Articles | Volume 18, issue 1
https://doi.org/10.5194/essd-18-309-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-18-309-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global near real-time 500 m 10 d FPAR dataset from MODIS and VIIRS for operational agricultural monitoring and crop yield forecasting
Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, the Netherlands
Engeneering, Roma, Italy
Anja Klisch
ThüringenForst, Forestry Research and Competence Centre, Jägerstraße 1, 99867 Gotha, Germany
Michele Meroni
Seidor Consulting, Barcelona, Spain
Anton Vrieling
Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, the Netherlands
Giacinto Manfron
European Commission, Joint Research Centre (JRC), Ispra, Italy
Clement Atzberger
CYCLOPS MRV, New York, United States
Felix Rembold
CORRESPONDING AUTHOR
European Commission, Joint Research Centre (JRC), Ispra, Italy
Related authors
Giulia Ronchetti, Luigi Nisini Scacchiafichi, Lorenzo Seguini, Iacopo Cerrani, and Marijn van der Velde
Earth Syst. Sci. Data, 16, 1623–1649, https://doi.org/10.5194/essd-16-1623-2024, https://doi.org/10.5194/essd-16-1623-2024, 2024
Short summary
Short summary
We present a dataset of EU-wide harmonized subnational crop area, production, and yield statistics with information on data sources, processing steps, missing and derived data, and quality checks. Statistical records (344 282) collected from 1975 to 2020 for soft and durum wheat, winter and spring barley, grain maize, sunflower, and sugar beet were aligned with the EUROSTAT crop legend and the 2016 territorial classification for 961 regions. Time series have a median length of 21 years.
Dilli Paudel, Michiel Kallenberg, Stella Ofori-Ampofo, Hilmy Baja, Ron van Bree, Aike Potze, Pratishtha Poudel, Abdelrahman Saleh, Weston Anderson, Malte von Bloh, Andres Castellano, Oumnia Ennaji, Raed Hamed, Rahel Laudien, Donghoon Lee, Inti Luna, Michele Meroni, Janet Mumo Mutuku, Siyabusa Mkuhlani, Jonathan Richetti, Alex C. Ruane, Ritvik Sahajpal, Guanyuan Shai, Vasileios Sitokonstantinou, Rogério de Souza Nóia Júnior, Amit Kumar Srivastava, Robert Strong, Lily-belle Sweet, Petar Vojnovic, and Ioannis N. Athanasiadis
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-83, https://doi.org/10.5194/essd-2025-83, 2025
Preprint under review for ESSD
Short summary
Short summary
Improving crop yield predictions is crucial for food security. Prior research relied on case studies, making it hard to compare methods & track progress. We introduce CY-Bench, a global dataset for forecasting maize and wheat yields across diverse farming systems in over 25 countries. It includes standardized weather, soil, and satellite data, curated by a diverse set of experts. CY-Bench supports the development of better forecasting tools to help decision-makers plan for global food security.
Giulia Ronchetti, Luigi Nisini Scacchiafichi, Lorenzo Seguini, Iacopo Cerrani, and Marijn van der Velde
Earth Syst. Sci. Data, 16, 1623–1649, https://doi.org/10.5194/essd-16-1623-2024, https://doi.org/10.5194/essd-16-1623-2024, 2024
Short summary
Short summary
We present a dataset of EU-wide harmonized subnational crop area, production, and yield statistics with information on data sources, processing steps, missing and derived data, and quality checks. Statistical records (344 282) collected from 1975 to 2020 for soft and durum wheat, winter and spring barley, grain maize, sunflower, and sugar beet were aligned with the EUROSTAT crop legend and the 2016 territorial classification for 961 regions. Time series have a median length of 21 years.
