedracoba, S., Filgueira, R., and Cabanas, J. M.: Renewal time and the impact of harmful algal blooms on the extensive mussel raft culture of the Iberian coastal upwelling system (SW Europe), Harmful Algae, 7, 849–855, https://doi.org/10.1016/j.hal.2008.04.007, 2008
Anderson, L.: Correction of reversing thermometers andrelated depth
calculations in Baltic water, Meddelande fran Havsfiskelaboratoriet,
Lysekil, 166 pp., 1974.
Andersson, A. J. and Mackenzie, F. T.: Revisiting four scientific debates in ocean acidification research, Biogeosciences, 9, 893–905, https://doi.org/10.5194/bg-9-893-2012, 2012.
Arístegui J., Barton, E. D., Tett, P., Montero, M. F.,
García-Muñoz, M., Basterretxea, G., Cussatlegras, A. S., Ojeda, A.,
and de Armas, D.: Variability in plankton community structure, metabolism,
and vertical carbon fluxes along an upwelling filament (Cape Juby, NW
Africa), Prog. Oceanogr., 62, 95–113, 2004.
Bakun, A., Field, D. B., Redondo-Rodriguez, A., and Weeks, S. J.: Greenhouse
gas, upwelling favorable winds, and the future of coastal ocean upwelling
ecosystems, Glob. Change Biol., 16, 4, 1213–1228,
https://doi.org/10.1111/j.1365-2486.2009.02094.x, 2010.
Barnes, H.: Apparatus and methods of oceanography. Part one: Chemical, Allen
and Unwin. London, 335 pp., 1959.
Barton, E. D., Largier, J. L., Torres, R., Sheridan, M., Trasviña, A.,
Souza A., Pazos, Y., and Valle-Levinson, A.: Coastal upwelling and
downwelling forcing of circulation in a semi-enclosed bay: Ria de Vigo,
Prog. Oceanogr., 134, 173–189,
https://doi.org/10.1016/j.pocean.2015.01.014, 2015.
Barton, E. D., Torres, R., Figueiras, F. G., Gilcoto, M., and Largier, J.:
Surface water subduction during a downwelling event in a semienclosed bay,
J. Geophys. Res., 121, 7088–7107,
https://doi.org/10.1002/2016JC011950, 2016.
Barton, E. D., Castro, C. G., Alonso-Pérez, F., Zúñiga, D.,
Rellán, T., Arbones, B., Castaño, M., Gilcoto, M., Torres, R.,
Figueiras, F. G., Pérez, F. F., and Ríos, A. F.: Cria surveys:
hydrographic and chemical data, Digital.CSIC,
https://doi.org/10.20350/digitalCSIC/9931, 2019.
Bates, N. R., Astor, Y. M., Church, M. J., Currie, K., Dore, J. E.,
González-Dávila, M., Lorenzoni, L., Muller-Karger, F., Olafsson, J.,
and Santana-Casiano, J. M.: A Time-Series View of Changing Surface Ocean
Chemistry Due to Ocean Uptake of Anthropogenic CO2 and Ocean
Acidification, Oceanography, 27, 126–141, 2014.
Benson, B. B. and Krause, D. J.: The concentration and isotopic
fractionation of oxygen dissolved in fresh water and seawater in equilibrium
with the atmosphere, Limnol. Oceanogr., 29, 620–632, 1984.
Blanton, J. O., Atkinson, L. P., Fernandez de Castillejo, F., and Lavin
Montero, A.: Coastal upwelling off the Rias Bajas, Galicia, Northwest Spain,
I: Hydrography studies, Rapports et procès-verbaux des réunions: The biological productivity of North Atlantic Shelf areas, 183, 79–90, 1984.
Bode, A., Alvarez-Ossorio, M. T., Cabanas, J. M., Miranda, A., and Varela, M.:
Recent trends in plankton and upwelling intensity off Galicia (NW Spain),
Prog. Oceanogr., 83, 342–350, 2009.
Caldeira, K. and Wickett, M. E.: Oceanography: anthropogenic carbon and
ocean pH, Nature, 425, 365, https://doi.org/10.1038/425365a, 2003.
