Articles | Volume 12, issue 3
Earth Syst. Sci. Data, 12, 2075–2096, 2020
https://doi.org/10.5194/essd-12-2075-2020
Earth Syst. Sci. Data, 12, 2075–2096, 2020
https://doi.org/10.5194/essd-12-2075-2020
Data description paper
08 Sep 2020
Data description paper | 08 Sep 2020

CAMELS-BR: hydrometeorological time series and landscape attributes for 897 catchments in Brazil

Vinícius B. P. Chagas et al.

Related authors

A combined use of in situ and satellite-derived observations to characterize surface hydrology and its variability in the Congo River basin
Benjamin Kitambo, Fabrice Papa, Adrien Paris, Raphael M. Tshimanga, Stephane Calmant, Ayan Santos Fleischmann, Frederic Frappart, Melanie Becker, Mohammad J. Tourian, Catherine Prigent, and Johary Andriambeloson
Hydrol. Earth Syst. Sci., 26, 1857–1882, https://doi.org/10.5194/hess-26-1857-2022,https://doi.org/10.5194/hess-26-1857-2022, 2022
Short summary
Projected changes in droughts and extreme droughts in Great Britain strongly influenced by the choice of drought index
Nele Reyniers, Timothy J. Osborn, Nans Addor, and Geoff Darch
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-94,https://doi.org/10.5194/hess-2022-94, 2022
Revised manuscript under review for HESS
Short summary
Teaching climate risk for water planning: a pilot training for tertiary students and practitioners in Brazil
Pablo Borges de Amorim and Pedro Luiz Borges Chaffe
Geosci. Commun., 4, 527–554, https://doi.org/10.5194/gc-4-527-2021,https://doi.org/10.5194/gc-4-527-2021, 2021
Short summary
Identifying sensitivities in flood frequency analyses using a stochastic hydrologic modeling system
Andrew J. Newman, Amanda G. Stone, Manabendra Saharia, Kathleen D. Holman, Nans Addor, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 25, 5603–5621, https://doi.org/10.5194/hess-25-5603-2021,https://doi.org/10.5194/hess-25-5603-2021, 2021
Short summary
Numerical daemons of hydrological models are summoned by extreme precipitation
Peter T. La Follette, Adriaan J. Teuling, Nans Addor, Martyn Clark, Koen Jansen, and Lieke A. Melsen
Hydrol. Earth Syst. Sci., 25, 5425–5446, https://doi.org/10.5194/hess-25-5425-2021,https://doi.org/10.5194/hess-25-5425-2021, 2021
Short summary

Related subject area

Hydrology
Downscaled hyper-resolution (400 m) gridded datasets of daily precipitation and temperature (2008–2019) for the East–Taylor subbasin (western United States)
Utkarsh Mital, Dipankar Dwivedi, James B. Brown, and Carl I. Steefel
Earth Syst. Sci. Data, 14, 4949–4966, https://doi.org/10.5194/essd-14-4949-2022,https://doi.org/10.5194/essd-14-4949-2022, 2022
Short summary
HRLT: a high-resolution (1 d, 1 km) and long-term (1961–2019) gridded dataset for surface temperature and precipitation across China
Rongzhu Qin, Zeyu Zhao, Jia Xu, Jian-Sheng Ye, Feng-Min Li, and Feng Zhang
Earth Syst. Sci. Data, 14, 4793–4810, https://doi.org/10.5194/essd-14-4793-2022,https://doi.org/10.5194/essd-14-4793-2022, 2022
Short summary
The Surface Water Chemistry (SWatCh) database: a standardized global database of water chemistry to facilitate large-sample hydrological research
Lobke Rotteveel, Franz Heubach, and Shannon M. Sterling
Earth Syst. Sci. Data, 14, 4667–4680, https://doi.org/10.5194/essd-14-4667-2022,https://doi.org/10.5194/essd-14-4667-2022, 2022
Short summary
Hydrography90m: a new high-resolution global hydrographic dataset
Giuseppe Amatulli, Jaime Garcia Marquez, Tushar Sethi, Jens Kiesel, Afroditi Grigoropoulou, Maria M. Üblacker, Longzhu Q. Shen, and Sami Domisch
Earth Syst. Sci. Data, 14, 4525–4550, https://doi.org/10.5194/essd-14-4525-2022,https://doi.org/10.5194/essd-14-4525-2022, 2022
Short summary
GLOBMAP SWF: a global annual surface water cover frequency dataset during 2000–2020
Yang Liu, Ronggao Liu, and Rong Shang
Earth Syst. Sci. Data, 14, 4505–4523, https://doi.org/10.5194/essd-14-4505-2022,https://doi.org/10.5194/essd-14-4505-2022, 2022
Short summary

Cited articles

Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017. 
Addor, N., Do, H. X., Alvarez-Garreton, C., Coxon, G., Fowler, K., and Mendoza, P. A.: Large-sample hydrology: recent progress, guidelines for new datasets and grand challenges, Hydrolog. Sci. J., 1–14, https://doi.org/10.1080/02626667.2019.1683182, 2019. 
Alfieri, L., Lorini, V., Hirpa, F. A., Harrigan, S., Zsoter, E., Prudhomme, C., and Salamon, P.: A global streamflow reanalysis for 1980–2018, J. Hydrol., 6, 100049, https://doi.org/10.1016/j.hydroa.2019.100049, 2020. 
Alvarez-Garreton, C., Mendoza, P. A., Boisier, J. P., Addor, N., Galleguillos, M., Zambrano-Bigiarini, M., Lara, A., Puelma, C., Cortes, G., Garreaud, R., McPhee, J., and Ayala, A.: The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset, Hydrol. Earth Syst. Sci., 22, 5817–5846, https://doi.org/10.5194/hess-22-5817-2018, 2018. 
ANA – Brazilian National Water Agency: Relatorio de Seguranca de Barragens 2017, 2018. 
Download
Short summary
We present a new dataset for large-sample hydrological studies in Brazil. The dataset encompasses daily observed streamflow from 3679 gauges, as well as meteorological forcing for 897 selected catchments. It also includes 65 attributes covering topographic, climatic, hydrologic, land cover, geologic, soil, and human intervention variables. CAMELS-BR is publicly available and will enable new insights into the hydrological behavior of catchments in Brazil.