Journal cover Journal topic
Earth System Science Data The data publishing journal
Journal topic

Journal metrics

IF value: 9.197
IF9.197
IF 5-year value: 9.612
IF 5-year
9.612
CiteScore value: 12.5
CiteScore
12.5
SNIP value: 3.137
SNIP3.137
IPP value: 9.49
IPP9.49
SJR value: 4.532
SJR4.532
Scimago H <br class='widget-line-break'>index value: 48
Scimago H
index
48
h5-index value: 35
h5-index35
ESSD | Articles | Volume 12, issue 3
Earth Syst. Sci. Data, 12, 2075–2096, 2020
https://doi.org/10.5194/essd-12-2075-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Earth Syst. Sci. Data, 12, 2075–2096, 2020
https://doi.org/10.5194/essd-12-2075-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Data description paper 08 Sep 2020

Data description paper | 08 Sep 2020

CAMELS-BR: hydrometeorological time series and landscape attributes for 897 catchments in Brazil

Vinícius B. P. Chagas et al.

Related authors

CAMELS-GB: hydrometeorological time series and landscape attributes for 671 catchments in Great Britain
Gemma Coxon, Nans Addor, John P. Bloomfield, Jim Freer, Matt Fry, Jamie Hannaford, Nicholas J. K. Howden, Rosanna Lane, Melinda Lewis, Emma L. Robinson, Thorsten Wagener, and Ross Woods
Earth Syst. Sci. Data, 12, 2459–2483, https://doi.org/10.5194/essd-12-2459-2020,https://doi.org/10.5194/essd-12-2459-2020, 2020
Short summary
Risks and opportunities for a Swiss hydroelectricity company in a changing climate
Kirsti Hakala, Nans Addor, Thibault Gobbe, Johann Ruffieux, and Jan Seibert
Hydrol. Earth Syst. Sci., 24, 3815–3833, https://doi.org/10.5194/hess-24-3815-2020,https://doi.org/10.5194/hess-24-3815-2020, 2020
Short summary
The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset
Camila Alvarez-Garreton, Pablo A. Mendoza, Juan Pablo Boisier, Nans Addor, Mauricio Galleguillos, Mauricio Zambrano-Bigiarini, Antonio Lara, Cristóbal Puelma, Gonzalo Cortes, Rene Garreaud, James McPhee, and Alvaro Ayala
Hydrol. Earth Syst. Sci., 22, 5817–5846, https://doi.org/10.5194/hess-22-5817-2018,https://doi.org/10.5194/hess-22-5817-2018, 2018
Short summary
Toward continental hydrologic–hydrodynamic modeling in South America
Vinícius A. Siqueira, Rodrigo C. D. Paiva, Ayan S. Fleischmann, Fernando M. Fan, Anderson L. Ruhoff, Paulo R. M. Pontes, Adrien Paris, Stéphane Calmant, and Walter Collischonn
Hydrol. Earth Syst. Sci., 22, 4815–4842, https://doi.org/10.5194/hess-22-4815-2018,https://doi.org/10.5194/hess-22-4815-2018, 2018
Short summary
Mapping (dis)agreement in hydrologic projections
Lieke A. Melsen, Nans Addor, Naoki Mizukami, Andrew J. Newman, Paul J. J. F. Torfs, Martyn P. Clark, Remko Uijlenhoet, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 22, 1775–1791, https://doi.org/10.5194/hess-22-1775-2018,https://doi.org/10.5194/hess-22-1775-2018, 2018
Short summary