Castro, C. G., Pérez, F. F., Álvarez-Salgado, X. A., Rosón, G., and and Ríos, A. F.: Hydrographic conditions associated with the relaxation of an upwelling event off the Galician coast (NW Spain), J.
Geophys. Res., 99, 5135–5147, https://doi.org/10.1029/93JC02735, 1994.
Castro, C. G., Nieto-Cid, M., Álvarez-Salgado, X. A., and Pérez, F.
F.: Local remineralization patterns in the mesopelagic zone of the ENAW,
Deep-Sea Res. Pt I, 53, 1925–1940,
https://doi.org/10.1016/j.dsr.2006.09.002, 2006.
Castro, C. G., Álvarez-Salgado, X. A., Nogueira, E., Gago, J.,
Pérez, F. F., Bode, A., Ríos, A. F., Rosón, G., and Varela, M.:
Evidencias bioxeoquímicas do cambio climático. Edita: Xunta de
Galicia. Consellería de Medio Ambiente e Desenvolvemento Sostible,
Evidencias e impactos do cambio climático en Galicia, 303–326, 2009.
Clayton, T. D. and Byrne, R. H.: Spectrophotometric seawater pH
measurements: total hydrogen ion concentration scale calibration of m-cresol
purple and at-sea results, Deep-Sea Res. Pt. I, 40, 2115–2129,
https://doi.org/10.1016/0967-0637(93)90048-8, 1993.
Cobo-Viveros, A. M., Padin, X. A., Otero, P., de la Paz, M., Ruiz-Villareal,
M., Ríos, A. F., and Pérez, F. F.: Short-term variability of surface
carbon dioxide and sea-air CO2 fluxes in the shelf waters of the
Galician coastal upwelling system, Scientia Marina, 77S1, 37–48, https://doi.org/10.3989/scimar.03733.27C, 2013.
Culberson, C. H., Knapp, G., Stalcup, M. C., Williams, R. T., and Zemlyak,
F.: A comparison of methods for the determination of dissolved oxygen in
seawater, WOCE Report 73/91, 77 pp., 1991.
DelValls, T. A. and Dickson, A. G.: The pH of buffers based on
2-amino-2-hydroxymethyl-1,3-propanediol (“tris”) in synthetic sea water,
Deep-Sea Res. Pt. I, 45, 1541–1554, 1998.
Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to best practices
for ocean CO2 measurements, PICES Special Publication 3, 191 pp., 2007.
Doval, M., Nogueira, E., and Pérez, F. F.: Spatio-temporal variability
of the thermohaline and biogeochemical properties and dissolved organic
carbon in a coastal embayment affected by upwelling: the Ría de Vigo
(NW Spain), J. Mar. Syst., 14, 135–150,
https://doi.org/10.1016/S0924-7963(97)80256-4, 1998.
Doval, M. D., Alvarez-Salgado, X. A., and Perez, F. F.: Dissolved organic
carbon in a temperate embayment affected by coastal upwelling, Mar. Ecol.
Prog. Ser., 157, 21–37, https://doi.org/10.3354/meps157021, 1997a.
Doval, M. D., Fraga, F., and Perez, F. F.: Determination of dissolved organic
nitrogen in seawater using Kjeldahl digestion after inorganic nitrogen
removal, Oceanol. Acta, 20, 713–720, 1997b.
Doval, M. D., López, A., and Madriñán, M.: Temporal variation and
trends of inorganic nutrients in the coastal upwelling of the NW Spain
(Atlantic Galician rías),
J. Sea Res., 108, 19–29,
https://doi.org/10.1016/j.seares.2015.12.006, 2016.
Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D., and Hales,
B: Evidence for upwelling of corrosive “acidified” water onto the
continental shelf, Science, 320, 1490–1492,
https://doi.org/10.1126/science.1155676, 2008.
Figueiras, F. G., Jones, K., Mosquera, A. M., Álvarez Salgado, X. A.,
Edwards, A., and MacDougall, N.: Red tide assemblage formation in an
estuarine upwelling ecosystem: Ria de Vigo, J. Plankt. Res., 16
857–878, https://doi.org/10.1093/plankt/16.7.857, 1994.
Fraga F.: Upwelling off the Galician coast, northwest Spain, Coastal
Upwelling, American Geophysical Union, Washington DC, 176–182,
https://doi.org/10.1029/CO001p0176, 1981.
