Articles | Volume 12, issue 3
https://doi.org/10.5194/essd-12-2075-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-12-2075-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
CAMELS-BR: hydrometeorological time series and landscape attributes for 897 catchments in Brazil
Vinícius B. P. Chagas
Department of Sanitary and Environmental Engineering, Graduate Program
of Environmental Engineering, Federal University of Santa Catarina–UFSC,
Florianopolis, Brazil
Department of Sanitary and Environmental Engineering, Federal
University of Santa Catarina–UFSC, Florianopolis, Brazil
Nans Addor
Department of Geography, College of Life and Environmental Sciences, University of
Exeter, Exeter, UK
Fernando M. Fan
Hydraulic Research Institute, Federal University of Rio Grande do
Sul-UFRGS, Porto Alegre, Brazil
Ayan S. Fleischmann
Hydraulic Research Institute, Federal University of Rio Grande do
Sul-UFRGS, Porto Alegre, Brazil
Rodrigo C. D. Paiva
Hydraulic Research Institute, Federal University of Rio Grande do
Sul-UFRGS, Porto Alegre, Brazil
Vinícius A. Siqueira
Hydraulic Research Institute, Federal University of Rio Grande do
Sul-UFRGS, Porto Alegre, Brazil
Related authors
No articles found.
Olivier Delaigue, Guilherme Mendoza Guimarães, Pierre Brigode, Benoît Génot, Charles Perrin, Jean-Michel Soubeyroux, Bruno Janet, Nans Addor, and Vazken Andréassian
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-415, https://doi.org/10.5194/essd-2024-415, 2024
Preprint under review for ESSD
Short summary
Short summary
This dataset covers 654 rivers all flowing in France. The provided time series and catchment attributes will be of interest to those modelers wishing to analyse hydrological behavior, perform model assessments.
Claudia Färber, Henning Plessow, Simon Mischel, Frederik Kratzert, Nans Addor, Guy Shalev, and Ulrich Looser
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-427, https://doi.org/10.5194/essd-2024-427, 2024
Preprint under review for ESSD
Short summary
Short summary
Large-sample datasets are essential in hydrological science to support modelling studies and advance process understanding. Caravan is a community initiative to create a large-sample hydrology dataset of meteorological forcing data, catchment attributes, and discharge data for catchments around the world. This dataset is a subset of hydrological discharge data and station-based watersheds from the Global Runoff Data Centre (GRDC), which are covered by an open data policy.
Nele Reyniers, Qianyu Zha, Nans Addor, Timothy J. Osborn, Nicole Forstenhäusler, and Yi He
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-132, https://doi.org/10.5194/essd-2024-132, 2024
Preprint under review for ESSD
Short summary
Short summary
We present two sets of bias-corrected UK Climate Projections 2018 (UKCP18) regional projections of temperature, precipitation and potential evapotranspiration for 1981–2080. All 12 members of the UKCP18 regional ensemble were bias-corrected using (1) empirical quantile mapping and (2) a change-preserving variant. The two methods were evaluated and compared to guide dataset application. The datasets improve the usability of UKCP18 and serve as a reference for selecting bias correction methods.
Marvin Höge, Martina Kauzlaric, Rosi Siber, Ursula Schönenberger, Pascal Horton, Jan Schwanbeck, Marius Günter Floriancic, Daniel Viviroli, Sibylle Wilhelm, Anna E. Sikorska-Senoner, Nans Addor, Manuela Brunner, Sandra Pool, Massimiliano Zappa, and Fabrizio Fenicia
Earth Syst. Sci. Data, 15, 5755–5784, https://doi.org/10.5194/essd-15-5755-2023, https://doi.org/10.5194/essd-15-5755-2023, 2023
Short summary
Short summary
CAMELS-CH is an open large-sample hydro-meteorological data set that covers 331 catchments in hydrologic Switzerland from 1 January 1981 to 31 December 2020. It comprises (a) daily data of river discharge and water level as well as meteorologic variables like precipitation and temperature; (b) yearly glacier and land cover data; (c) static attributes of, e.g, topography or human impact; and (d) catchment delineations. CAMELS-CH enables water and climate research and modeling at catchment level.
Benjamin M. Kitambo, Fabrice Papa, Adrien Paris, Raphael M. Tshimanga, Frederic Frappart, Stephane Calmant, Omid Elmi, Ayan Santos Fleischmann, Melanie Becker, Mohammad J. Tourian, Rômulo A. Jucá Oliveira, and Sly Wongchuig
Earth Syst. Sci. Data, 15, 2957–2982, https://doi.org/10.5194/essd-15-2957-2023, https://doi.org/10.5194/essd-15-2957-2023, 2023
Short summary
Short summary
The surface water storage (SWS) in the Congo River basin (CB) remains unknown. In this study, the multi-satellite and hypsometric curve approaches are used to estimate SWS in the CB over 1992–2015. The results provide monthly SWS characterized by strong variability with an annual mean amplitude of ~101 ± 23 km3. The evaluation of SWS against independent datasets performed well. This SWS dataset contributes to the better understanding of the Congo basin’s surface hydrology using remote sensing.
Nele Reyniers, Timothy J. Osborn, Nans Addor, and Geoff Darch
Hydrol. Earth Syst. Sci., 27, 1151–1171, https://doi.org/10.5194/hess-27-1151-2023, https://doi.org/10.5194/hess-27-1151-2023, 2023
Short summary
Short summary
In an analysis of future drought projections for Great Britain based on the Standardised Precipitation Index and the Standardised Precipitation Evapotranspiration Index, we show that the choice of drought indicator has a decisive influence on the resulting projected changes in drought characteristics, although both result in increased drying. This highlights the need to understand the interplay between increasing atmospheric evaporative demand and drought impacts under a changing climate.
Benjamin Kitambo, Fabrice Papa, Adrien Paris, Raphael M. Tshimanga, Stephane Calmant, Ayan Santos Fleischmann, Frederic Frappart, Melanie Becker, Mohammad J. Tourian, Catherine Prigent, and Johary Andriambeloson
Hydrol. Earth Syst. Sci., 26, 1857–1882, https://doi.org/10.5194/hess-26-1857-2022, https://doi.org/10.5194/hess-26-1857-2022, 2022
Short summary
Short summary
This study presents a better characterization of surface hydrology variability in the Congo River basin, the second largest river system in the world. We jointly use a large record of in situ and satellite-derived observations to monitor the spatial distribution and different timings of the Congo River basin's annual flood dynamic, including its peculiar bimodal pattern.
Pablo Borges de Amorim and Pedro Luiz Borges Chaffe
Geosci. Commun., 4, 527–554, https://doi.org/10.5194/gc-4-527-2021, https://doi.org/10.5194/gc-4-527-2021, 2021
Short summary
Short summary
Climate change is one of the major challenges of our society, and therefore we present a climate risk training for tertiary students and practitioners. The training uses a hands-on method and was tested with five independent groups in Brazil. We find that the application of a mapping exercise supports learning about climate risk, as well as the development of problem-solving skills. The proposed training enables the teaching of climate risk in stand-alone courses and professional development.
Andrew J. Newman, Amanda G. Stone, Manabendra Saharia, Kathleen D. Holman, Nans Addor, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 25, 5603–5621, https://doi.org/10.5194/hess-25-5603-2021, https://doi.org/10.5194/hess-25-5603-2021, 2021
Short summary
Short summary
This study assesses methods that estimate flood return periods to identify when we would obtain a large flood return estimate change if the method or input data were changed (sensitivities). We include an examination of multiple flood-generating models, which is a novel addition to the flood estimation literature. We highlight the need to select appropriate flood models for the study watershed. These results will help operational water agencies develop more robust risk assessments.
Peter T. La Follette, Adriaan J. Teuling, Nans Addor, Martyn Clark, Koen Jansen, and Lieke A. Melsen
Hydrol. Earth Syst. Sci., 25, 5425–5446, https://doi.org/10.5194/hess-25-5425-2021, https://doi.org/10.5194/hess-25-5425-2021, 2021
Short summary
Short summary
Hydrological models are useful tools that allow us to predict distributions and movement of water. A variety of numerical methods are used by these models. We demonstrate which numerical methods yield large errors when subject to extreme precipitation. As the climate is changing such that extreme precipitation is more common, we find that some numerical methods are better suited for use in hydrological models. Also, we find that many current hydrological models use relatively inaccurate methods.
John P. Bloomfield, Mengyi Gong, Benjamin P. Marchant, Gemma Coxon, and Nans Addor
Hydrol. Earth Syst. Sci., 25, 5355–5379, https://doi.org/10.5194/hess-25-5355-2021, https://doi.org/10.5194/hess-25-5355-2021, 2021
Short summary
Short summary
Groundwater provides flow, known as baseflow, to surface streams and rivers. It is important as it sustains the flow of many rivers at times of water stress. However, it may be affected by water management practices. Statistical models have been used to show that abstraction of groundwater may influence baseflow. Consequently, it is recommended that information on groundwater abstraction is included in future assessments and predictions of baseflow.
Keirnan J. A. Fowler, Suwash Chandra Acharya, Nans Addor, Chihchung Chou, and Murray C. Peel
Earth Syst. Sci. Data, 13, 3847–3867, https://doi.org/10.5194/essd-13-3847-2021, https://doi.org/10.5194/essd-13-3847-2021, 2021
Short summary
Short summary
This paper presents the Australian edition of the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) series of datasets. CAMELS-AUS comprises data for 222 unregulated catchments with long-term monitoring, combining hydrometeorological time series (streamflow and 18 climatic variables) with 134 attributes related to geology, soil, topography, land cover, anthropogenic influence and hydroclimatology. It is freely downloadable from https://doi.pangaea.de/10.1594/PANGAEA.921850.
Peter Uhe, Daniel Mitchell, Paul D. Bates, Nans Addor, Jeff Neal, and Hylke E. Beck
Geosci. Model Dev., 14, 4865–4890, https://doi.org/10.5194/gmd-14-4865-2021, https://doi.org/10.5194/gmd-14-4865-2021, 2021
Short summary
Short summary
We present a cascade of models to compute high-resolution river flooding. This takes meteorological inputs, e.g., rainfall and temperature from observations or climate models, and takes them through a series of modeling steps. This is relevant to evaluating current day and future flood risk and impacts. The model framework uses global data sets, allowing it to be applied anywhere in the world.
Gemma Coxon, Nans Addor, John P. Bloomfield, Jim Freer, Matt Fry, Jamie Hannaford, Nicholas J. K. Howden, Rosanna Lane, Melinda Lewis, Emma L. Robinson, Thorsten Wagener, and Ross Woods
Earth Syst. Sci. Data, 12, 2459–2483, https://doi.org/10.5194/essd-12-2459-2020, https://doi.org/10.5194/essd-12-2459-2020, 2020
Short summary
Short summary
We present the first large-sample catchment hydrology dataset for Great Britain. The dataset collates river flows, catchment attributes, and catchment boundaries for 671 catchments across Great Britain. We characterise the topography, climate, streamflow, land cover, soils, hydrogeology, human influence, and discharge uncertainty of each catchment. The dataset is publicly available for the community to use in a wide range of environmental and modelling analyses.
Kirsti Hakala, Nans Addor, Thibault Gobbe, Johann Ruffieux, and Jan Seibert
Hydrol. Earth Syst. Sci., 24, 3815–3833, https://doi.org/10.5194/hess-24-3815-2020, https://doi.org/10.5194/hess-24-3815-2020, 2020
Short summary
Short summary
Under a changing climate, reliable information on future hydrological conditions is necessary to inform water resource management. Here, we collaborated with a hydropower company that selected streamflow and energy demand indices. Using these indices, we identified stakeholder needs and used this to tailor the production of our climate change impact projections. We show that opportunities and risks for a hydropower company depend on a range of factors beyond those covered by traditional studies.
