Articles | Volume 12, issue 3
Earth Syst. Sci. Data, 12, 1545–1559, 2020
https://doi.org/10.5194/essd-12-1545-2020
Earth Syst. Sci. Data, 12, 1545–1559, 2020
https://doi.org/10.5194/essd-12-1545-2020
Data description paper
08 Jul 2020
Data description paper | 08 Jul 2020

Towards harmonisation of image velocimetry techniques for river surface velocity observations

Matthew T. Perks et al.

Related authors

A comparison of tools and techniques for stabilising unmanned aerial system (UAS) imagery for surface flow observations
Robert Ljubičić, Dariia Strelnikova, Matthew T. Perks, Anette Eltner, Salvador Peña-Haro, Alonso Pizarro, Silvano Fortunato Dal Sasso, Ulf Scherling, Pietro Vuono, and Salvatore Manfreda
Hydrol. Earth Syst. Sci., 25, 5105–5132, https://doi.org/10.5194/hess-25-5105-2021,https://doi.org/10.5194/hess-25-5105-2021, 2021
Short summary
KLT-IV v1.0: image velocimetry software for use with fixed and mobile platforms
Matthew T. Perks
Geosci. Model Dev., 13, 6111–6130, https://doi.org/10.5194/gmd-13-6111-2020,https://doi.org/10.5194/gmd-13-6111-2020, 2020
Short summary
Identifying the optimal spatial distribution of tracers for optical sensing of stream surface flow
Alonso Pizarro, Silvano F. Dal Sasso, Matthew T. Perks, and Salvatore Manfreda
Hydrol. Earth Syst. Sci., 24, 5173–5185, https://doi.org/10.5194/hess-24-5173-2020,https://doi.org/10.5194/hess-24-5173-2020, 2020
Short summary
Technical Note: Advances in flash flood monitoring using unmanned aerial vehicles (UAVs)
Matthew T. Perks, Andrew J. Russell, and Andrew R. G. Large
Hydrol. Earth Syst. Sci., 20, 4005–4015, https://doi.org/10.5194/hess-20-4005-2016,https://doi.org/10.5194/hess-20-4005-2016, 2016
Short summary
Reduced fine sediment flux and channel change in response to the managed diversion of an upland river channel
Matthew Thomas Perks and Jeff Warburton
Earth Surf. Dynam., 4, 705–719, https://doi.org/10.5194/esurf-4-705-2016,https://doi.org/10.5194/esurf-4-705-2016, 2016
Short summary

Related subject area

Hydrology
QUADICA: water QUAlity, DIscharge and Catchment Attributes for large-sample studies in Germany
Pia Ebeling, Rohini Kumar, Stefanie R. Lutz, Tam Nguyen, Fanny Sarrazin, Michael Weber, Olaf Büttner, Sabine Attinger, and Andreas Musolff
Earth Syst. Sci. Data, 14, 3715–3741, https://doi.org/10.5194/essd-14-3715-2022,https://doi.org/10.5194/essd-14-3715-2022, 2022
Short summary
A global terrestrial evapotranspiration product based on the three-temperature model with fewer input parameters and no calibration requirement
Leiyu Yu, Guo Yu Qiu, Chunhua Yan, Wenli Zhao, Zhendong Zou, Jinshan Ding, Longjun Qin, and Yujiu Xiong
Earth Syst. Sci. Data, 14, 3673–3693, https://doi.org/10.5194/essd-14-3673-2022,https://doi.org/10.5194/essd-14-3673-2022, 2022
Short summary
A new snow depth data set over northern China derived using GNSS interferometric reflectometry from a continuously operating network (GSnow-CHINA v1.0, 2013–2022)
Wei Wan, Jie Zhang, Liyun Dai, Hong Liang, Ting Yang, Baojian Liu, Zhizhou Guo, Heng Hu, and Limin Zhao
Earth Syst. Sci. Data, 14, 3549–3571, https://doi.org/10.5194/essd-14-3549-2022,https://doi.org/10.5194/essd-14-3549-2022, 2022
Short summary
Microwave radiometry experiment for snow in Altay, China: time series of in situ data for electromagnetic and physical features of snowpack
Liyun Dai, Tao Che, Yang Zhang, Zhiguo Ren, Junlei Tan, Meerzhan Akynbekkyzy, Lin Xiao, Shengnan Zhou, Yuna Yan, Yan Liu, Hongyi Li, and Lifu Wang
Earth Syst. Sci. Data, 14, 3509–3530, https://doi.org/10.5194/essd-14-3509-2022,https://doi.org/10.5194/essd-14-3509-2022, 2022
Short summary
An integrated dataset of daily lake surface water temperature over the Tibetan Plateau
Linan Guo, Hongxing Zheng, Yanhong Wu, Lanxin Fan, Mengxuan Wen, Junsheng Li, Fangfang Zhang, Liping Zhu, and Bing Zhang
Earth Syst. Sci. Data, 14, 3411–3422, https://doi.org/10.5194/essd-14-3411-2022,https://doi.org/10.5194/essd-14-3411-2022, 2022
Short summary

Cited articles

Adrian, R. J.: Scattering particle characteristics and their effect on pulsed laser measurements of fluid flow: speckle velocimetry vs particle image velocimetry, Appl. Opt., 23, 1690–1691, https://doi.org/10.1364/AO.23.001690, 1984. a
Agisoft: Agisoft PhotoScan Professional Edition (version 1.1.6), available at: https://www.agisoft.com (last access: 23 June 2020), . a
Brevis, W., Niño, Y., and Jirka, G. H.: Integrating cross-correlation and relaxation algorithms for particle tracking velocimetry, Exp. Fluids, 50, 135–147, 2011. a
Dal Sasso, S. F., Pizarro, A., Samela, C., Mita, L., and Manfreda, S.: Exploring the optimal experimental setup for surface flow velocity measurements using PTV, Environ. Monit. Assess., 190, 460, https://doi.org/10.1007/s10661-018-6848-3, 2018. a, b, c, d, e, f
Detert, M. and Weitbrecht, V.: A low-cost airborne velocimetry system: proof of concept, J. Hydraul. Res., 53, 532–539, https://doi.org/10.1080/00221686.2015.1054322, 2015. a
Download
Short summary
We present datasets acquired from seven countries across Europe and North America consisting of image sequences. These have been subjected to a range of pre-processing methods in preparation for image velocimetry analysis. These datasets and accompanying reference data are a resource that may be used for conducting benchmarking experiments, assessing algorithm performances, and focusing future software development.