Fraga, F., Mouriño, C., and Manriquez, M.: Las masas de agua en la costa
de Galicia: junio–octubre, Resultados Expediciones Científicas, 10,
51–77, http://hdl.handle.net/10261/90380, 1982.
Fraga, F., Pérez, F. F., Figueiras, F. G., and Ríos, A. F.:
Stoichiometric variations of N, P, C and O2 during a Gymnodinium
catenatum red tie and their interpretation, Marine Ecology Progress Series,
87, 123–134, https://doi.org/10.3354/meps087123, 1992.
Froján, M., Arbones, B., Zúñiga, D., Castro, C. G., and
Figueiras, F. G.: Microbial plankton community in the Ría de Vigo (NW
Iberian upwelling system): impact of the culture of Mytilus
galloprovincialis, Mar. Ecol. Prog. Ser., 498, 43–54,
https://doi.org/10.3354/meps10612, 2014.
Froján, M., Figueiras, F. G., Zúñiga, D., Alonso-Pérez, F.,
Arbones, B., and Castro, C. G.: Influence of Mussel Culture on the Vertical
Export of Phytoplankton Carbon in a Coastal Upwelling Embayment (Ría de
Vigo, NW Iberia), Estuar. Coast., 39, 1449–1462,
https://doi.org/10.1007/s12237-016-0093-1, 2016.
Froján, M., Castro, C. G., Zúñiga, D., Arbones, A.,
Alonso-Pérez, F., and Figueiras, F. G.: Mussel farming impact on pelagic
production and respiration rates in a coastal upwelling embayment (Ría
de Vigo, NW Spain), Estuar. Coast. Shelf Sci., 204, 130–139,
https://doi.org/10.1016/j.ecss.2018.02.025, 2018.
Frouin, R., Fiúza, A. F. G., Ambar, I., and Boyd, T. J.:
Observations of a poleward surface current off the coasts of Portugal and
Spain during winter, J. Geophys. Res., 95, 679–691, 1990.
Gago, J., Alvarez-Salgado, X. A., Gilcoto, M., and Pérez, F. F.:
Assessing the contrasting fate of dissolved and suspended organic carbon in
a coastal upwelling system (Ría de Vigo, NW Iberian Peninsula),
Estuar. Coast. Shelf Sci., 56, 271–279,
https://doi.org/10.1016/S0272-7714(02)00186-5, 2003a.
Gago, J., Alvarez-Salgado, X. A., Pérez, F. F., and Ríos, A. F.:
Partitioning of physical and biogeochemical contributions to short-term
variability of pCO2 in a coastal upwelling system a quantitative
approach, Mar. Ecol. Progr., 255, 43–54,
https://doi.org/10.3354/meps25504, 2003b.
Gago, J., Gilcoto, M., Pérez, F. F., and Ríos, A.F.: Short-term
variability of fCO2 in seawater and air-sea CO2 fluxes, Mar.
Chem., 80, 247–264, https://doi.org/10.1016/S0304-4203(02)00117-2,
2003c.
Gilcoto, M., Largier, J. L., Barton, E. D., Piedracoba, S., Torres, R.,
Graña, R., Alonso-Pérez, F., Villacieros-Robineau, N., and de la
Granda, F.: Rapid response to coastal upwelling in a semienclosed bay,
Geophys. Res. Lett., 44, 2388–2397, https://doi.org/10.1002/2016GL072416,
2017.
Gómez-Gesteira, M., Gimeno, L., deCastro, M., Lorenzo, M. N., Alvarez, I., Nieto, R., Taboada, J. J., Crespo, A. J. C., Ramos, A. M., Iglesias, I., Gómez-Gesteira, J. L., Santo, F. E., Barriopedro, D., and Trigo, I. F.: The state of climate in NW Iberia, Clim. Res., 48, 109–144, https://doi.org/10.3354/cr00967, 2011.
González-Pola, C., Lavín, A., and Vargas-Yáñez, M.: Intense
warming and salinity modification of intermediate water masses in the
southeastern corner of the Bay of Biscay for the period 1992–2003, J. Geophys. Res., 110, C05020, https://doi.org/10.1029/2004JC002367, 2005.