Camila Alvarez-Garreton, Pablo A. Mendoza, Juan Pablo Boisier, Nans Addor, Mauricio Galleguillos, Mauricio Zambrano-Bigiarini, Antonio Lara, Cristóbal Puelma, Gonzalo Cortes, Rene Garreaud, James McPhee, and Alvaro Ayala
Hydrol. Earth Syst. Sci., 22, 5817–5846, https://doi.org/10.5194/hess-22-5817-2018, https://doi.org/10.5194/hess-22-5817-2018, 2018
Short summary
Short summary
CAMELS-CL provides a catchment dataset in Chile, including 516 catchment boundaries, hydro-meteorological time series, and 70 catchment attributes quantifying catchments' climatic, hydrological, topographic, geological, land cover and anthropic intervention features. By using CAMELS-CL, we characterise hydro-climatic regional variations, assess precipitation and potential evapotranspiration uncertainties, and analyse human intervention impacts on catchment response.
Vinícius A. Siqueira, Rodrigo C. D. Paiva, Ayan S. Fleischmann, Fernando M. Fan, Anderson L. Ruhoff, Paulo R. M. Pontes, Adrien Paris, Stéphane Calmant, and Walter Collischonn
Hydrol. Earth Syst. Sci., 22, 4815–4842, https://doi.org/10.5194/hess-22-4815-2018, https://doi.org/10.5194/hess-22-4815-2018, 2018
Short summary
Short summary
Providing reliable estimates of water fluxes at the continental scale is challenging. We extended a regional hydrological model to the entirety of South America and assessed its performance using multiple observations. After a comparison with global models, we show the extent to which estimates of daily river discharge can be improved, even by using global forcing data. Issues of global-/continental-scale modeling and future directions for simulating discharge in this continent are discussed.
Lieke A. Melsen, Nans Addor, Naoki Mizukami, Andrew J. Newman, Paul J. J. F. Torfs, Martyn P. Clark, Remko Uijlenhoet, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 22, 1775–1791, https://doi.org/10.5194/hess-22-1775-2018, https://doi.org/10.5194/hess-22-1775-2018, 2018
Short summary
Short summary
Long-term hydrological predictions are important for water management planning, but are also prone to uncertainty. This study investigates three sources of uncertainty for long-term hydrological predictions in the US: climate models, hydrological models, and hydrological model parameters. Mapping the results revealed spatial patterns in the three sources of uncertainty: different sources of uncertainty dominate in different regions.
Nans Addor, Andrew J. Newman, Naoki Mizukami, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, https://doi.org/10.5194/hess-21-5293-2017, 2017
Short summary
Short summary
We introduce a data set describing the landscape of 671 catchments in the contiguous USA: we synthesized various data sources to characterize the topography, climate, streamflow, land cover, soil, and geology of each catchment. This extends the daily time series of meteorological forcing and discharge provided by an earlier study. The diversity of these catchments will help to improve our understanding and modeling of how the interplay between catchment attributes shapes hydrological processes.
R. C. D. Paiva, W. Collischonn, M.-P. Bonnet, L. G. G. de Gonçalves, S. Calmant, A. Getirana, and J. Santos da Silva
Hydrol. Earth Syst. Sci., 17, 2929–2946, https://doi.org/10.5194/hess-17-2929-2013, https://doi.org/10.5194/hess-17-2929-2013, 2013
Related subject area
Hydrology
CAMELS-DE: hydro-meteorological time series and attributes for 1582 catchments in Germany
Observational partitioning of water and CO2 fluxes at National Ecological Observatory Network (NEON) sites: a 5-year dataset of soil and plant components for spatial and temporal analysis
CIrrMap250: annual maps of China's irrigated cropland from 2000 to 2020 developed through multisource data integration
HANZE v2.1: an improved database of flood impacts in Europe from 1870 to 2020
A Copernicus-based evapotranspiration dataset at 100 m spatial resolution over four Mediterranean basins
Gridded dataset of nitrogen and phosphorus point sources from wastewater in Germany (1950–2019)
High-resolution hydrometeorological and snow data for the Dischma catchment in Switzerland
A globally sampled high-resolution hand-labeled validation dataset for evaluating surface water extent maps
CAMELS-INDIA: hydrometeorological time series and catchment attributes for 472 catchments in Peninsular India
Satellite-based near-real-time global daily terrestrial evapotranspiration estimates
Multivariate characterisation of a blackberry–alder agroforestry system in South Africa: hydrological, pedological, dendrological and meteorological measurements
SHIFT: a spatial-heterogeneity improvement in DEM-based mapping of global geomorphic floodplains
First comprehensive stable isotope dataset of diverse water units in a permafrost-dominated catchment on the Qinghai–Tibet Plateau
Lena River biogeochemistry captured by a 4.5-year high-frequency sampling program
LamaH-Ice: LArge-SaMple DAta for Hydrology and Environmental Sciences for Iceland
High-resolution mapping of monthly industrial water withdrawal in China from 1965 to 2020
Evapotranspiration evaluation using three different protocols on a large green roof in the greater Paris area
Simbi: historical hydro-meteorological time series and signatures for 24 catchments in Haiti
CAMELE: Collocation-Analyzed Multi-source Ensembled Land Evapotranspiration Data
A hydrogeomorphic dataset for characterizing catchment hydrological behavior across the Tibetan Plateau
A synthesis of Global Streamflow Characteristics, Hydrometeorology, and Catchment Attributes (GSHA) for large sample river-centric studies
FOCA: a new quality-controlled database of floods and catchment descriptors in Italy
Dams in the Mekong: a comprehensive database, spatiotemporal distribution, and hydropower potentials
A global dataset of the shape of drainage systems
An extensive spatiotemporal water quality dataset covering four decades (1980–2022) in China
HERA: a high-resolution pan-European hydrological reanalysis (1950–2020)
BCUB - A large sample ungauged basin attribute dataset for British Columbia, Canada
Flood simulation with the RiverCure approach: the open dataset of the 2016 Águeda flood event
GloLakes: water storage dynamics for 27 000 lakes globally from 1984 to present derived from satellite altimetry and optical imaging
AltiMaP: altimetry mapping procedure for hydrography data
CAMELS-CH: hydro-meteorological time series and landscape attributes for 331 catchments in hydrologic Switzerland
The use of GRDC gauging stations for calibrating large-scale hydrological models
A long-term dataset of simulated epilimnion and hypolimnion temperatures in 401 French lakes (1959–2020)
GTWS-MLrec: global terrestrial water storage reconstruction by machine learning from 1940 to present
A global 5 km monthly potential evapotranspiration dataset (1982–2015) estimated by the Shuttleworth–Wallace model
A gridded dataset of consumptive water footprints, evaporation, transpiration, and associated benchmarks related to crop production in China during 2000–2018
Hydro-PE: gridded datasets of historical and future Penman–Monteith potential evaporation for the United Kingdom
A global streamflow indices time series dataset for large-sample hydrological analyses on streamflow regime (until 2022)
Soil water retention and hydraulic conductivity measured in a wide saturation range
A high-frequency, long-term data set of hydrology and sediment yield: the alpine badland catchments of Draix-Bléone Observatory
Geospatial dataset for hydrologic analyses in India (GHI): a quality-controlled dataset on river gauges, catchment boundaries and hydrometeorological time series
Lake-TopoCat: a global lake drainage topology and catchment database
Three years of soil moisture observations by a dense cosmic-ray neutron sensing cluster at an agricultural research site in north-east Germany
A long-term monthly surface water storage dataset for the Congo basin from 1992 to 2015
A global database of historic glacier lake outburst floods
Past and future discharge and stream temperature at high spatial resolution in a large European basin (Loire basin, France)
Res-CN (Reservoir dataset in China): hydrometeorological time series and landscape attributes across 3254 Chinese reservoirs
An ensemble of 48 physically perturbed model estimates of the 1∕8° terrestrial water budget over the conterminous United States, 1980–2015
The UKSCAPE-G2G river flow and soil moisture datasets: Grid-to-Grid model estimates for the UK for historical and potential future climates
The enhanced future Flows and Groundwater dataset: development and evaluation of nationally consistent hydrological projections based on UKCP18
Ralf Loritz, Alexander Dolich, Eduardo Acuña Espinoza, Pia Ebeling, Björn Guse, Jonas Götte, Sibylle K. Hassler, Corina Hauffe, Ingo Heidbüchel, Jens Kiesel, Mirko Mälicke, Hannes Müller-Thomy, Michael Stölzle, and Larisa Tarasova
Earth Syst. Sci. Data, 16, 5625–5642, https://doi.org/10.5194/essd-16-5625-2024, https://doi.org/10.5194/essd-16-5625-2024, 2024
Short summary
Short summary
The CAMELS-DE dataset features data from 1582 streamflow gauges across Germany, with records spanning from 1951 to 2020. This comprehensive dataset, which includes time series of up to 70 years (median 46 years), enables advanced research on water flow and environmental trends and supports the development of hydrological models.
Einara Zahn and Elie Bou-Zeid
Earth Syst. Sci. Data, 16, 5603–5624, https://doi.org/10.5194/essd-16-5603-2024, https://doi.org/10.5194/essd-16-5603-2024, 2024
Short summary
Short summary
Quantifying water and CO2 exchanges through transpiration, evaporation, net photosynthesis, and soil respiration is essential for understanding how ecosystems function. We implemented five methods to estimate these fluxes over a 5-year period across 47 sites. This is the first dataset representing such large spatial and temporal coverage of soil and plant exchanges, and it has many potential applications, such as examining the response of ecosystems to weather extremes and climate change.
Ling Zhang, Yanhua Xie, Xiufang Zhu, Qimin Ma, and Luca Brocca
Earth Syst. Sci. Data, 16, 5207–5226, https://doi.org/10.5194/essd-16-5207-2024, https://doi.org/10.5194/essd-16-5207-2024, 2024
Short summary
Short summary
This study presented new annual maps of irrigated cropland in China from 2000 to 2020 (CIrrMap250). These maps were developed by integrating remote sensing data, irrigation statistics and surveys, and an irrigation suitability map. CIrrMap250 achieved high accuracy and outperformed currently available products. The new irrigation maps revealed a clear expansion of China’s irrigation area, with the majority (61%) occurring in the water-unsustainable regions facing severe to extreme water stress.
Dominik Paprotny, Paweł Terefenko, and Jakub Śledziowski
Earth Syst. Sci. Data, 16, 5145–5170, https://doi.org/10.5194/essd-16-5145-2024, https://doi.org/10.5194/essd-16-5145-2024, 2024
Short summary
Short summary
Knowledge about past natural disasters can help adaptation to their future occurrences. Here, we present a dataset of 2521 riverine, pluvial, coastal, and compound floods that have occurred in 42 European countries between 1870 and 2020. The dataset contains available information on the inundated area, fatalities, persons affected, or economic loss and was obtained by extensive data collection from more than 800 sources ranging from news reports through government databases to scientific papers.
Paulina Bartkowiak, Bartolomeo Ventura, Alexander Jacob, and Mariapina Castelli
Earth Syst. Sci. Data, 16, 4709–4734, https://doi.org/10.5194/essd-16-4709-2024, https://doi.org/10.5194/essd-16-4709-2024, 2024
Short summary
Short summary
This paper presents the Two-Source Energy Balance evapotranspiration (ET) product driven by Copernicus Sentinel-2 and Sentinel-3 imagery together with ERA5 climate reanalysis data. Daily ET maps are available at 100 m spatial resolution for the period 2017–2021 across four Mediterranean basins: Ebro (Spain), Hérault (France), Medjerda (Tunisia), and Po (Italy). The product is highly beneficial for supporting vegetation monitoring and sustainable water management at the river basin scale.