Raphaël d'Andrimont, Astrid Verhegghen, Michele Meroni, Guido Lemoine, Peter Strobl, Beatrice Eiselt, Momchil Yordanov, Laura Martinez-Sanchez, and Marijn van der Velde
Earth Syst. Sci. Data, 13, 1119–1133, https://doi.org/10.5194/essd-13-1119-2021, https://doi.org/10.5194/essd-13-1119-2021, 2021
Short summary
Short summary
The Land Use/Cover Area frame Survey (LUCAS) is a regular in situ land cover and land use ground survey exercise that extends over the whole of the European Union. A new LUCAS module specifically tailored to Earth observation was introduced in 2018: the LUCAS Copernicus module. This paper summarizes the LUCAS Copernicus survey and provides the unique resulting data: 58 426 polygons with level-3 land cover (66 specific classes including crop type) and land use (38 classes).
Cited articles
Atzberger, C. and Eilers, P. H.: A time series for monitoring vegetation activity and phenology at 10-daily time steps covering large parts of South America, International Journal of Digital Earth, 4, 365–386, https://doi.org/10.1080/17538947.2010.505664, 2011a. a
Atzberger, C. and Eilers, P. H. C.: Evaluating the effectiveness of smoothing algorithms in the absence of ground reference measurements, International Journal of Remote Sensing, 32, 3689–3709, https://doi.org/10.1080/01431161003762405, 2011b. a
Basso, B. and Liu, L.: Chapter Four - Seasonal crop yield forecast: Methods, applications, and accuracies, in: Advances in Agronomy, edited by: Sparks, D. L., vol. 154, Academic Press, 201–255, https://doi.org/10.1016/bs.agron.2018.11.002, 2019. a
Beck, P. S. A., Atzberger, C., Høgda, K. A., Johansen, B., and Skidmore, A. K.: Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI, Remote Sensing of Environment, 100, 321–334, https://doi.org/10.1016/j.rse.2005.10.021, 2006. a
Cammalleri, C., Verger, A., Lacaze, R., and Vogt, J. V.: Harmonization of GEOV2 fAPAR time series through MODIS data for global drought monitoring, International Journal of Applied Earth Observation and Geoinformation, 80, 1–12, https://doi.org/10.1016/j.jag.2019.03.017, 2019. a
Cammalleri, C., Arias-Muñoz, C., Barbosa, P., de Jager, A., Magni, D., Masante, D., Mazzeschi, M., McCormick, N., Naumann, G., Spinoni, J., and Vogt, J.: A revision of the Combined Drought Indicator (CDI) used in the European Drought Observatory (EDO), Nat. Hazards Earth Syst. Sci., 21, 481–495, https://doi.org/10.5194/nhess-21-481-2021, 2021. a
Carroll, M., DiMiceli, C., Townshend, J., Sohlberg, R., Hubbard, A., and Wooten, M.: MOD44W: Global MODIS water maps user guide, LP-DAAC, https://lpdaac.usgs.gov/documents/1915/MOD44W_User_Guide_ATBD_V61.pdf (last access: 30 September 2025), 2017. a
Ceccherini, G., Gobron, N., and Robustelli, M.: Harmonization of Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) from Sea-ViewingWide Field-of-View Sensor (SeaWiFS) and Medium Resolution Imaging Spectrometer Instrument (MERIS), Remote Sensing, 5, 3357–3376, https://doi.org/10.3390/rs5073357, 2013. a
Chen, J., Jönsson, P., Tamura, M., Gu, Z., Matsushita, B., and Eklundh, L.: A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter, Remote Sensing of Environment, 91, 332–344, https://doi.org/10.1016/j.rse.2004.03.014, 2004. a, b, c