Grasshoff, K. and Johannsen, H.: A New Sensitive and Direct Method for the
Automatic Determination of Ammonia in Sea Water, ICES J. Mar.
Sci., 34, 516–521, https://doi.org/10.1093/icesjms/34.3.516, 1972.
Grasshoff, K., Ehrhardt, M., and Kremlin, K.: Methods of Seawater Analysis, 2nd. edn., Wiley-VCH Verlag, Weinheim, 419 pp., 1983.
Gruber, N., Hauri, C., Lachkar, Z., Loher, D., Frolicher, T. L., and
Plattner, G. K.: Rapid progression of ocean acidification in the California
Current System, Science, 337, 220–223, https://doi.org/10.1126/science.1216773, 2012.
Harvey, J.: θ-S relationship and water masses in the eastern North
Atlantic, Deep-Sea Res., 29, 1021–1033, 1982.
Hauri, C., Gruber, N., Plattner, G. K., Alin, S., Feely, R. A., Hales, B.,
and Wheeler, P. A.: Ocean acidification in the California Current System,
Oceanography, 22, 58–69, https://doi.org/10.5670/oceanog.2009.97, 2009.
Hauri, C., Gruber, N., Vogt, M., Doney, S. C., Feely, R. A., Lachkar, Z., Leinweber, A., McDonnell, A. M. P., Munnich, M., and Plattner, G.-K.: Spatiotemporal variability and long-term trends of ocean acidification in the California Current System, Biogeosciences, 10, 193–216, https://doi.org/10.5194/bg-10-193-2013, 2013.
Hofmann, G. E.: High-frequency dynamics of ocean pH: A multi-ecosystem
comparison, PLoS One, 6, e28983, https://doi.org/10.1371/journal.pone.0028983, 2011.
IPCC: Climate Change 2013: the physical science basis Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Stocker, T. F., Qin,
D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia,
Y., Bex, V., and Midgley, P. M., Cambridge: Cambridge
University Press, 1535 pp., 2013.
Lachkar, Z.: Effects of upwelling increase on ocean acidification in the
California and Canary Current systems, Geophys. Res. Lett., 41, 90–95,
https://doi.org/10.1002/2013GL058726, 2014.
Lassoued. J., Babarro, J., Padín, X. A., Comeau, L., Bejaoui, N., and
Pérez, F.: Behavioural and eco-physiological responses of the mussel
Mytilus galloprovincialis
to acidification and distinct feeding regimes, Mar. Ecol. Prog.
Ser., 626, 97–108, https://doi.org/10.3354/meps13075, 2019.
Lauvset, S. K. and Gruber, N.: Long-term trends in surface ocean pH in the
North
Atlantic, Mar. Chem., 162, 71–76,
https://doi.org/10.1016/j.marchem.2014.03.009, 2014.
Lauvset, S. K., Gruber, N., Landschützer, P., Olsen, A., and Tjiputra, J.: Trends and drivers in global surface ocean pH over the past 3 decades, Biogeosciences, 12, 1285–1298, https://doi.org/10.5194/bg-12-1285-2015, 2015.
Lemos, R. T. and Sansó, B.: Spatio-temporal variability of ocean
temperature in
the Portugal Current System, J. Geophys. Res., 111, C04010,
https://doi.org/10.1029/2005JC003051, 2006.
Lewis, E. and Wallace, D. W. R.: Program developed for CO2 system
calculations, ORNL/CDIAC-105, Carbon Dioxide Information Analysis Center,
Oak Ridge National Laboratory, Oak Ridge, TN, USA, 1998.
Lueker, T. J., Dickson, A. G., and Keeling, C. D.: Ocean pCO2
calculated from dissolved inorganic carbon, alkalinity, and equations for
K-1 and K-2: validation based on laboratory measurements of CO2 in gas
and seawater at equilibrium, Mar. Chem.,
70, 105–119, 2000.
McElhany, P. and Shallin Busch, D.: Appropriate pCO2 treatments in
ocean acidification experiments, Mar. Biol., 160, 1807–1812,
https://doi.org/10.1007/s00227-012-2052-0, 2013.
Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytlowicz, R. M.:
Measurements of the apparent dissociation constant of carbonic acid in
seawater at atmospheric pressure,
Limnol. Oceanogr., 18, 897–907, 1973.