Fanny J. Sarrazin, Sabine Attinger, and Rohini Kumar
Earth Syst. Sci. Data, 16, 4673–4708, https://doi.org/10.5194/essd-16-4673-2024, https://doi.org/10.5194/essd-16-4673-2024, 2024
Short summary
Short summary
Nitrogen (N) and phosphorus (P) contamination of water bodies is a long-term issue due to the long history of N and P inputs to the environment and their persistence. Here, we introduce a long-term and high-resolution dataset of N and P inputs from wastewater (point sources) for Germany, combining data from different sources and conceptual understanding. We also account for uncertainties in modelling choices, thus facilitating robust long-term and large-scale water quality studies.
Jan Magnusson, Yves Bühler, Louis Quéno, Bertrand Cluzet, Giulia Mazzotti, Clare Webster, Rebecca Mott, and Tobias Jonas
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-374, https://doi.org/10.5194/essd-2024-374, 2024
Preprint under review for ESSD
Short summary
Short summary
In this study, we present a dataset for the Dischma catchment in eastern Switzerland, which represents a typical high-alpine watershed in the European Alps. Accurate monitoring and reliable forecasting of snow and water resources in such basins are crucial for a wide range of applications. Our dataset is valuable for improving physics-based snow, land-surface, and hydrological models, with potential applications in similar high-alpine catchments.
Rohit Mukherjee, Frederick Policelli, Ruixue Wang, Elise Arellano-Thompson, Beth Tellman, Prashanti Sharma, Zhijie Zhang, and Jonathan Giezendanner
Earth Syst. Sci. Data, 16, 4311–4323, https://doi.org/10.5194/essd-16-4311-2024, https://doi.org/10.5194/essd-16-4311-2024, 2024
Short summary
Short summary
Global water resource monitoring is crucial due to climate change and population growth. This study presents a hand-labeled dataset of 100 PlanetScope images for surface water detection, spanning diverse biomes. We use this dataset to evaluate two state-of-the-art mapping methods. Results highlight performance variations across biomes, emphasizing the need for diverse, independent validation datasets to enhance the accuracy and reliability of satellite-based surface water monitoring techniques.
Nikunj K. Mangukiya, Kanneganti Bhargav Kumar, Pankaj Dey, Shailza Sharma, Vijaykumar Bejagam, Pradeep P. Mujumdar, and Ashutosh Sharma
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-379, https://doi.org/10.5194/essd-2024-379, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We introduce CAMELS-INDIA (Catchment Attributes and MEteorology for Large-sample Studies – India), which provides daily hydrometeorological time series and static catchment attributes representing location, topography, climate, hydrological signatures, land-use, land cover, soil, geology, and anthropogenic influences for 472 catchments in peninsular India, to foster large-sample hydrological studies in India and promote the inclusion of Indian catchments in global hydrological research.
Lei Huang, Yong Luo, Jing M. Chen, Qiuhong Tang, Tammo Steenhuis, Wei Cheng, and Wen Shi
Earth Syst. Sci. Data, 16, 3993–4019, https://doi.org/10.5194/essd-16-3993-2024, https://doi.org/10.5194/essd-16-3993-2024, 2024
Short summary
Short summary
Timely global terrestrial evapotranspiration (ET) data are crucial for water resource management and drought forecasting. This study introduces the VISEA algorithm, which integrates satellite data and shortwave radiation to provide daily 0.05° gridded near-real-time ET estimates. By employing a vegetation index–temperature method, this algorithm can estimate ET without requiring additional data. Evaluation results demonstrate VISEA's comparable accuracy with accelerated data availability.
Sibylle Kathrin Hassler, Rafael Bohn Reckziegel, Ben du Toit, Svenja Hoffmeister, Florian Kestel, Anton Kunneke, Rebekka Maier, and Jonathan Paul Sheppard
Earth Syst. Sci. Data, 16, 3935–3948, https://doi.org/10.5194/essd-16-3935-2024, https://doi.org/10.5194/essd-16-3935-2024, 2024
Short summary
Short summary
Agroforestry systems (AFSs) combine trees and crops within the same land unit, providing a sustainable land use option which protects natural resources and biodiversity. Introducing trees into agricultural systems can positively affect water resources, soil characteristics, biomass and microclimate. We studied an AFS in South Africa in a multidisciplinary approach to assess the different influences and present the resulting dataset consisting of water, soil, tree and meteorological variables.
Kaihao Zheng, Peirong Lin, and Ziyun Yin
Earth Syst. Sci. Data, 16, 3873–3891, https://doi.org/10.5194/essd-16-3873-2024, https://doi.org/10.5194/essd-16-3873-2024, 2024
Short summary
Short summary
We develop a globally applicable thresholding scheme for DEM-based floodplain delineation to improve the representation of spatial heterogeneity. It involves a stepwise approach to estimate the basin-level floodplain hydraulic geometry parameters that best respect the scaling law while approximating the global hydrodynamic flood maps. A ~90 m resolution global floodplain map, the Spatial Heterogeneity Improved Floodplain by Terrain analysis (SHIFT), is delineated with demonstrated superiority.
Yuzhong Yang, Qingbai Wu, Xiaoyan Guo, Lu Zhou, Helin Yao, Dandan Zhang, Zhongqiong Zhang, Ji Chen, and Guojun Liu
Earth Syst. Sci. Data, 16, 3755–3770, https://doi.org/10.5194/essd-16-3755-2024, https://doi.org/10.5194/essd-16-3755-2024, 2024
Short summary
Short summary
We present the temporal data of stable isotopes in different waterbodies in the Beiluhe Basin in the hinterland of the Qinghai–Tibet Plateau (QTP) produced between 2017 and 2022. In this article, the first detailed stable isotope data of 359 ground ice samples are presented. This first data set provides a new basis for understanding the hydrological effects of permafrost degradation on the QTP.
Bennet Juhls, Anne Morgenstern, Jens Hölemann, Antje Eulenburg, Birgit Heim, Frederieke Miesner, Hendrik Grotheer, Gesine Mollenhauer, Hanno Meyer, Ephraim Erkens, Felica Yara Gehde, Sofia Antonova, Sergey Chalov, Maria Tereshina, Oxana Erina, Evgeniya Fingert, Ekaterina Abramova, Tina Sanders, Liudmila Lebedeva, Nikolai Torgovkin, Georgii Maksimov, Vasily Povazhnyi, Rafael Gonçalves-Araujo, Urban Wünsch, Antonina Chetverova, Sophie Opfergelt, and Pier Paul Overduin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-290, https://doi.org/10.5194/essd-2024-290, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
The Siberian Arctic is warming fast: permafrost is thawing, river chemistry is changing, and coastal ecosystems are affected. We want to understand changes to the Lena River, a major Arctic river flowing to the Arctic Ocean, by collecting 4.5 years of detailed water data, including temperature and carbon and nutrient contents. This dataset records current conditions and helps us to detect future changes. Explore it at https://doi.org/10.1594/PANGAEA.913197 and https://lena-monitoring.awi.de/.
Hordur Bragi Helgason and Bart Nijssen
Earth Syst. Sci. Data, 16, 2741–2771, https://doi.org/10.5194/essd-16-2741-2024, https://doi.org/10.5194/essd-16-2741-2024, 2024
Short summary
Short summary
LamaH-Ice is a large-sample hydrology (LSH) dataset for Iceland. The dataset includes daily and hourly hydro-meteorological time series, including observed streamflow and basin characteristics, for 107 basins. LamaH-Ice offers most variables that are included in existing LSH datasets and additional information relevant to cold-region hydrology such as annual time series of glacier extent and mass balance. A large majority of the basins in LamaH-Ice are unaffected by human activities.
Chengcheng Hou, Yan Li, Shan Sang, Xu Zhao, Yanxu Liu, Yinglu Liu, and Fang Zhao
Earth Syst. Sci. Data, 16, 2449–2464, https://doi.org/10.5194/essd-16-2449-2024, https://doi.org/10.5194/essd-16-2449-2024, 2024
Short summary
Short summary
To fill the gap in the gridded industrial water withdrawal (IWW) data in China, we developed the China Industrial Water Withdrawal (CIWW) dataset, which provides monthly IWWs from 1965 to 2020 at a spatial resolution of 0.1°/0.25° and auxiliary data including subsectoral IWW and industrial output value in 2008. This dataset can help understand the human water use dynamics and support studies in hydrology, geography, sustainability sciences, and water resource management and allocation in China.
Pierre-Antoine Versini, Leydy Alejandra Castellanos-Diaz, David Ramier, and Ioulia Tchiguirinskaia
Earth Syst. Sci. Data, 16, 2351–2366, https://doi.org/10.5194/essd-16-2351-2024, https://doi.org/10.5194/essd-16-2351-2024, 2024
Short summary
Short summary
Nature-based solutions (NBSs), such as green roofs, have appeared as relevant solutions to mitigate urban heat islands. The evapotranspiration (ET) process allows NBSs to cool the air. To improve our knowledge about ET assessment, this paper presents some experimental measurement campaigns carried out during three consecutive summers. Data are available for three different (large, small, and point-based) spatial scales.
Ralph Bathelemy, Pierre Brigode, Vazken Andréassian, Charles Perrin, Vincent Moron, Cédric Gaucherel, Emmanuel Tric, and Dominique Boisson
Earth Syst. Sci. Data, 16, 2073–2098, https://doi.org/10.5194/essd-16-2073-2024, https://doi.org/10.5194/essd-16-2073-2024, 2024
Short summary
Short summary
The aim of this work is to provide the first hydroclimatic database for Haiti, a Caribbean country particularly vulnerable to meteorological and hydrological hazards. The resulting database, named Simbi, provides hydroclimatic time series for around 150 stations and 24 catchment areas.
Changming Li, Ziwei Liu, Wencong Yang, Zhuoyi Tu, Juntai Han, Sien Li, and Hanbo Yang
Earth Syst. Sci. Data, 16, 1811–1846, https://doi.org/10.5194/essd-16-1811-2024, https://doi.org/10.5194/essd-16-1811-2024, 2024
Short summary
Short summary
Using a collocation-based approach, we developed a reliable global land evapotranspiration product (CAMELE) by merging multi-source datasets. The CAMELE product outperformed individual input datasets and showed satisfactory performance compared to reference data. It also demonstrated superiority for different plant functional types. Our study provides a promising solution for data fusion. The CAMELE dataset allows for detailed research and a better understanding of land–atmosphere interactions.
Yuhan Guo, Hongxing Zheng, Yuting Yang, Yanfang Sang, and Congcong Wen
Earth Syst. Sci. Data, 16, 1651–1665, https://doi.org/10.5194/essd-16-1651-2024, https://doi.org/10.5194/essd-16-1651-2024, 2024
Short summary
Short summary
We have provided an inaugural version of the hydrogeomorphic dataset for catchments over the Tibetan Plateau. We first provide the width-function-based instantaneous unit hydrograph (WFIUH) for each HydroBASINS catchment, which can be used to investigate the spatial heterogeneity of hydrological behavior across the Tibetan Plateau. It is expected to facilitate hydrological modeling across the Tibetan Plateau.
Ziyun Yin, Peirong Lin, Ryan Riggs, George H. Allen, Xiangyong Lei, Ziyan Zheng, and Siyu Cai
Earth Syst. Sci. Data, 16, 1559–1587, https://doi.org/10.5194/essd-16-1559-2024, https://doi.org/10.5194/essd-16-1559-2024, 2024
Short summary
Short summary
Large-sample hydrology (LSH) datasets have been the backbone of hydrological model parameter estimation and data-driven machine learning models for hydrological processes. This study complements existing LSH studies by creating a dataset with improved sample coverage, uncertainty estimates, and dynamic descriptions of human activities, which are all crucial to hydrological understanding and modeling.
Pierluigi Claps, Giulia Evangelista, Daniele Ganora, Paola Mazzoglio, and Irene Monforte
Earth Syst. Sci. Data, 16, 1503–1522, https://doi.org/10.5194/essd-16-1503-2024, https://doi.org/10.5194/essd-16-1503-2024, 2024
Short summary
Short summary
FOCA (Italian FlOod and Catchment Atlas) is the first systematic collection of data on Italian river catchments. It comprises geomorphological, soil, land cover, NDVI, climatological and extreme rainfall catchment attributes. FOCA also contains 631 peak and daily discharge time series covering the 1911–2016 period. Using this first nationwide data collection, a wide range of applications, in particular flood studies, can be undertaken within the Italian territory.