De Leeuw, J., Vrieling, A., Shee, A., Atzberger, C., Hadgu, K. M., Biradar, C. M., Keah, H., and Turvey, C.: The Potential and Uptake of Remote Sensing in Insurance: A Review, Remote Sensing, 6, 10888–10912, https://doi.org/10.3390/rs61110888, 2014. a
EC-JRC: JRC MARS Bulletin: crop monitoring in Europe. Vol. 31 No 5, May 2023, Publications Office, LU, https://data.europa.eu/doi/10.2760/950817 (last access: 30 September 2025), 2023. a
Eilers, P. H. C.: A Perfect Smoother, Analytical Chemistry, 75, 3631–3636, https://doi.org/10.1021/ac034173t, 2003. a
FAO and IFAD: The State of Food Security and Nutrition in the World 2020: Transforming food systems for affordable healthy diets, no. 2020 in The State of Food Security and Nutrition in the World (SOFI), FAO, IFAD, UNICEF, WFP and WHO, Rome, Italy, ISBN 978-92-5-132901-6, https://doi.org/10.4060/ca9692en, 2020. a
Friedl, M. and Sulla-Menashe, D.: MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006, NASA [data set], https://doi.org/10.5067/MODIS/MCD12Q1.006, 2019. a, b
Fritz, S., See, L., Bayas, J. C. L., Waldner, F., Jacques, D., Becker-Reshef, I., Whitcraft, A., Baruth, B., Bonifacio, R., Crutchfield, J., Rembold, F., Rojas, O., Schucknecht, A., Van der Velde, M., Verdin, J., Wu, B., Yan, N., You, L., Gilliams, S., Mücher, S., Tetrault, R., Moorthy, I., and McCallum, I.: A comparison of global agricultural monitoring systems and current gaps, Agricultural Systems, 168, 258–272, https://doi.org/10.1016/j.agsy.2018.05.010, 2019. a
Fritz, S., Lesiv, M., Perez Guzman, K., See, L., Meroni, M., Collivignarelli, F., and Reimbold, F.: Development of a new cropland and rangeland area fraction image at 500 m for the ASAP system., European Commission. Joint Research Centre, LU, https://data.europa.eu/doi/10.2760/32935 (last access: 30 September 2025), 2024. a
Goward, S. N. and Huemmrich, K. F.: Vegetation canopy PAR absorptance and the normalized difference vegetation index: An assessment using the SAIL model, Remote Sensing of Environment, 39, 119–140, https://doi.org/10.1016/0034-4257(92)90131-3, 1992. a
Gudmundsson, L., Bremnes, J. B., Haugen, J. E., and Engen-Skaugen, T.: Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations – a comparison of methods, Hydrol. Earth Syst. Sci., 16, 3383–3390, https://doi.org/10.5194/hess-16-3383-2012, 2012. a
Klisch, A. and Atzberger, C.: Operational Drought Monitoring in Kenya Using MODIS NDVI Time Series, Remote Sensing, 8, 267, https://doi.org/10.3390/rs8040267, 2016. a, b, c, d
Knyazikhin, Y., Privette, J. L., Zhang, Y., Tian, Y., Wang, Y., Morisette, J. T., Lotsch, A., Running, S. W., Nemani, R., Glassy, J., and Votava, P.: Algorithm Theoretical Basis Document, MODIS Leaf Area Index (LAI) And Fraction Of Photosynthetically Active Radiation Absorbed By Vegetation (FPAR) Product. Algorithm Theoretical Basis Document, https://modis.gsfc.nasa.gov/data/atbd/atbd_mod15.pdf (last access: 30 September 2025), 1999. a
LAADS-DAAC: Continuity Efforts for MODIS to VIIRS Data – LAADS DAAC, https://ladsweb.modaps.eosdis.nasa.gov/learn/modis-to-viirs-transition/ (last access: 30 September 2025), 2024. a
LMS: Corine Land Cover, https://land.copernicus.eu/en/products/corine-land-cover (last access: 30 September 2025), 2018. a
