Articles | Volume 12, issue 3
https://doi.org/10.5194/essd-12-1545-2020
https://doi.org/10.5194/essd-12-1545-2020
Data description paper
 | 
08 Jul 2020
Data description paper |  | 08 Jul 2020

Towards harmonisation of image velocimetry techniques for river surface velocity observations

Matthew T. Perks, Silvano Fortunato Dal Sasso, Alexandre Hauet, Elizabeth Jamieson, Jérôme Le Coz, Sophie Pearce, Salvador Peña-Haro, Alonso Pizarro, Dariia Strelnikova, Flavia Tauro, James Bomhof, Salvatore Grimaldi, Alain Goulet, Borbála Hortobágyi, Magali Jodeau, Sabine Käfer, Robert Ljubičić, Ian Maddock, Peter Mayr, Gernot Paulus, Lionel Pénard, Leigh Sinclair, and Salvatore Manfreda

Related authors

A comparison of tools and techniques for stabilising unmanned aerial system (UAS) imagery for surface flow observations
Robert Ljubičić, Dariia Strelnikova, Matthew T. Perks, Anette Eltner, Salvador Peña-Haro, Alonso Pizarro, Silvano Fortunato Dal Sasso, Ulf Scherling, Pietro Vuono, and Salvatore Manfreda
Hydrol. Earth Syst. Sci., 25, 5105–5132, https://doi.org/10.5194/hess-25-5105-2021,https://doi.org/10.5194/hess-25-5105-2021, 2021
Short summary
KLT-IV v1.0: image velocimetry software for use with fixed and mobile platforms
Matthew T. Perks
Geosci. Model Dev., 13, 6111–6130, https://doi.org/10.5194/gmd-13-6111-2020,https://doi.org/10.5194/gmd-13-6111-2020, 2020
Short summary
Identifying the optimal spatial distribution of tracers for optical sensing of stream surface flow
Alonso Pizarro, Silvano F. Dal Sasso, Matthew T. Perks, and Salvatore Manfreda
Hydrol. Earth Syst. Sci., 24, 5173–5185, https://doi.org/10.5194/hess-24-5173-2020,https://doi.org/10.5194/hess-24-5173-2020, 2020
Short summary
Technical Note: Advances in flash flood monitoring using unmanned aerial vehicles (UAVs)
Matthew T. Perks, Andrew J. Russell, and Andrew R. G. Large
Hydrol. Earth Syst. Sci., 20, 4005–4015, https://doi.org/10.5194/hess-20-4005-2016,https://doi.org/10.5194/hess-20-4005-2016, 2016
Short summary
Reduced fine sediment flux and channel change in response to the managed diversion of an upland river channel
Matthew Thomas Perks and Jeff Warburton
Earth Surf. Dynam., 4, 705–719, https://doi.org/10.5194/esurf-4-705-2016,https://doi.org/10.5194/esurf-4-705-2016, 2016
Short summary

Related subject area

Hydrology
High-resolution mapping of monthly industrial water withdrawal in China from 1965 to 2020
Chengcheng Hou, Yan Li, Shan Sang, Xu Zhao, Yanxu Liu, Yinglu Liu, and Fang Zhao
Earth Syst. Sci. Data, 16, 2449–2464, https://doi.org/10.5194/essd-16-2449-2024,https://doi.org/10.5194/essd-16-2449-2024, 2024
Short summary
Evapotranspiration evaluation using three different protocols on a large green roof in the greater Paris area
Pierre-Antoine Versini, Leydy Alejandra Castellanos-Diaz, David Ramier, and Ioulia Tchiguirinskaia
Earth Syst. Sci. Data, 16, 2351–2366, https://doi.org/10.5194/essd-16-2351-2024,https://doi.org/10.5194/essd-16-2351-2024, 2024
Short summary
Simbi: historical hydro-meteorological time series and signatures for 24 catchments in Haiti
Ralph Bathelemy, Pierre Brigode, Vazken Andréassian, Charles Perrin, Vincent Moron, Cédric Gaucherel, Emmanuel Tric, and Dominique Boisson
Earth Syst. Sci. Data, 16, 2073–2098, https://doi.org/10.5194/essd-16-2073-2024,https://doi.org/10.5194/essd-16-2073-2024, 2024
Short summary
CAMELE: Collocation-Analyzed Multi-source Ensembled Land Evapotranspiration Data
Changming Li, Ziwei Liu, Wencong Yang, Zhuoyi Tu, Juntai Han, Sien Li, and Hanbo Yang
Earth Syst. Sci. Data, 16, 1811–1846, https://doi.org/10.5194/essd-16-1811-2024,https://doi.org/10.5194/essd-16-1811-2024, 2024
Short summary
A hydrogeomorphic dataset for characterizing catchment hydrological behavior across the Tibetan Plateau
Yuhan Guo, Hongxing Zheng, Yuting Yang, Yanfang Sang, and Congcong Wen
Earth Syst. Sci. Data, 16, 1651–1665, https://doi.org/10.5194/essd-16-1651-2024,https://doi.org/10.5194/essd-16-1651-2024, 2024
Short summary

Cited articles

Adrian, R. J.: Scattering particle characteristics and their effect on pulsed laser measurements of fluid flow: speckle velocimetry vs particle image velocimetry, Appl. Opt., 23, 1690–1691, https://doi.org/10.1364/AO.23.001690, 1984. a
Agisoft: Agisoft PhotoScan Professional Edition (version 1.1.6), available at: https://www.agisoft.com (last access: 23 June 2020), . a
Brevis, W., Niño, Y., and Jirka, G. H.: Integrating cross-correlation and relaxation algorithms for particle tracking velocimetry, Exp. Fluids, 50, 135–147, 2011. a
Dal Sasso, S. F., Pizarro, A., Samela, C., Mita, L., and Manfreda, S.: Exploring the optimal experimental setup for surface flow velocity measurements using PTV, Environ. Monit. Assess., 190, 460, https://doi.org/10.1007/s10661-018-6848-3, 2018. a, b, c, d, e, f
Detert, M. and Weitbrecht, V.: A low-cost airborne velocimetry system: proof of concept, J. Hydraul. Res., 53, 532–539, https://doi.org/10.1080/00221686.2015.1054322, 2015. a
Download
Short summary
We present datasets acquired from seven countries across Europe and North America consisting of image sequences. These have been subjected to a range of pre-processing methods in preparation for image velocimetry analysis. These datasets and accompanying reference data are a resource that may be used for conducting benchmarking experiments, assessing algorithm performances, and focusing future software development.
Altmetrics
Final-revised paper
Preprint