Wei Jing Ang, Edward Park, Yadu Pokhrel, Dung Duc Tran, and Ho Huu Loc
Earth Syst. Sci. Data, 16, 1209–1228, https://doi.org/10.5194/essd-16-1209-2024, https://doi.org/10.5194/essd-16-1209-2024, 2024
Short summary
Short summary
Dams have burgeoned in the Mekong, but information on dams is scattered and inconsistent. Up-to-date evaluation of dams is unavailable, and basin-wide hydropower potential has yet to be systematically assessed. We present a comprehensive database of 1055 dams, a spatiotemporal analysis of the dams, and a total hydropower potential of 1 334 683 MW. Considering projected dam development and hydropower potential, the vulnerability and the need for better dam management may be highest in Laos.
Chuanqi He, Ci-Jian Yang, Jens M. Turowski, Richard F. Ott, Jean Braun, Hui Tang, Shadi Ghantous, Xiaoping Yuan, and Gaia Stucky de Quay
Earth Syst. Sci. Data, 16, 1151–1166, https://doi.org/10.5194/essd-16-1151-2024, https://doi.org/10.5194/essd-16-1151-2024, 2024
Short summary
Short summary
The shape of drainage basins and rivers holds significant implications for landscape evolution processes and dynamics. We used a global 90 m resolution topography to obtain ~0.7 million drainage basins with sizes over 50 km2. Our dataset contains the spatial distribution of drainage systems and their morphological parameters, supporting fields such as geomorphology, climatology, biology, ecology, hydrology, and natural hazards.
Jingyu Lin, Peng Wang, Jinzhu Wang, Youping Zhou, Xudong Zhou, Pan Yang, Hao Zhang, Yanpeng Cai, and Zhifeng Yang
Earth Syst. Sci. Data, 16, 1137–1149, https://doi.org/10.5194/essd-16-1137-2024, https://doi.org/10.5194/essd-16-1137-2024, 2024
Short summary
Short summary
Our paper provides a repository comprising over 330 000 observations encompassing daily, weekly, and monthly records of surface water quality spanning the period 1980–2022. It included 18 distinct indicators, meticulously gathered at 2384 monitoring sites, ranging from inland locations to coastal and oceanic areas. This dataset will be very useful for researchers and decision-makers in the fields of hydrology, ecological studies, climate change, policy development, and oceanography.
Aloïs Tilloy, Dominik Paprotny, Stefania Grimaldi, Goncalo Gomes, Alessandra Bianchi, Stefan Lange, Hylke Beck, and Luc Feyen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-41, https://doi.org/10.5194/essd-2024-41, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This article presents a reanalysis of Europe's rivers streamflow for the period 1950–2020, using a state-of-the-art hydrological simulation framework. The dataset, called HERA (Hydrological European ReAnalysis), uses detailed information about the landscape, climate, and human activities to estimate river flow. HERA can be a valuable tool for studying hydrological dynamics, including the impacts of climate change and human activities on European water resources, flood and drought risks.
Daniel Kovacek and Steven Weijs
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-508, https://doi.org/10.5194/essd-2023-508, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We made a dataset for British Columbia describing the terrain, soil, land cover, and climate of over 1 million watersheds. The attributes are often used in hydrology because they are related to the water cycle. The data is meant to be used for water resources problems that can benefit from lots of basins and their attributes. The data and instructions needed to build the dataset from scratch are freely available. The permanent home for the data is https://doi.org/10.5683/SP3/JNKZVT.
Ana M. Ricardo, Rui M. L. Ferreira, Alberto Rodrigues da Silva, Jacinto Estima, Jorge Marques, Ivo Gamito, and Alexandre Serra
Earth Syst. Sci. Data, 16, 375–385, https://doi.org/10.5194/essd-16-375-2024, https://doi.org/10.5194/essd-16-375-2024, 2024
Short summary
Short summary
Floods are among the most common natural disasters responsible for severe damages and human losses. Agueda.2016Flood, a synthesis of locally sensed data and numerically produced data, allows complete characterization of the flood event that occurred in February 2016 in the Portuguese Águeda River. The dataset was managed through the RiverCure Portal, a collaborative web platform connected to a validated shallow-water model.
Jiawei Hou, Albert I. J. M. Van Dijk, Luigi J. Renzullo, and Pablo R. Larraondo
Earth Syst. Sci. Data, 16, 201–218, https://doi.org/10.5194/essd-16-201-2024, https://doi.org/10.5194/essd-16-201-2024, 2024
Short summary
Short summary
The GloLakes dataset provides historical and near-real-time time series of relative (i.e. storage change) and absolute (i.e. total stored volume) storage for more than 27 000 lakes worldwide using multiple sources of satellite data, including laser and radar altimetry and optical remote sensing. These data can help us understand the influence of climate variability and anthropogenic activities on water availability and system ecology over the last 4 decades.
Menaka Revel, Xudong Zhou, Prakat Modi, Jean-François Cretaux, Stephane Calmant, and Dai Yamazaki
Earth Syst. Sci. Data, 16, 75–88, https://doi.org/10.5194/essd-16-75-2024, https://doi.org/10.5194/essd-16-75-2024, 2024
Short summary
Short summary
As satellite technology advances, there is an incredible amount of remotely sensed data for observing terrestrial water. Satellite altimetry observations of water heights can be utilized to calibrate and validate large-scale hydrodynamic models. However, because large-scale models are discontinuous, comparing satellite altimetry to predicted water surface elevation is difficult. We developed a satellite altimetry mapping procedure for high-resolution river network data.
Marvin Höge, Martina Kauzlaric, Rosi Siber, Ursula Schönenberger, Pascal Horton, Jan Schwanbeck, Marius Günter Floriancic, Daniel Viviroli, Sibylle Wilhelm, Anna E. Sikorska-Senoner, Nans Addor, Manuela Brunner, Sandra Pool, Massimiliano Zappa, and Fabrizio Fenicia
Earth Syst. Sci. Data, 15, 5755–5784, https://doi.org/10.5194/essd-15-5755-2023, https://doi.org/10.5194/essd-15-5755-2023, 2023
Short summary
Short summary
CAMELS-CH is an open large-sample hydro-meteorological data set that covers 331 catchments in hydrologic Switzerland from 1 January 1981 to 31 December 2020. It comprises (a) daily data of river discharge and water level as well as meteorologic variables like precipitation and temperature; (b) yearly glacier and land cover data; (c) static attributes of, e.g, topography or human impact; and (d) catchment delineations. CAMELS-CH enables water and climate research and modeling at catchment level.
Peter Burek and Mikhail Smilovic
Earth Syst. Sci. Data, 15, 5617–5629, https://doi.org/10.5194/essd-15-5617-2023, https://doi.org/10.5194/essd-15-5617-2023, 2023
Short summary
Short summary
We address an annoying problem every grid-based hydrological model must solve to compare simulated and observed river discharge. First, station locations do not fit the high-resolution river network. We update the database with stations based on a new high-resolution network. Second, station locations do not work with a coarser grid-based network. We use a new basin shape similarity concept for station locations on a coarser grid, reducing the error of assigning stations to the wrong basin.
Najwa Sharaf, Jordi Prats, Nathalie Reynaud, Thierry Tormos, Rosalie Bruel, Tiphaine Peroux, and Pierre-Alain Danis
Earth Syst. Sci. Data, 15, 5631–5650, https://doi.org/10.5194/essd-15-5631-2023, https://doi.org/10.5194/essd-15-5631-2023, 2023
Short summary
Short summary
We present a regional long-term (1959–2020) dataset (LakeTSim) of daily epilimnion and hypolimnion water temperature simulations in 401 French lakes. Overall, less uncertainty is associated with the epilimnion compared to the hypolimnion. LakeTSim is valuable for providing new insights into lake water temperature for assessing the impact of climate change, which is often hindered by the lack of observations, and for decision-making by stakeholders.
Jiabo Yin, Louise J. Slater, Abdou Khouakhi, Le Yu, Pan Liu, Fupeng Li, Yadu Pokhrel, and Pierre Gentine
Earth Syst. Sci. Data, 15, 5597–5615, https://doi.org/10.5194/essd-15-5597-2023, https://doi.org/10.5194/essd-15-5597-2023, 2023
Short summary
Short summary
This study presents long-term (i.e., 1940–2022) and high-resolution (i.e., 0.25°) monthly time series of TWS anomalies over the global land surface. The reconstruction is achieved by using a set of machine learning models with a large number of predictors, including climatic and hydrological variables, land use/land cover data, and vegetation indicators (e.g., leaf area index). Our proposed GTWS-MLrec performs overall as well as, or is more reliable than, previous TWS datasets.
Shanlei Sun, Zaoying Bi, Jingfeng Xiao, Yi Liu, Ge Sun, Weimin Ju, Chunwei Liu, Mengyuan Mu, Jinjian Li, Yang Zhou, Xiaoyuan Li, Yibo Liu, and Haishan Chen
Earth Syst. Sci. Data, 15, 4849–4876, https://doi.org/10.5194/essd-15-4849-2023, https://doi.org/10.5194/essd-15-4849-2023, 2023
Short summary
Short summary
Based on various existing datasets, we comprehensively considered spatiotemporal differences in land surfaces and CO2 effects on plant stomatal resistance to parameterize the Shuttleworth–Wallace model, and we generated a global 5 km ensemble mean monthly potential evapotranspiration (PET) dataset (including potential transpiration PT and soil evaporation PE) during 1982–2015. The new dataset may be used by academic communities and various agencies to conduct various studies.
Wei Wang, La Zhuo, Xiangxiang Ji, Zhiwei Yue, Zhibin Li, Meng Li, Huimin Zhang, Rong Gao, Chenjian Yan, Ping Zhang, and Pute Wu
Earth Syst. Sci. Data, 15, 4803–4827, https://doi.org/10.5194/essd-15-4803-2023, https://doi.org/10.5194/essd-15-4803-2023, 2023
Short summary
Short summary
The consumptive water footprint of crop production (WFCP) measures blue and green evapotranspiration of either irrigated or rainfed crops in time and space. A gridded monthly WFCP dataset for China is established. There are four improvements from existing datasets: (i) distinguishing water supply modes and irrigation techniques, (ii) distinguishing evaporation and transpiration, (iii) consisting of both total and unit WFCP, and (iv) providing benchmarks for unit WFCP by climatic zones.
Emma L. Robinson, Matthew J. Brown, Alison L. Kay, Rosanna A. Lane, Rhian Chapman, Victoria A. Bell, and Eleanor M. Blyth
Earth Syst. Sci. Data, 15, 4433–4461, https://doi.org/10.5194/essd-15-4433-2023, https://doi.org/10.5194/essd-15-4433-2023, 2023
Short summary
Short summary
This work presents two new Penman–Monteith potential evaporation datasets for the UK, calculated with the same methodology applied to historical climate data (Hydro-PE HadUK-Grid) and an ensemble of future climate projections (Hydro-PE UKCP18 RCM). Both include an optional correction for evaporation of rain that lands on the surface of vegetation. The historical data are consistent with existing PE datasets, and the future projections include effects of rising atmospheric CO2 on vegetation.
Xinyu Chen, Liguang Jiang, Yuning Luo, and Junguo Liu
Earth Syst. Sci. Data, 15, 4463–4479, https://doi.org/10.5194/essd-15-4463-2023, https://doi.org/10.5194/essd-15-4463-2023, 2023
Short summary
Short summary
River flow is experiencing changes under the impacts of climate change and human activities. For example, flood events are occurring more often and are more destructive in many places worldwide. To deal with such issues, hydrologists endeavor to understand the features of extreme events as well as other hydrological changes. One key approach is analyzing flow characteristics, represented by hydrological indices. Building such a comprehensive global large-sample dataset is essential.