Miguez, B. M., Fariña-Busto, L., Figueiras, F. G., and Pérez, F. F.:
Succession of phytoplankton assemblages in relation to estuarine
hdrodynamics in the Ria de Vigo, Scientia Marina, 65, 65–76,
https://doi.org/10.3989/scimar.2001.65s165, 2001.
Mouriño, C. and Fraga, F.: Determinación de nitratos en agua de
mar, Investigaciones Marinas, 49, 81–96, 1985.
Nieto-Cid, M., Alvarez-Salgado, X. A., Brea, S., and Pérez, F. F.:
Cycling of dissolved and particulate carbohydrates in a coastal upwelling
system (NW Iberian Peninsula), Mar. Ecol. Prog. Ser., 283, 39–54, https://doi.org/10.3354/meps283039, 2004.
Nieto-Cid, M., Alvarez-Salgado, X. A., and Pérez, F. F.: Microbial and
photochemical reactivity of fluorescent dissolved organic matter in a
coastal upwelling system, Limnol. Oceanogr., 51, 1391–1400, https://doi.org/10.4319/lo.2006.51.3.1391, 2006.
Nogueira, E., Pérez, F. F., and Ríos, A. F.: Seasonal and long-term
trends in an estuarine upwelling ecosystem (Ría de Vigo, NW Spain),
Estuarine, Coast. Shelf Sci., 44, 285–300, 1997.
Olsen, A., Lange, N., Key, R. M., Tanhua, T., Álvarez, M., Becker, S., Bittig, H. C., Carter, B. R., Cotrim da Cunha, L., Feely, R. A., van Heuven, S., Hoppema, M., Ishii, M., Jeansson, E., Jones, S. D., Jutterström, S., Karlsen, M. K., Kozyr, A., Lauvset, S. K., Lo Monaco, C., Murata, A., Pérez, F. F., Pfeil, B., Schirnick, C., Steinfeldt, R., Suzuki, T., Telszewski, M., Tilbrook, B., Velo, A., and Wanninkhof, R.: GLODAPv2.2019 – an update of GLODAPv2, Earth Syst. Sci. Data, 11, 1437–1461, https://doi.org/10.5194/essd-11-1437-2019, 2019.
Orr, F. M.: Onshore Geologic Storage of CO2, Science, 25,
1656–1658, https://doi.org/10.1126/science.1175677, 2009.
Otero, P., Ruiz-Villarreal, M., and Peliz, A.: Variability of river plumes
off Northwest Iberia in response to wind events, J. Mar. Syst.,
72, 238–255, 2008.
Padin X. A., Castro, C. G., Ríos, A. F., and Pérez, F. F.:Oceanic
CO2 uptake and biogeochemical variability during the formation of the
Eastern North Atlantic Central water under two contrasting NAO scenarios,
J. Mar. Syst., 84, 96–105,
https://doi.org/10.1016/j.jmarsys.2010.10.002, 2010.
Pauly, D. and Christensen, V.: Primary production required to sustain
global fisheries, Nature, 374, 255–257, 1995.
Pérez, F. F. and Fraga, F.: A precise and rapid analytical procedure
for alkalinity determination, Mar. Chem., 21, 169–182, 1987a.
Pérez, F. F. and Fraga, F.: The pH measurements in seawater on the NBS
scale, Mar. Chem., 21, 315–327, 1987b.
Pérez, F. F., Rios, A. F., and Rosón, G.: Sea surface carbon dioxide
off the Iberian Peninsula North Eastern Atlantic Ocean, J. Mar.
Syst., 19, 27–46, 1999.
Perez, F. F., Alvarez-Salgado, X. A., and Rosón, G.: Stoichiometry of the
net ecosystem metabolism in a coastal inlet affected by upwelling, The Rıa de H (NW Spain), Mar. Chem., 69, 217–236, 2000.
Pérez, F. F., Padin, X. A., Pazos, Y., Gilcoto, M., Cabanas, M., Pardo,
P. C., Doval, M., D., and Farina-Busto, L.: Plankton response to weakening
of the Iberian coastal upwelling, Glob. Change Biol., 16, 1258–1267,
2010.