LP-DAAC: Aqua MODIS Data Loss on July 22, 27, and 28, 2023, https://lpdaac.usgs.gov/news/aqua-modis-data-loss-on-july-22-27-and-28-2023/ (last access: 30 September 2025), 2023a. a
LP-DAAC: MODIS Light-Out-Operations – Potential Data Loss, https://lpdaac.usgs.gov/news/modis-light-out-operations-potential-data-loss/ (last access: 30 September 2025), 2023b. a
Lyapustin, A., Go, S., Korkin, S., Wang, Y., Torres, O., Jethva, H., and Marshak, A.: Retrievals of Aerosol Optical Depth and Spectral Absorption From DSCOVR EPIC, Frontiers in Remote Sensing, 2, https://doi.org/10.3389/frsen.2021.645794, 2021. a
Mateo-Sanchis, A., Adsuara, J. E., Piles, M., Munoz-Marí, J., Perez-Suay, A., and Camps-Valls, G.: Interpretable Long Short-Term Memory Networks for Crop Yield Estimation, IEEE Geoscience and Remote Sensing Letters, 20, 1–5, https://doi.org/10.1109/LGRS.2023.3244064, 2023. a
Meroni, M., Verstraete, M. M., Rembold, F., Urbano, F., and Kayitakire, F.: A phenology-based method to derive biomass production anomalies for food security monitoring in the Horn of Africa, International Journal of Remote Sensing, 35, 2472–2492, https://doi.org/10.1080/01431161.2014.883090, 2014. a
Meroni, M., Fasbender, D., Rembold, F., Atzberger, C., and Klisch, A.: Near real-time vegetation anomaly detection with MODIS NDVI: Timeliness vs. accuracy and effect of anomaly computation options, Remote Sensing of Environment, 221, 508–521, https://doi.org/10.1016/j.rse.2018.11.041, 2019. a, b, c, d
Meroni, M., Waldner, F., Seguini, L., Kerdiles, H., and Rembold, F.: Yield forecasting with machine learning and small data: What gains for grains?, Agricultural and Forest Meteorology, 308–309, 108555, https://doi.org/10.1016/j.agrformet.2021.108555, 2021. a
Monteith, J. L.: Solar Radiation and Productivity in Tropical Ecosystems, Journal of Applied Ecology, 9, 747–766, https://doi.org/10.2307/2401901,1972. a
Myneni, R.: VIIRS/JPSS1 Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid V002, NASA [data set], https://doi.org/10.5067/VIIRS/VJ115A2H.002, 2023a. a
Myneni, R.: VIIRS/NPP Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid V002, NASA [data set], https://doi.org/10.5067/VIIRS/VNP15A2H.002, 2023b. a
Myneni, R., Knyazikhin, Y., and Park, T.: MODIS/Aqua Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid V061, NASA [data set], https://doi.org/10.5067/MODIS/MYD15A2H.061, 2021a. a
Myneni, R., Knyazikhin, Y., and Park, T.: MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid V061, NASA [data set], https://doi.org/10.5067/MODIS/MOD15A2H.061, 2021b. a
Myneni, R., Knyazikhin, Y., and Park, T.: MODIS/Terra+Aqua Leaf Area Index/FPAR 4-Day L4 Global 500m SIN Grid V061, NASA [data set], https://doi.org/10.5067/MODIS/MCD15A3H.061, 2021c. a
Nakalembe, C., Becker-Reshef, I., Bonifacio, R., Hu, G., Humber, M. L., Justice, C. J., Keniston, J., Mwangi, K., Rembold, F., Shukla, S., Urbano, F., Whitcraft, A. K., Li, Y., Zappacosta, M., Jarvis, I., and Sanchez, A.: A review of satellite-based global agricultural monitoring systems available for Africa, Global Food Security, 29, 100543, https://doi.org/10.1016/j.gfs.2021.100543, 2021. a
Park, T., Yan, K., Chen, C., Xu, B., Knyazikhin, Y., and Myneni, R.: VIIRS Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation Absorbed by Vegetation (FPAR) Product Algorithm Theoretical Basis Document (ATBD), https://lpdaac.usgs.gov/documents/125/VNP15_ATBD.pdf (last access: 30 September 2025), 2018b. a