Tobias L. Hohenbrink, Conrad Jackisch, Wolfgang Durner, Kai Germer, Sascha C. Iden, Janis Kreiselmeier, Frederic Leuther, Johanna C. Metzger, Mahyar Naseri, and Andre Peters
Earth Syst. Sci. Data, 15, 4417–4432, https://doi.org/10.5194/essd-15-4417-2023, https://doi.org/10.5194/essd-15-4417-2023, 2023
Short summary
Short summary
The article describes a collection of 572 data sets of soil water retention and unsaturated hydraulic conductivity data measured with state-of-the-art laboratory methods. Furthermore, the data collection contains basic soil properties such as soil texture and organic carbon content. We expect that the data will be useful for various important purposes, for example, the development of soil hydraulic property models and related pedotransfer functions.
Sebastien Klotz, Caroline Le Bouteiller, Nicolle Mathys, Firmin Fontaine, Xavier Ravanat, Jean-Emmanuel Olivier, Frédéric Liébault, Hugo Jantzi, Patrick Coulmeau, Didier Richard, Jean-Pierre Cambon, and Maurice Meunier
Earth Syst. Sci. Data, 15, 4371–4388, https://doi.org/10.5194/essd-15-4371-2023, https://doi.org/10.5194/essd-15-4371-2023, 2023
Short summary
Short summary
Mountain badlands are places of intense erosion. They deliver large amounts of sediment to river systems, with consequences for hydropower sustainability, habitat quality and biodiversity, and flood hazard and river management. Draix-Bleone Observatory was created in 1983 to understand and quantify sediment delivery from such badland areas. Our paper describes how water and sediment fluxes have been monitored for almost 40 years in the small mountain catchments of this observatory.
Gopi Goteti
Earth Syst. Sci. Data, 15, 4389–4415, https://doi.org/10.5194/essd-15-4389-2023, https://doi.org/10.5194/essd-15-4389-2023, 2023
Short summary
Short summary
Data on river gauging stations, river basin boundaries and river flow paths are critical for hydrological analyses, but existing data for India's river basins have limited availability and reliability. This work fills the gap by building a new dataset. Data for 645 stations in 15 basins of India were compiled and checked against global data sources; data were supplemented with additional information where needed. This dataset will serve as a reliable building block in hydrological analyses.
Md Safat Sikder, Jida Wang, George H. Allen, Yongwei Sheng, Dai Yamazaki, Chunqiao Song, Meng Ding, Jean-François Crétaux, and Tamlin M. Pavelsky
Earth Syst. Sci. Data, 15, 3483–3511, https://doi.org/10.5194/essd-15-3483-2023, https://doi.org/10.5194/essd-15-3483-2023, 2023
Short summary
Short summary
We introduce Lake-TopoCat to reveal detailed lake hydrography information. It contains the location of lake outlets, the boundary of lake catchments, and a wide suite of attributes that depict detailed lake drainage relationships. It was constructed using lake boundaries from a global lake dataset, with the help of high-resolution hydrography data. This database may facilitate a variety of applications including water quality, agriculture and fisheries, and integrated lake–river modeling.
Maik Heistermann, Till Francke, Lena Scheiffele, Katya Dimitrova Petrova, Christian Budach, Martin Schrön, Benjamin Trost, Daniel Rasche, Andreas Güntner, Veronika Döpper, Michael Förster, Markus Köhli, Lisa Angermann, Nikolaos Antonoglou, Manuela Zude-Sasse, and Sascha E. Oswald
Earth Syst. Sci. Data, 15, 3243–3262, https://doi.org/10.5194/essd-15-3243-2023, https://doi.org/10.5194/essd-15-3243-2023, 2023
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) allows for the non-invasive estimation of root-zone soil water content (SWC). The signal observed by a single CRNS sensor is influenced by the SWC in a radius of around 150 m (the footprint). Here, we have put together a cluster of eight CRNS sensors with overlapping footprints at an agricultural research site in north-east Germany. That way, we hope to represent spatial SWC heterogeneity instead of retrieving just one average SWC estimate from a single sensor.
Benjamin M. Kitambo, Fabrice Papa, Adrien Paris, Raphael M. Tshimanga, Frederic Frappart, Stephane Calmant, Omid Elmi, Ayan Santos Fleischmann, Melanie Becker, Mohammad J. Tourian, Rômulo A. Jucá Oliveira, and Sly Wongchuig
Earth Syst. Sci. Data, 15, 2957–2982, https://doi.org/10.5194/essd-15-2957-2023, https://doi.org/10.5194/essd-15-2957-2023, 2023
Short summary
Short summary
The surface water storage (SWS) in the Congo River basin (CB) remains unknown. In this study, the multi-satellite and hypsometric curve approaches are used to estimate SWS in the CB over 1992–2015. The results provide monthly SWS characterized by strong variability with an annual mean amplitude of ~101 ± 23 km3. The evaluation of SWS against independent datasets performed well. This SWS dataset contributes to the better understanding of the Congo basin’s surface hydrology using remote sensing.
Natalie Lützow, Georg Veh, and Oliver Korup
Earth Syst. Sci. Data, 15, 2983–3000, https://doi.org/10.5194/essd-15-2983-2023, https://doi.org/10.5194/essd-15-2983-2023, 2023
Short summary
Short summary
Glacier lake outburst floods (GLOFs) are a prominent natural hazard, and climate change may change their magnitude, frequency, and impacts. A global, literature-based GLOF inventory is introduced, entailing 3151 reported GLOFs. The reporting density varies temporally and regionally, with most cases occurring in NW North America. Since 1900, the number of yearly documented GLOFs has increased 6-fold. However, many GLOFs have incomplete records, and we call for a systematic reporting protocol.
Hanieh Seyedhashemi, Florentina Moatar, Jean-Philippe Vidal, and Dominique Thiéry
Earth Syst. Sci. Data, 15, 2827–2839, https://doi.org/10.5194/essd-15-2827-2023, https://doi.org/10.5194/essd-15-2827-2023, 2023
Short summary
Short summary
This paper presents a past and future dataset of daily time series of discharge and stream temperature for 52 278 reaches over the Loire River basin (100 000 km2) in France, using thermal and hydrological models. Past data are provided over 1963–2019. Future data are available over the 1976–2100 period under different future climate change models (warm and wet, intermediate, and hot and dry) and scenarios (optimistic, intermediate, and pessimistic).
Youjiang Shen, Karina Nielsen, Menaka Revel, Dedi Liu, and Dai Yamazaki
Earth Syst. Sci. Data, 15, 2781–2808, https://doi.org/10.5194/essd-15-2781-2023, https://doi.org/10.5194/essd-15-2781-2023, 2023
Short summary
Short summary
Res-CN fills a gap in a comprehensive and extensive dataset of reservoir-catchment characteristics for 3254 Chinese reservoirs with 512 catchment-level attributes and significantly enhanced spatial and temporal coverage (e.g., 67 % increase in water level and 225 % in storage anomaly) of time series of reservoir water level (data available for 20 % of 3254 reservoirs), water area (99 %), storage anomaly (92 %), and evaporation (98 %), supporting a wide range of applications and disciplines.
Hui Zheng, Wenli Fei, Zong-Liang Yang, Jiangfeng Wei, Long Zhao, Lingcheng Li, and Shu Wang
Earth Syst. Sci. Data, 15, 2755–2780, https://doi.org/10.5194/essd-15-2755-2023, https://doi.org/10.5194/essd-15-2755-2023, 2023
Short summary
Short summary
An ensemble of evapotranspiration, runoff, and water storage is estimated here using the Noah-MP land surface model by perturbing model parameterization schemes. The data could be beneficial for monitoring and understanding the variability of water resources. Model developers could also gain insights by intercomparing the ensemble members.
Alison L. Kay, Victoria A. Bell, Helen N. Davies, Rosanna A. Lane, and Alison C. Rudd
Earth Syst. Sci. Data, 15, 2533–2546, https://doi.org/10.5194/essd-15-2533-2023, https://doi.org/10.5194/essd-15-2533-2023, 2023
Short summary
Short summary
Climate change will affect the water cycle, including river flows and soil moisture. We have used both observational data (1980–2011) and the latest UK climate projections (1980–2080) to drive a national-scale grid-based hydrological model. The data, covering Great Britain and Northern Ireland, suggest potential future decreases in summer flows, low flows, and summer/autumn soil moisture, and possible future increases in winter and high flows. Society must plan how to adapt to such impacts.
Jamie Hannaford, Jonathan D. Mackay, Matthew Ascott, Victoria A. Bell, Thomas Chitson, Steven Cole, Christian Counsell, Mason Durant, Christopher R. Jackson, Alison L. Kay, Rosanna A. Lane, Majdi Mansour, Robert Moore, Simon Parry, Alison C. Rudd, Michael Simpson, Katie Facer-Childs, Stephen Turner, John R. Wallbank, Steven Wells, and Amy Wilcox
Earth Syst. Sci. Data, 15, 2391–2415, https://doi.org/10.5194/essd-15-2391-2023, https://doi.org/10.5194/essd-15-2391-2023, 2023
Short summary
Short summary
The eFLaG dataset is a nationally consistent set of projections of future climate change impacts on hydrology. eFLaG uses the latest available UK climate projections (UKCP18) run through a series of computer simulation models which enable us to produce future projections of river flows, groundwater levels and groundwater recharge. These simulations are designed for use by water resource planners and managers but could also be used for a wide range of other purposes.
Cited articles
Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017.
Addor, N., Do, H. X., Alvarez-Garreton, C., Coxon, G., Fowler, K., and
Mendoza, P. A.: Large-sample hydrology: recent progress, guidelines for new
datasets and grand challenges, Hydrolog. Sci. J., 1–14,
https://doi.org/10.1080/02626667.2019.1683182, 2019.
Alfieri, L., Lorini, V., Hirpa, F. A., Harrigan, S., Zsoter, E., Prudhomme,
C., and Salamon, P.: A global streamflow reanalysis for 1980–2018, J. Hydrol., 6, 100049, https://doi.org/10.1016/j.hydroa.2019.100049, 2020.
Alvarez-Garreton, C., Mendoza, P. A., Boisier, J. P., Addor, N., Galleguillos, M., Zambrano-Bigiarini, M., Lara, A., Puelma, C., Cortes, G., Garreaud, R., McPhee, J., and Ayala, A.: The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset, Hydrol. Earth Syst. Sci., 22, 5817–5846, https://doi.org/10.5194/hess-22-5817-2018, 2018.
ANA – Brazilian National Water Agency: Relatorio de Seguranca de Barragens
2017, 2018.
ANA – Brazilian National Water Agency, HIDROWEB:
available at: http://www.snirh.gov.br/hidroweb (last access: 15 June 2019), 2019a.
ANA – Brazilian National Water Agency: Levantamento Da Agricultura Irrigada
Por Pivôs Centrais No Brasil (1985–2017), 2a edição, 2019b.
ANA – Brazilian National Water Agency: Manual De Usos Consuntivos Da
Água No Brasil, 2019c.
Archfield, S. A., Hirsch, R. M., Viglione, A. and Blöschl, G.:
Fragmented patterns of flood change across the United States, Geophys. Res.
Lett., 43, 10232–10239, https://doi.org/10.1002/2016GL070590, 2016.
Arino, O., Perez, J. J. R., Kalogirou, V., Bontemps, S., Defourny, P., and
Bogaert, E. V.: Global Land Cover Map for 2009 (GlobCover 2009), PANGAEA, https://doi.org/10.1594/PANGAEA.787668,
2012.
Bartiko, D., Oliveira, D. Y., Bonumá, N. B., and Chaffe, P. L. B.:
Spatial and seasonal patterns of flood change across Brazil, Hydrolog.