Pérez, F. F., Velo, A., Padin, X. A., Doval, M. D., and Prego, R.: ARIOS
DATABASE: An Acidification Ocean Database for the Galician Upwelling
Ecosystem,
Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones
Cientificas (CSIC), https://doi.org/10.20350/digitalCSIC/12498, 2020.
Piedracoba, S., Alvarez-Salgado, X. A., Rosón G., and Herrera, J. L.:
Short timescale thermohaline variability and residual circulation in the
central segment of the coastal upwelling system of the Ría de Vigo
(northwest Spain) during four contrasting periods, J. Geophys. Res., 110, C03018,
https://doi.org/10.1029/2004JC002556, 2005.
Prego, R., Fraga, F., and Rios, A. F.: Water interchange between the Ria of
Vigo and the continental shelf, Sci. Mar., 54, 95–100, 1990.
Raven, J., Caldeira, K., Elderfield, H., Hoegh-Guldberg, O., Liss, P.,
Riebesell, U., Sphepherd, J., Turley, C., and Watson, A.: Ocean
acidification due to increasing atmospheric carbon dioxide: Royal Society
Policy Document 12/05, 68 pp., 2005.
Ríos, A. F. and Pérez, F. F.: Improvements in potentiometric determinations of the CO2 oceanic system using seawater sub-standards and CO2 reference materials, Ciencias Marinas, 25, 31–49, 1999.
Ríos, A. F., Pérez, F. F., and Fraga, F.: Water masses in the upper
and middle North Atlantic Ocean east of the Azores, Deep-Sea Res. Pt. I,
39, 645–658, 1992.
Ríos, A. F., Velo, A., and Pérez, F. F.: Long-term (1977–1997) measurements of carbon dioxide in the Eastern North Atlantic: evaluation of anthropogenic input, Deep-Sea Res. Pt. II, 48, 2227–2239, https://doi.org/10.1016/S0967-0645(00)00182-X, 2001.
Rosón, G., Pérez, F. F., Alvarez-Salgado, X. A., and Figueiras, F.
G.: Variation of both thermohaline and chemical properties in an estuarine
upwelling ecosystem -Ría de Arousa. 1. Time evolution, Estaur.
Coast. Shelf Sci., 41, 195–213, doi 10.1006/ecss.1995.0061,
1995.
Rosón, G., Cabanas, J. M., Pérez, F. F., Herrera, J. L.,
Ruiz-Villarreal, M., Castro, C. G., Piedracoba, S., and Álvarez-Salgado,
X. A.: Evidencias do cambio climático na Hidrografía e a
dinámica das Rías e da plataforma galega, Edita: Xunta de Galicia.
Consellería de Medio Ambiente e Desenvolvemento Sostible, Evidencias e
impactos do cambio climático en Galicia, 287–302, 2009.
Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J.
L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero,
F. J., Peng, T.-H., Kozyr, A., Ono, T., and Rios, A. F.: The oceanic sink
for anthropogenic CO2, Science 305, 367–371, 2004.
Sarmiento, J. L. and Gruber, N.: Ocean biogeochemical dynamics, Princeton
Univ. Press, 2006.
SCOR-UNESCO: Determination of Photosynthetic Pigments in Seawater, UNESCO,
Paris, 1966.
Souto, C., Gilcoto, M., Fariña-Busto, L., and Pérez, F. F.: Modeling
the residual circulation of a coastal embayment affected by wind-driven
upwelling: Circulation of the Ria de Vigo (NW Spain), J. Geophys.
Res.-Ocean., 108, 3340, https://doi.org/10.1029/2002JC001512, 2003.
Strickland, J. D. H. and Parsons, T. R.: A practical handbook of seawater
analysis, Fisheries Research Board of Canada, Ottawa, Ontario, 1972.
Takeshita, Y., Frieder, C. A., Martz, T. R., Ballard, J. R., Feely, R. A., Kram, S., Nam, S., Navarro, M. O., Price, N. N., and Smith, J. E.: Including high-frequency variability in coastal ocean acidification projections, Biogeosciences, 12, 5853–5870, https://doi.org/10.5194/bg-12-5853-2015, 2015.
Teira, E., Martínez-García, S., Lonborg, C., and
Álvarez-Salgado, X. A.: Growth rates of different phylogenetic
bacterioplankton groups in a coastal upwelling system, Environ.