Related subject area

Hydrology and Soil Science – Hydrology
CAMELS-GB: hydrometeorological time series and landscape attributes for 671 catchments in Great Britain
Gemma Coxon, Nans Addor, John P. Bloomfield, Jim Freer, Matt Fry, Jamie Hannaford, Nicholas J. K. Howden, Rosanna Lane, Melinda Lewis, Emma L. Robinson, Thorsten Wagener, and Ross Woods
Earth Syst. Sci. Data, 12, 2459–2483, https://doi.org/10.5194/essd-12-2459-2020,https://doi.org/10.5194/essd-12-2459-2020, 2020
Short summary
A dense network of cosmic-ray neutron sensors for soil moisture observation in a highly instrumented pre-Alpine headwater catchment in Germany
Benjamin Fersch, Till Francke, Maik Heistermann, Martin Schrön, Veronika Döpper, Jannis Jakobi, Gabriele Baroni, Theresa Blume, Heye Bogena, Christian Budach, Tobias Gränzig, Michael Förster, Andreas Güntner, Harrie-Jan Hendricks Franssen, Mandy Kasner, Markus Köhli, Birgit Kleinschmit, Harald Kunstmann, Amol Patil, Daniel Rasche, Lena Scheiffele, Ulrich Schmidt, Sandra Szulc-Seyfried, Jannis Weimar, Steffen Zacharias, Marek Zreda, Bernd Heber, Ralf Kiese, Vladimir Mares, Hannes Mollenhauer, Ingo Völksch, and Sascha Oswald
Earth Syst. Sci. Data, 12, 2289–2309, https://doi.org/10.5194/essd-12-2289-2020,https://doi.org/10.5194/essd-12-2289-2020, 2020
GloFAS-ERA5 operational global river discharge reanalysis 1979–present
Shaun Harrigan, Ervin Zsoter, Lorenzo Alfieri, Christel Prudhomme, Peter Salamon, Fredrik Wetterhall, Christopher Barnard, Hannah Cloke, and Florian Pappenberger
Earth Syst. Sci. Data, 12, 2043–2060, https://doi.org/10.5194/essd-12-2043-2020,https://doi.org/10.5194/essd-12-2043-2020, 2020
Short summary
A Canadian River Ice Database from the National Hydrometric Program Archives
Laurent de Rham, Yonas Dibike, Spyros Beltaos, Daniel Peters, Barrie Bonsal, and Terry Prowse
Earth Syst. Sci. Data, 12, 1835–1860, https://doi.org/10.5194/essd-12-1835-2020,https://doi.org/10.5194/essd-12-1835-2020, 2020
Short summary
An integration of gauge, satellite, and reanalysis precipitation datasets for the largest river basin of the Tibetan Plateau
Yuanwei Wang, Lei Wang, Xiuping Li, Jing Zhou, and Zhidan Hu
Earth Syst. Sci. Data, 12, 1789–1803, https://doi.org/10.5194/essd-12-1789-2020,https://doi.org/10.5194/essd-12-1789-2020, 2020
Short summary

Cited articles

Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017. 
Addor, N., Do, H. X., Alvarez-Garreton, C., Coxon, G., Fowler, K., and Mendoza, P. A.: Large-sample hydrology: recent progress, guidelines for new datasets and grand challenges, Hydrolog. Sci. J., 1–14, https://doi.org/10.1080/02626667.2019.1683182, 2019. 
Alfieri, L., Lorini, V., Hirpa, F. A., Harrigan, S., Zsoter, E., Prudhomme, C., and Salamon, P.: A global streamflow reanalysis for 1980–2018, J. Hydrol., 6, 100049, https://doi.org/10.1016/j.hydroa.2019.100049, 2020. 
Alvarez-Garreton, C., Mendoza, P. A., Boisier, J. P., Addor, N., Galleguillos, M., Zambrano-Bigiarini, M., Lara, A., Puelma, C., Cortes, G., Garreaud, R., McPhee, J., and Ayala, A.: The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset, Hydrol. Earth Syst. Sci., 22, 5817–5846, https://doi.org/10.5194/hess-22-5817-2018, 2018. 
ANA – Brazilian National Water Agency: Relatorio de Seguranca de Barragens 2017, 2018. 
Download
Short summary
We present a new dataset for large-sample hydrological studies in Brazil. The dataset encompasses daily observed streamflow from 3679 gauges, as well as meteorological forcing for 897 selected catchments. It also includes 65 attributes covering topographic, climatic, hydrologic, land cover, geologic, soil, and human intervention variables. CAMELS-BR is publicly available and will enable new insights into the hydrological behavior of catchments in Brazil.
We present a new dataset for large-sample hydrological studies in Brazil. The dataset...
Citation