Sci. J., 64, 1071–1079, https://doi.org/10.1080/02626667.2019.1619081,
2019.
Beck, H. E., van Dijk, A. I., De Roo, A., Miralles, D. G., McVicar, T. R.,
Schellekens, J., and Bruijnzeel, L. A.: Global-scale regionalization of
hydrologic model parameters, Water Resour. Res., 52, 3599–3622,
2016.
Beck, H. E., van Dijk, A. I. J. M., de Roo, A., Dutra, E., Fink, G., Orth, R., and Schellekens, J.: Global evaluation of runoff from 10 state-of-the-art hydrological models, Hydrol. Earth Syst. Sci., 21, 2881–2903, https://doi.org/10.5194/hess-21-2881-2017, 2017a.
Beck, H. E., van Dijk, A. I. J. M., Levizzani, V., Schellekens, J., Miralles, D. G., Martens, B., and de Roo, A.: MSWEP: 3-hourly 0.25∘ global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data, Hydrol. Earth Syst. Sci., 21, 589–615, https://doi.org/10.5194/hess-21-589-2017, 2017b.
Beck, H. E., Vergopolan, N., Pan, M., Levizzani, V., van Dijk, A. I. J. M., Weedon, G. P., Brocca, L., Pappenberger, F., Huffman, G. J., and Wood, E. F.: Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling, Hydrol. Earth Syst. Sci., 21, 6201–6217, https://doi.org/10.5194/hess-21-6201-2017, 2017c.
Beck, H. E., Wood, E. F., Pan, M., Fisher, C. K., Miralles, D. G., van Dijk,
A. I. J. M., McVicar, T. R., and Adler, R. F.: MSWEP V2 Global 3-Hourly
0.1∘ Precipitation: Methodology and Quantitative Assessment, B.
Am. Meteorol. Soc., 100, 473–500, https://doi.org/10.1175/BAMS-D-17-0138.1, 2019.
Bierkens, M. F.: Global hydrology 2015: State, trends, and directions, Water
Resour. Res., 51, 4923–4947, 2015.
Berghuijs, W. R. and Woods, R. A.: A simple framework to quantitatively
describe monthly precipitation and temperature climatology, Int. J.
Climatol., 36, 3161–3174, https://doi.org/10.1002/joc.4544, 2016.
Berghuijs, W. R., Sivapalan, M., Woods, R. A., and Savenije, H. H. G.:
Patterns of similarity of seasonal water balances: A window into streamflow
variability over a range of time scales, Water Resour. Res., 50,
5638–5661, https://doi.org/10.1002/2014WR015692, 2014.
Blöschl, G.,
Sivapalan, M., Savenije, H., Wagener, T., and Viglione, A. (Eds.): Runoff prediction in ungauged basins: synthesis across processes, places and scales, Cambridge University Press, Cambridge, UK, 465 pp., 2013.
Blöschl, G., Hall, J., Viglione, A., Perdigão, R. A. P., Parajka,
J., Merz, B., Lun, D., Arheimer, B., Aronica, G. T., Bilibashi, A.,
Boháč, M., Bonacci, O., Borga, M., Čanjevac, I., Castellarin,
A., Chirico, G. B., Claps, P., Frolova, N., Ganora, D., Gorbachova, L.,
Gül, A., Hannaford, J., Harrigan, S., Kireeva, M., Kiss, A., Kjeldsen,
T. R., Kohnová, S., Koskela, J. J., Ledvinka, O., Macdonald, N.,
Mavrova-Guirguinova, M., Mediero, L., Merz, R., Molnar, P., Montanari, A.,
Murphy, C., Osuch, M., Ovcharuk, V., Radevski, I., Salinas, J. L., Sauquet,
E., Šraj, M., Szolgay, J., Volpi, E., Wilson, D., Zaimi, K., and
Živković, N.: Changing climate both increases and decreases European
river floods, Nature, 573, 108–111, https://doi.org/10.1038/s41586-019-1495-6, 2019a.
Blöschl, G., Bierkens, M. F. P., Chambel, A., Cudennec, C., Destouni,
G., Fiori, A., Kirchner, J. W., McDonnell, J. J., Savenije, H. H. G.,
Sivapalan, M., Stumpp, C., Toth, E., Volpi, E., Carr, G., Lupton, C.,
Salinas, J., Széles, B., Viglione, A., Aksoy, H., Allen, S. T., Amin,
A., Andréassian, V., Arheimer, B., Aryal, S. K., Baker, V., Bardsley,
E., Barendrecht, M. H., Bartosova, A., Batelaan, O., Berghuijs, W. R.,
Beven, K., Blume, T., Bogaard, T., Borges de Amorim, P., Böttcher, M.
E., Boulet, G., Breinl, K., Brilly, M., Brocca, L., Buytaert, W.,
Castellarin, A., Castelletti, A., Chen, X., Chen, Y., Chen, Y., Chifflard,
P., Claps, P., Clark, M. P., Collins, A. L., Croke, B., Dathe, A., David, P.
C., de Barros, F. P. J., de Rooij, G., Di Baldassarre, G., Driscoll, J. M.,
Duethmann, D., Dwivedi, R., Eris, E., Farmer, W. H., Feiccabrino, J.,
Ferguson, G., Ferrari, E., Ferraris, S., Fersch, B., Finger, D., Foglia, L.,
Fowler, K., Gartsman, B., Gascoin, S., Gaume, E., Gelfan, A., Geris, J.,
Gharari, S., Gleeson, T., Glendell, M., Gonzalez Bevacqua, A.,
González-Dugo, M. P., Grimaldi, S., Gupta, A. B., Guse, B., Han, D.,
Hannah, D., Harpold, A., Haun, S., Heal, K., Helfricht, K., Herrnegger, M.,
Hipsey, M., Hlaváčiková, H., Hohmann, C., Holko, L., Hopkinson,
C., Hrachowitz, M., Illangasekare, T. H., Inam, A., Innocente, C.,
Istanbulluoglu, E., Jarihani, B., et al.: Twenty-three unsolved problems in
hydrology (UPH) – a community perspective, Hydrolog. Sci. J.,
64, 1141–1158, https://doi.org/10.1080/02626667.2019.1620507, 2019b.
Börker, J., Hartmann, J., Amann, T., and Romero-Mujalli, G.: Terrestrial
Sediments of the Earth: Development of a Global Unconsolidated Sediments Map
Database (GUM), Geochem. Geophy. Geosy., 19, 997–1024,
https://doi.org/10.1002/2017GC007273, 2018.
Budyko, M. I.: Climate and life, Academic press New York, 1974.
Carvalho, L. M. V., Jones, C., Silva, A. E., Liebmann, B., and Silva Dias, P.
L.: The South American Monsoon System and the 1970s climate transition, Int.
J. Climatol., 31, 1248–1256, https://doi.org/10.1002/joc.2147, 2011.
Chagas, V. B. P. and Chaffe, P. L. B.: The Role of Land Cover in the
Propagation of Rainfall Into Streamflow Trends, Water Resour. Res., 54,
5986–6004, https://doi.org/10.1029/2018WR022947, 2018.
Chagas, V. B. P., Chaffe, P. L. B., Addor, N., Fan, F. M., Fleischmann, A.
S., Paiva, R. C. D., and Siqueira, V. A.: CAMELS-BR: Hydrometeorological
time series and landscape attributes for 897 catchments in Brazil – link to
files, Zenodo, https://doi.org/10.5281/zenodo.3709337, 2020.
Clausen, B. and Biggs, B. J. F.: Flow variables for ecological studies in
temperate streams: groupings based on covariance, J. Hydrol.,
237, 184–197, https://doi.org/10.1016/S0022-1694(00)00306-1, 2000.
Collischonn,
W., Tucci, C. E. M., and Clarke, R. T.: Further evidence of changes in the
hydrological regime of the River Paraguay: part of a wider phenomenon of
climate change?, J. Hydrol., 245, 218–238,
https://doi.org/10.1016/S0022-1694(01)00348-1, 2001.
Coxon, G., Addor, N., Bloomfield, J. P., Freer, J., Fry, M., Hannaford, J., Howden, N. J. K., Lane, R., Lewis, M., Robinson, E. L., Wagener, T., and Woods, R.: CAMELS-GB: Hydrometeorological time series and landscape attributes for 671 catchments in Great Britain, Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-49, in review, 2020.
Crochemore, L., Isberg, K., Pimentel, R., Pineda, L., Hasan, A., and
Arheimer, B.: Lessons learnt from checking the quality of openly accessible
river flow data worldwide, Hydrolog. Sci. J., 65, 699–711, https://doi.org/10.1080/02626667.2019.1659509, 2019.
Dias, L. C. P., Pimenta, F. M., Santos, A. B., Costa, M. H., and Ladle, R.
J.: Patterns of land use, extensification, and intensification of Brazilian
agriculture, Glob. Change Biol., 22, 2887–2903, https://doi.org/10.1111/gcb.13314,
2016.
Di Baldassarre, G., Wanders, N., AghaKouchak, A., Kuil, L., Rangecroft, S.,
Veldkamp, T. I. E., Garcia, M., van Oel, P. R., Breinl, K., and Van Loon, A.
F.: Water shortages worsened by reservoir effects, Nat. Sustain., 1,
617–622, https://doi.org/10.1038/s41893-018-0159-0, 2018.
Do, H. X., Gudmundsson, L., Leonard, M., and Westra, S.: The Global Streamflow Indices and Metadata Archive (GSIM) – Part 1: The production of a daily streamflow archive and metadata, Earth Syst. Sci. Data, 10, 765–785, https://doi.org/10.5194/essd-10-765-2018, 2018.
Döll, P., Douville, H., Güntner, A., Schmied, H. M., and Wada, Y.:
Modelling freshwater resources at the global scale: challenges and
prospects, Surv. Geophys., 37, 195–221, 2016.
Ehret, U., Gupta, H. V., Sivapalan, M., Weijs, S. V., Schymanski, S. J., Blöschl, G., Gelfan, A. N., Harman, C., Kleidon, A., Bogaard, T. A., Wang, D., Wagener, T., Scherer, U., Zehe, E., Bierkens, M. F. P., Di Baldassarre, G., Parajka, J., van Beek, L. P. H., van Griensven, A., Westhoff, M. C., and Winsemius, H. C.: Advancing catchment hydrology to deal with predictions under change, Hydrol. Earth Syst. Sci., 18, 649–671, https://doi.org/10.5194/hess-18-649-2014, 2014.
Fan, Y.: Groundwater in the Earth's critical zone: Relevance to large-scale
patterns and processes: Groundwater at large scales, Water Resour. Res.,
51, 3052–3069, https://doi.org/10.1002/2015WR017037, 2015.
Fan, Y., Li, H., and Miguez-Macho, G.: Global Patterns of Groundwater Table
Depth, Science, 339, 1–5, https://doi.org/10.1126/science.1229881, 2013.
Fan, Y., Clark, M., Lawrence, D. M., Swenson, S., Band, L. E., Brantley, S.
L., Brooks, P. D., Dietrich, W. E., Flores, A., Grant, G., Kirchner, J. W.,
Mackay, D. S., McDonnell, J. J., Milly, P. C. D., Sullivan, P. L., Tague,
C., Ajami, H., Chaney, N., Hartmann, A., Hazenberg, P., McNamara, J.,
Pelletier, J., Perket, J., Rouholahnejad-Freund, E., Wagener, T., Zeng, X.,
Beighley, E., Buzan, J., Huang, M., Livneh, B., Mohanty, B. P., Nijssen, B.,
Safeeq, M., Shen, C., Verseveld, W., Volk, J., and Yamazaki, D.: Hillslope
Hydrology in Global Change Research and Earth System Modeling, Water Resour.
Res., 55, 1737–1772, https://doi.org/10.1029/2018WR023903, 2019.