Paudel, D., Boogaard, H., de Wit, A., Janssen, S., Osinga, S., Pylianidis, C., and Athanasiadis, I. N.: Machine learning for large-scale crop yield forecasting, Agricultural Systems, 187, 103016, https://doi.org/10.1016/j.agsy.2020.103016, 2021. a
Pedelty, J., Devadiga, S., Masuoka, E., Brown, M., Pinzon, J., Tucker, C., Vermote, E., Prince, S., Nagol, J., Justice, C., Roy, D., Ju, J., Schaaf, C., Liu, J., Privette, J., and Pinheiro, A.: Generating a Long-term Land Data Record from the AVHRR and MODIS Instruments, in: 2007 IEEE International Geoscience and Remote Sensing Symposium, 1021–1025, https://doi.org/10.1109/IGARSS.2007.4422974, 2007. a
Pinzon, J. E. and Tucker, C. J.: A Non-Stationary 1981–2012 AVHRR NDVI3g Time Series, Remote Sensing, 6, 6929–6960, https://doi.org/10.3390/rs6086929, 2014. a
Programme, W. F.: Global Report on Food Crises – 2022, https://www.wfp.org/publications/global-report-food-crises-2022 (last access: 30 September 2025), 2022. a
Rembold, F., Meroni, M., Urbano, F., Royer, A., Atzberger, C., Lemoine, G., Eerens, H., and Haesen, D.: Remote sensing time series analysis for crop monitoring with the SPIRITS software: new functionalities and use examples, Frontiers in Environmental Science, 3, https://doi.org/10.3389/fenvs.2015.00046, 2015. a
Rembold, F., Meroni, M., Otieno, V., Kipkogei, O., Mwangi, K., de Sousa Afonso, J. M., Ihadua, I. M. T. J., José, A. E. A., Zoungrana, L. E., Taieb, A. H., Urbano, F., Dimou, M., Kerdiles, H., Vojnovic, P., Zampieri, M., and Toreti, A.: New Functionalities and Regional/National Use Cases of the Anomaly Hotspots of Agricultural Production (ASAP) Platform, Remote Sensing, 15, 4284, https://doi.org/10.3390/rs15174284, 2023. a
Rojas, O.: Next Generation Agricultural Stress Index System (ASIS) for Agricultural Drought Monitoring, Remote Sensing, 13, 959, https://doi.org/10.3390/rs13050959, 2021. a
Román, M. O., Justice, C., Paynter, I., Boucher, P. B., Devadiga, S., Endsley, A., Erb, A., Friedl, M., Gao, H., Giglio, L., Gray, J. M., Hall, D., Hulley, G., Kimball, J., Knyazikhin, Y., Lyapustin, A., Myneni, R. B., Noojipady, P., Pu, J., Riggs, G., Sarkar, S., Schaaf, C., Shah, D., Tran, K. H., Vermote, E., Wang, D., Wang, Z., Wu, A., Ye, Y., Shen, Y., Zhang, S., Zhang, S., Zhang, X., Zhao, M., Davidson, C., and Wolfe, R.: Continuity between NASA MODIS Collection 6.1 and VIIRS Collection 2 land products, Remote Sensing of Environment, 302, 113963, https://doi.org/10.1016/j.rse.2023.113963, 2024. a, b, c, d
Schauberger, B., Jägermeyr, J., and Gornott, C.: A systematic review of local to regional yield forecasting approaches and frequently used data resources, European Journal of Agronomy, 120, 126153, https://doi.org/10.1016/j.eja.2020.126153, 2020. a
Sedano, F., Kempeneers, P., and Hurtt, G.: A Kalman Filter-Based Method to Generate Continuous Time Series of Medium-Resolution NDVI Images, Remote Sensing, 6, 12381–12408, https://doi.org/10.3390/rs61212381, 2014. a