Microbiol. Rep., 1, 545–554,
https://doi.org/10.1111/j.1758-2229.2009.00079.x, 2009.
UNESCO: Background papers and supporting data on the Practical Salinity
Scale 1978, UNESCO Tech. Papers in Marine Science, 37, 144 pp., 1981.
Uppström, L. R.: Boron = Chlorinity ratio of deep-sea water from
Pacific Ocean, Deep-Sea Res., 21, 161–162, 1974.
Van Heuven, S., Pierrot, D., Rae, J. W. B., Lewis, E., and Wallace, D. W. R.: MATLAB
Program Developed for CO2 System Calculations, ORNL/CDIAC-105b. Carbon
Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S.
Department of Energy, Oak Ridge, Tennessee, 2011.
Velo, A., Pérez, F. F., Lin, X., Key, R. M., Tanhua, T., de la Paz, M., Olsen, A., van Heuven, S., Jutterström, S., and Ríos, A. F.: CARINA data synthesis project: pH data scale unification and cruise adjustments, Earth Syst. Sci. Data, 2, 133–155, https://doi.org/10.5194/essd-2-133-2010, 2010.
Velo, A., Cacabelos, J., Pérez, F. F., and Ríos, A.F.: GO-SHIP Software
and Manuals: Software packages and best practice manuals and knowledge
transfer for sustained quality control of hydrographic sections in the
Atlantic. (Version v1.0.0), Zenodo, https://doi.org/10.5281/zenodo.2603122,
2019.
Villacieros-Robineau, N., Zúñiga, D., Barreiro-González, B.,
Alonso-Pérez, F.,
de la Granda, F., and Froján, M.: Bottom boundary layer and particle
dynamics in an upwelling affected continental margin (NW Iberia), J.
Geophys. Res.-Oceans, 124, 9531–9552, https://doi.org/10.1029/2019JC015619,
2019.
Wahl, M., Saderne, V., and Sawall, Y.: How good are we at assessing the
impact of ocean acidification in coastal systems? Limitations, omissions and
strengths of commonly used experimental approaches with special emphasis on
the neglected role of fluctuations, Mar. Freshw. Res., 67, 25–36,
https://doi.org/10.1071/MF14154, 2016.
Wolf-Gladrow, D. A., Riebesell, U., Burkhardt, S., and Bijma, J.: Direct
effects of CO2 concentration on growth and isotopic composition of
marine plankton, Tellus, 51B, 461–476, 1999.
Wooster, W. S., Bakun, A., and McClain, D. R.: The seasonal upwelling cycle
along the eastern boundary of the North Atlantic, J. Mar.
Res., 34, 131–141, 1976.
Yentsch, C. S. and Menzel, D. W.: A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence, Deep-Sea Res., 10, 221–231, 1963.
Zúñiga, D., Villacieros-Robineau, N., Salgueiro, E.,
Alonso-Pérez, F., Rosón, G., Abrantes, F., and Castro, C. G.:
Particle fluxes in the NW Iberian coastal upwelling system: Hydrodynamical
and biological control, Cont. Shelf Res., 123, 89–98,
https://doi.org/10.1016/j.csr.2016.04.008, 2016.
Zúñiga, D., Santos, C., Froján, M., Salgueiro, E., Rufino, M. M., De la Granda, F., Figueiras, F. G., Castro, C. G., and Abrantes, F.: Diatoms as a paleoproductivity proxy in the NW Iberian coastal upwelling system (NE Atlantic), Biogeosciences, 14, 1165–1179, https://doi.org/10.5194/bg-14-1165-2017, 2017.
Short summary
The ARIOS (Acidification in the Rias and the Iberian Continental Shelf) database holds biogeochemical information from 3357 oceanographic stations, giving 17 653 discrete samples. This unique collection is a starting point for evaluating ocean acidification in the Iberian upwelling system, characterized by intense biogeochemical interactions as an observation-based analysis, or for use as inputs in a coupled physical–biogeochemical model to disentangle these interactions at the ecosystem level.
The ARIOS (Acidification in the Rias and the Iberian Continental Shelf) database holds...
Altmetrics
Final-revised paper
Preprint