Feng, X., Thompson, S. E., Woods, R., and Porporato, A.: Quantifying
Asynchronicity of Precipitation and Potential Evapotranspiration in
Mediterranean Climates, Geophys. Res. Lett., 46, 14692–14701,
https://doi.org/10.1029/2019GL085653, 2019.
Fleig, A. K., Tallaksen, L. M., Hisdal, H., and Demuth, S.: A global evaluation of streamflow drought characteristics, Hydrol. Earth Syst. Sci., 10, 535–552, https://doi.org/10.5194/hess-10-535-2006, 2006.
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S.,
Husak, G., Rowland, J., Harrison, L., Hoell, A., and Michaelsen, J.: The
climate hazards infrared precipitation with stations – a new environmental
record for monitoring extremes, Sci. Data, 2, 1–21, https://doi.org/10.1038/sdata.2015.66,
2015.
Ghiggi, G., Humphrey, V., Seneviratne, S. I., and Gudmundsson, L.: GRUN: an observation-based global gridded runoff dataset from 1902 to 2014, Earth Syst. Sci. Data, 11, 1655–1674, https://doi.org/10.5194/essd-11-1655-2019, 2019.
Gleeson, T., Moosdorf, N., Hartmann, J., and van Beek, L. P. H.: A glimpse
beneath earth's surface: GLobal HYdrogeology MaPS (GLHYMPS) of permeability
and porosity, Geophys. Res. Lett., 41, 3891–3898,
https://doi.org/10.1002/2014GL059856, 2014.
GRDC – Global Runoff Data Centre, GRDC, available at:
https://www.bafg.de/GRDC/EN/Home/homepage_node.html, last
access: 24 December 2019.
Grimm, A. M.: Interannual climate variability in South America: impacts on
seasonal precipitation, extreme events, and possible effects of climate
change, Stoch. Env. Res. Risk A., 25, 537–554,
https://doi.org/10.1007/s00477-010-0420-1, 2011.
Gudmundsson, L., Wagener, T., Tallaksen, L. M., and Engeland, K.:
Evaluation of nine large-scale hydrological models with respect to the
seasonal runoff climatology in Europe, Water Resour. Res., 48, W11504, https://doi.org/10.1029/2011WR010911,
2012.
Gudmundsson, L., Do, H. X., Leonard, M., and Westra, S.: The Global Streamflow Indices and Metadata Archive (GSIM) – Part 2: Quality control, time-series indices and homogeneity assessment, Earth Syst. Sci. Data, 10, 787–804, https://doi.org/10.5194/essd-10-787-2018, 2018.
Gudmundsson, L., Leonard, M., Do, H. X., Westra, S., and Seneviratne, S. I.:
Observed Trends in Global Indicators of Mean and Extreme Streamflow,
Geophys. Res. Lett., 46, 756–766, https://doi.org/10.1029/2018GL079725, 2019.
Gupta, H. V., Perrin, C., Blöschl, G., Montanari, A., Kumar, R., Clark, M., and Andréassian, V.: Large-sample hydrology: a need to balance depth with breadth, Hydrol. Earth Syst. Sci., 18, 463–477, https://doi.org/10.5194/hess-18-463-2014, 2014.
Haddeland, I., Clark, D. B., Franssen, W., Ludwig, F., Voß, F., Arnell,
N. W., and Gomes, S.: Multimodel estimate of the global terrestrial
water balance: setup and first results, J. Hydrometeorol., 12,
869–884, 2011.
Hall, J., Arheimer, B., Borga, M., Brázdil, R., Claps, P., Kiss, A., Kjeldsen, T. R., Kriaučiūnienė, J., Kundzewicz, Z. W., Lang, M., Llasat, M. C., Macdonald, N., McIntyre, N., Mediero, L., Merz, B., Merz, R., Molnar, P., Montanari, A., Neuhold, C., Parajka, J., Perdigão, R. A. P., Plavcová, L., Rogger, M., Salinas, J. L., Sauquet, E., Schär, C., Szolgay, J., Viglione, A., and Blöschl, G.: Understanding flood regime changes in Europe: a state-of-the-art assessment, Hydrol. Earth Syst. Sci., 18, 2735–2772, https://doi.org/10.5194/hess-18-2735-2014, 2014.
Hartmann, J. and Moosdorf, N.: The new global lithological map database
GLiM: A representation of rock properties at the Earth surface, Geochem.
Geophy. Geosy., 13, 1–37, https://doi.org/10.1029/2012GC004370, 2012.
Haylock, M. and Nicholls, N.: Trends in extreme rainfall indices for an
updated high quality data set for Australia, 1910–1998, Int. J. Climatol.,
20, 1533–1541, https://doi.org/10.1002/1097-0088(20001115)20:13<1533::AID-JOC586>3.0.CO;2-J, 2000.
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M.,
Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X.,
Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A.,
Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and
Kempen, B.: SoilGrids250m: Global gridded soil information based on machine
learning, edited by: Bond-Lamberty, B., PLoS ONE, 12, e0169748,
https://doi.org/10.1371/journal.pone.0169748, 2017.
Hirpa, F. A., Salamon, P., Beck, H. E., Lorini, V., Alfieri, L., Zsoter, E.,
and Dadson, S. J.: Calibration of the Global Flood Awareness System
(GloFAS) using daily streamflow data, J. Hydrol., 566, 595–606,
2018.
Hoekstra, A. Y. and Mekonnen, M. M.: The water footprint of humanity,
P. Natl. Acad. Sci. USA, 109, 3232–3237,
https://doi.org/10.1073/pnas.1109936109, 2012.
Huscroft, J., Gleeson, T., Hartmann, J., and Börker, J.: Compiling and
Mapping Global Permeability of the Unconsolidated and Consolidated Earth:
GLobal HYdrogeology MaPS 2.0 (GLHYMPS 2.0), Geophys. Res. Lett., 45,
1897–1904, https://doi.org/10.1002/2017GL075860, 2018.
IBGE – Brazilian Institute of Geography and Statistics: Censo
Agropecuário 2006, 2007.
Knoben, W. J. M., Woods, R. A., and Freer, J. E.: A Quantitative Hydrological
Climate Classification Evaluated With Independent Streamflow Data, Water
Resour. Res., 54, 5088–5109, https://doi.org/10.1029/2018WR022913, 2018.
Ladson, A., Brown, R., Neal, B., and Nathan, R.: A standard approach to
baseflow separation using the Lyne and Hollick filter, Australian Journal of Water Resources, 17, 25–34,
2013.
Latrubesse, E. M., Arima, E. Y., Dunne, T., Park, E., Baker, V. R., d'Horta,
F. M., Wight, C., Wittmann, F., Zuanon, J., Baker, P. A., Ribas, C. C.,
Norgaard, R. B., Filizola, N., Ansar, A., Flyvbjerg, B., and Stevaux, J. C.:
Damming the rivers of the Amazon basin, Nature, 546, 363–369,
https://doi.org/10.1038/nature22333, 2017.
Lehner, B.: Derivation of watershed boundaries for GRDC gauging stations
based on the HydroSHEDS drainage network, Global Runoff Data Centre in the
Federal Institute of Hydrology (BFG), 2012.
Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete,
B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., Magome, J.,
Nilsson, C., Robertson, J. C., Rödel, R., Sindorf, N., and Wisser, D.:
High-resolution mapping of the world's reservoirs and dams for sustainable
river-flow management, Front. Ecol. Environ., 9,
494–502, https://doi.org/10.1890/100125, 2011.
Leite, C. C., Costa, M. H., Soares-Filho, B. S., and de Barros Viana Hissa,
L.: Historical land use change and associated carbon emissions in Brazil
from 1940 to 1995, Global Biogeochem. Cy., 26, 1–13,
https://doi.org/10.1029/2011GB004133, 2012.
Levy, M. C., Lopes, A. V., Cohn, A., Larsen, L. G., and Thompson, S. E.: Land
Use Change Increases Streamflow Across the Arc of Deforestation in Brazil,
Geophys. Res. Lett., 45, 3520–3530, https://doi.org/10.1002/2017GL076526, 2018.
Lima, C. H. R., AghaKouchak, A., and Lall, U.: Classification of mechanisms, climatic context, areal scaling, and synchronization of floods: the hydroclimatology of floods in the Upper Paraná River basin, Brazil, Earth Syst. Dynam., 8, 1071–1091, https://doi.org/10.5194/esd-8-1071-2017, 2017.
Linke, S., Lehner, B., Ouellet Dallaire, C., Ariwi, J., Grill, G., Anand,
M., Beames, P., Burchard-Levine, V., Maxwell, S., Moidu, H., Tan, F., and
Thieme, M.: Global hydro-environmental sub-basin and river reach
characteristics at high spatial resolution, Sci. Data, 6, 1–15,
https://doi.org/10.1038/s41597-019-0300-6, 2019.
Luke, A., Vrugt, J. A., AghaKouchak, A., Matthew, R., and Sanders, B. F.:
Predicting nonstationary flood frequencies: Evidence supports an updated
stationarity thesis in the United States, Water Resour. Res., 53,
5469–5494, https://doi.org/10.1002/2016WR019676, 2017.
Marengo, J. A. and Espinoza, J. C.: Extreme seasonal droughts and floods in
Amazonia: causes, trends and impacts, Int. J. Climatol., 36, 1033–1050,
https://doi.org/10.1002/joc.4420, 2016.
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017.
Martinez, J. A. and Dominguez, F.: Sources of Atmospheric Moisture for the
La Plata River Basin, J. Climate, 27, 6737–6753,
https://doi.org/10.1175/JCLI-D-14-00022.1, 2014.
McMillan, H., Westerberg, I., and Branger, F.: Five guidelines for selecting
hydrological signatures, Hydrol. Process., 31, 4757–4761,
https://doi.org/10.1002/hyp.11300, 2017.
Melo, D. D. C. D., Scanlon, B. R., Zhang, Z., Wendland, E., and Yin, L.: Reservoir storage and hydrologic responses to droughts in the Paraná River basin, south-eastern Brazil, Hydrol. Earth Syst. Sci., 20, 4673–4688, https://doi.org/10.5194/hess-20-4673-2016, 2016.
Merz, B., Vorogushyn, S., Uhlemann, S., Delgado, J., and Hundecha, Y.: HESS Opinions “More efforts and scientific rigour are needed to attribute trends in flood time series”, Hydrol. Earth Syst. Sci., 16, 1379–1387, https://doi.org/10.5194/hess-16-1379-2012, 2012.
Milliman, J. D., Farnsworth, K. L., Jones, P. D., Xu, K. H., and Smith, L.
C.: Climatic and anthropogenic factors affecting river discharge to the
global ocean, 1951–2000, Global Planet. Change, 62, 187–194,
https://doi.org/10.1016/j.gloplacha.2008.03.001, 2008.
Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., and Dolman, A. J.: Global land-surface evaporation estimated from satellite-based observations, Hydrol. Earth Syst. Sci., 15, 453–469, https://doi.org/10.5194/hess-15-453-2011, 2011.
Montanari, A.: What do we mean by “uncertainty”? The need for a consistent
wording about uncertainty assessment in hydrology, Hydrol. Process., 21,
841–845, https://doi.org/10.1002/hyp.6623, 2007.
Montanari, A., Young, G., Savenije, H. H. G., Hughes, D., Wagener, T., Ren,
L. L., Koutsoyiannis, D., Cudennec, C., Toth, E., Grimaldi, S., Blöschl,
G., Sivapalan, M., Beven, K., Gupta, H., Hipsey, M., Schaefli, B., Arheimer,
B., Boegh, E., Schymanski, S. J., Di Baldassarre, G., Yu, B., Hubert, P.,
Huang, Y., Schumann, A., Post, D. A., Srinivasan, V., Harman, C., Thompson,
S., Rogger, M., Viglione, A., McMillan, H., Characklis, G., Pang, Z., and
Belyaev, V.: “Panta Rhei – Everything Flows”: Change in hydrology and
society – The IAHS Scientific Decade 2013–2022, Hydrolog. Sci.