Seguini, L., Klisch, A., Meroni, M., Vrieling, A., Manfron, G., Atzberger, C., and Rembold, F.: Global near real-time 500 m 10-day FPAR dataset from MODIS and VIIRS for operational agricultural monitoring and yield forecasting, European Commission [data set], https://doi.org/10.2905/1aac79d8-0d68-4f1c-a40f-b6e362264e50, 2025. a, b
Toté, C., Swinnen, E., Sterckx, S., Clarijs, D., Quang, C., and Maes, R.: Evaluation of the SPOT/VEGETATION Collection 3 reprocessed dataset: Surface reflectances and NDVI, Remote Sensing of Environment, 201, 219–233, https://doi.org/10.1016/j.rse.2017.09.010, 2017. a
Weiss, D. J., Atkinson, P. M., Bhatt, S., Mappin, B., Hay, S. I., and Gething, P. W.: An effective approach for gap-filling continental scale remotely sensed time-series, ISPRS Journal of Photogrammetry and Remote Sensing, 98, 106–118, https://doi.org/10.1016/j.isprsjprs.2014.10.001, 2014. a
WMO: WMO Guidelines on the Calculation of Climate Normals, ISBN 978-92-63-11203-3, 2017. a
World Meteorological Organization (WMO), United Nations Environment Programme (UNEP), International Council for Science (ICSU), and Intergovernmental Oceanographic Commission of the United Nations Educational, Scientific and Cultural Organization (IOC-UNESCO): Systematic Observation Requirements for Satellite-based Products for Climate: Supplemental details to the satellite-based component of the Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC, edited by: World Meteorological Organization (WMO), https://library.wmo.int/records/item/48080-systematic-observation-requirements-for-satellite-based-products-for-climate-supplemental-details-to-the-satellite-based-component-of-the-implementation-plan-for-the-global-observing-system-for-climate-in-support-of-the-unfccc (last access: 30 September 2025), 2006. a
Wu, B., Gommes, R., Zhang, M., Zeng, H., Yan, N., Zou, W., Zheng, Y., Zhang, N., Chang, S., Xing, Q., and Van Heijden, A.: Global Crop Monitoring: A Satellite-Based Hierarchical Approach, Remote Sensing, 7, 3907–3933, https://doi.org/10.3390/rs70403907, 2015. a
Xiao, J., Chevallier, F., Gomez, C., Guanter, L., Hicke, J. A., Huete, A. R., Ichii, K., Ni, W., Pang, Y., Rahman, A. F., Sun, G., Yuan, W., Zhang, L., and Zhang, X.: Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years, Remote Sensing of Environment, 233, 111383, https://doi.org/10.1016/j.rse.2019.111383, 2019. a
Yan, K., Yu, X., Liu, J., Wang, J., Chen, X., Pu, J., Weiss, M., and Myneni, R. B.: HiQ-FPAR: A High-Quality and Value-added MODIS Global FPAR Product from 2000 to 2023, Scientific Data, 12, 72, https://doi.org/10.1038/s41597-025-04391-4, 2025. a, b
Zhao, W., Zhu, Z., Cao, S., Li, M., Zha, J., Pu, J., and Myneni, R. B.: A global dataset of the fraction of absorbed photosynthetically active radiation for 1982–2022, Scientific Data, 11, 707, https://doi.org/10.1038/s41597-024-03561-0,2024. a
Short summary
We released a consistent, multi-sensor, timeseries of global biophysical data at 500 m resolution, updated every 10 d since 2000. This dataset is filtered and optimized for agricultural applications and meets the operational needs of the systems for early warning, and crop yield forecasting. Data are freely available at https://data.jrc.ec.europa.eu/dataset/1aac79d8-0d68-4f1c-a40f-b6e362264e50.
We released a consistent, multi-sensor, timeseries of global biophysical data at 500 m...
Altmetrics
Final-revised paper
Preprint