J., 58, 1256–1275, https://doi.org/10.1080/02626667.2013.809088, 2013.
Müller Schmied, H., Eisner, S., Franz, D., Wattenbach, M., Portmann, F. T., Flörke, M., and Döll, P.: Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration, Hydrol. Earth Syst. Sci., 18, 3511–3538, https://doi.org/10.5194/hess-18-3511-2014, 2014.
Newman, A. J., Clark, M. P., Sampson, K., Wood, A., Hay, L. E., Bock, A., Viger, R. J., Blodgett, D., Brekke, L., Arnold, J. R., Hopson, T., and Duan, Q.: Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: data set characteristics and assessment of regional variability in hydrologic model performance, Hydrol. Earth Syst. Sci., 19, 209–223, https://doi.org/10.5194/hess-19-209-2015, 2015.
NOAA: CPC Global Temperature, available at: https://www.esrl.noaa.gov/psd/ (last access 15
June 2019), 2019a.
NOAA: CPC Global Unified Precipitation, available at: https://www.esrl.noaa.gov/psd/ (last
access: 15 June 2019), 2019b.
Olden, J. D. and Poff, N. L.: Redundancy and the choice of hydrologic
indices for characterizing streamflow regimes, River Res. Appl., 19,
101–121, https://doi.org/10.1002/rra.700, 2003.
ONS – National Electrical System Operator: SIGEL – Sistema Geográfico de
Informações do Sistema Elétrico, available at: https://sigel.aneel.gov.br/,
last access: 10 December 2019.
Paiva, R. C. D., Buarque, D. C., Collischonn, W., Bonnet, M.-P., Frappart,
F., Calmant, S., and Bulhões Mendes, C. A.: Large-scale hydrologic and
hydrodynamic modeling of the Amazon River basin, Water Resour. Res., 49,
1226–1243, https://doi.org/10.1002/wrcr.20067, 2013.
Pasquini, A. I. and Depetris, P. J.: Discharge trends and flow dynamics of
South American rivers draining the southern Atlantic seaboard: An overview,
J. Hydrol., 333, 385–399,
https://doi.org/10.1016/j.jhydrol.2006.09.005, 2007.
Pfister, L. and Kirchner, J. W.: Debates-Hypothesis testing in hydrology:
Theory and practice, Water Resour. Res., 53, 1792–1798,
https://doi.org/10.1002/2016WR020116, 2017.
Raia, A. and Cavalcanti, I. F. A.: The Life Cycle of the South American
Monsoon System, J. Climate, 21, 6227–6246, https://doi.org/10.1175/2008JCLI2249.1,
2008.
Salio, P., Nicolini, M., and Zipser, E. J.: Mesoscale convective systems over
southeastern South America and their relationship with the South American
low-level jet, Mon. Weather Rev., 135, 1290–1309, 2007.
Sankarasubramanian, A., Vogel, R. M., and Limbrunner, J. F.: Climate
elasticity of streamflow in the United States, Water Resour. Res., 37,
1771–1781, https://doi.org/10.1029/2000WR900330, 2001.
Sawicz, K., Wagener, T., Sivapalan, M., Troch, P. A., and Carrillo, G.: Catchment classification: empirical analysis of hydrologic similarity based on catchment function in the eastern USA, Hydrol. Earth Syst. Sci., 15, 2895–2911, https://doi.org/10.5194/hess-15-2895-2011, 2011.
Sawicz, K. A., Kelleher, C., Wagener, T., Troch, P., Sivapalan, M., and Carrillo, G.: Characterizing hydrologic change through catchment classification, Hydrol. Earth Syst. Sci., 18, 273–285, https://doi.org/10.5194/hess-18-273-2014, 2014.
Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D.
B., and Gosling, S. N.:
Multimodel assessment of water scarcity under
climate change, P. Natl. Acad. Sci. USA, 111,
3245–3250, 2014.
Schobbenhaus, C., Gonçalves, J., Santos, J., Abram, M., Leão Neto,
R., Matos, G., Vidotti, R., Ramos, M., and de Jesus, J.: Carta geológica
do Brasil ao milionésimo: Sistema de Informações
Heográficas, CPRM – Serviço Geológico do Brasil, Brasília,
2004.
Seager, R., Naik, N., Baethgen, W., Robertson, A., Kushnir, Y., Nakamura, J.,
and Jurburg, S.: Tropical Oceanic Causes of Interannual to Multidecadal
Precipitation Variability in Southeast South America over the Past Century,
J. Climate, 23, 5517–5539, https://doi.org/10.1175/2010JCLI3578.1, 2010.
Shangguan, W., Hengl, T., Mendes de Jesus, J., Yuan, H., and Dai, Y.: Mapping
the global depth to bedrock for land surface modeling, J. Adv. Model. Earth
Sy., 9, 65–88, https://doi.org/10.1002/2016MS000686, 2017.
Shen, X., Anagnostou, E. N., Mei, Y., and Hong, Y.: A global distributed
basin morphometric dataset, Sci. Data, 4, 160124,
https://doi.org/10.1038/sdata.2016.124, 2017.
Singh, R., Archfield, S. A., and Wagener, T.: Identifying dominant controls
on hydrologic parameter transfer from gauged to ungauged catchments – A
comparative hydrology approach, J. Hydrol., 517, 985–996,
https://doi.org/10.1016/j.jhydrol.2014.06.030, 2014.
Siqueira, V. A., Paiva, R. C. D., Fleischmann, A. S., Fan, F. M., Ruhoff, A. L., Pontes, P. R. M., Paris, A., Calmant, S., and Collischonn, W.: Toward continental hydrologic–hydrodynamic modeling in South America, Hydrol. Earth Syst. Sci., 22, 4815–4842, https://doi.org/10.5194/hess-22-4815-2018, 2018.
Slater, L. J., Singer, M. B., and Kirchner, J. W.: Hydrologic versus
geomorphic drivers of trends in flood hazard, Geophys. Res. Lett., 42,
370–376, https://doi.org/10.1002/2014GL062482, 2015.
Smakhtin, V. U.: Low flow hydrology: a review, J. Hydrol.,
240, 147–186, https://doi.org/10.1016/S0022-1694(00)00340-1, 2001.
Song, X.-P., Hansen, M. C., Stehman, S. V., Potapov, P. V., Tyukavina, A.,
Vermote, E. F., and Townshend, J. R.: Global land change from 1982 to 2016,
Nature, 560, 639–643, https://doi.org/10.1038/s41586-018-0411-9, 2018.
Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., and Hsu, K.: A
Review of Global Precipitation Data Sets: Data Sources, Estimation, and
Intercomparisons, Rev. Geophys., 56, 79–107, https://doi.org/10.1002/2017RG000574,
2018.
Tedeschi, R. G., Cavalcanti, I. F. A., and Grimm, A. M.: Influences of two
types of ENSO on South American precipitation, Int. J. Climatol., 33,
1382–1400, https://doi.org/10.1002/joc.3519, 2013.
Tomasella, J., Borma, L. S., Marengo, J. A., Rodriguez, D. A., Cuartas, L.
A., A. Nobre, C., and Prado, M. C. R.: The droughts of 1996–1997 and
2004–2005 in Amazonia: hydrological response in the river main-stem, Hydrol.
Process., 25, 1228–1242, https://doi.org/10.1002/hyp.7889, 2011.
Van Lanen, H. A. J., Wanders, N., Tallaksen, L. M., and Van Loon, A. F.: Hydrological drought across the world: impact of climate and physical catchment structure, Hydrol. Earth Syst. Sci., 17, 1715–1732, https://doi.org/10.5194/hess-17-1715-2013, 2013.
Van Loon, A. F.: Hydrological drought explained, WIREs Water, 2,
359–392, https://doi.org/10.1002/wat2.1085, 2015.
Veldkamp, T. I. E., Zhao, F., Ward, P. J., De Moel, H., Aerts, J. C.,
Schmied, H. M., and Satoh, Y.: Human impact parameterizations in global
hydrological models improve estimates of monthly discharges and hydrological
extremes: a multi-model validation study, Environ. Res. Lett.,
13, 055008, https://doi.org/10.1088/1748-9326/aab96f, 2018.
Villarini, G.: On the seasonality of flooding across the continental United
States, Adv. Water Resour., 87, 80–91,
https://doi.org/10.1016/j.advwatres.2015.11.009, 2016.
Wada, Y., Wisser, D., and Bierkens, M. F. P.: Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources, Earth Syst. Dynam., 5, 15–40, https://doi.org/10.5194/esd-5-15-2014, 2014.
Westerberg, I. K. and McMillan, H. K.: Uncertainty in hydrological signatures, Hydrol. Earth Syst. Sci., 19, 3951–3968, https://doi.org/10.5194/hess-19-3951-2015, 2015.
Wohl, E., Barros, A., Brunsell, N.,
Chappell, N. A., Coe, M., Giambelluca, T., Goldsmith, S., Harmon, R.,
Hendrickx, J. M. H., Juvik, J., McDonnell, J., and Ogden, F.: The hydrology
of the humid tropics, Nat. Clim. Change, 2, 655–662,
https://doi.org/10.1038/nclimate1556, 2012.
Woldemeskel, F. and Sharma, A.: Should flood regimes change in a warming
climate? The role of antecedent moisture conditions, Geophys. Res. Lett.,
43, 7556–7563, https://doi.org/10.1002/2016GL069448, 2016.
Woods, R. A.: Analytical model of seasonal climate impacts on snow
hydrology: Continuous snowpacks, Adv. Water Resour., 32,
1465–1481, https://doi.org/10.1016/j.advwatres.2009.06.011, 2009.
Wongchuig, S. C., de Paiva, R. C. D., Siqueira, V., and Collischonn, W.:
Hydrological reanalysis across the 20th century: A case study of the Amazon
Basin, J. Hydrol., 570, 755–773, 2019.
Xavier, A. C., King, C. W., and Scanlon, B. R.: Daily gridded meteorological
variables in Brazil (1980–2013), Int. J. Climatol., 36, 2644–2659,
https://doi.org/10.1002/joc.4518, 2016.
Yadav, M., Wagener, T., and Gupta, H.: Regionalization of constraints on
expected watershed response behavior for improved predictions in ungauged
basins, Adv. Water Resour., 30, 1756–1774,
https://doi.org/10.1016/j.advwatres.2007.01.005, 2007.
Yokoo, Y. and Sivapalan, M.: Towards reconstruction of the flow duration curve: development of a conceptual framework with a physical basis, Hydrol. Earth Syst. Sci., 15, 2805–2819, https://doi.org/10.5194/hess-15-2805-2011, 2011.
Zhao, F., Veldkamp, T. I., Frieler, K., Schewe, J., Ostberg, S., Willner,
S., and Leng, G.: The critical role of the routing scheme in simulating
peak river discharge in global hydrological models, Environ. Res.
Lett., 12, 075003, https://doi.org/10.1088/1748-9326/aa7250, 2017.
Zscheischler, J., Westra, S., van den Hurk, B. J. J. M., Seneviratne, S. I.,
Ward, P. J., Pitman, A., AghaKouchak, A., Bresch, D. N., Leonard, M., Wahl,
T., and Zhang, X.: Future climate risk from compound events, Nat. Clim.
Change, 8, 469–477, https://doi.org/10.1038/s41558-018-0156-3, 2018.
Short summary
We present a new dataset for large-sample hydrological studies in Brazil. The dataset encompasses daily observed streamflow from 3679 gauges, as well as meteorological forcing for 897 selected catchments. It also includes 65 attributes covering topographic, climatic, hydrologic, land cover, geologic, soil, and human intervention variables. CAMELS-BR is publicly available and will enable new insights into the hydrological behavior of catchments in Brazil.
We present a new dataset for large-sample hydrological studies in Brazil. The dataset...
Altmetrics
Final-revised paper
Preprint