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Abstract. Climate change and extreme weather events pose challenges to food security, emphasizing the need
for reliable and timely monitoring of crop and rangeland conditions. For this purpose, long-term consistent
Earth Observation datasets on vegetation conditions are typically used in early warning and crop yield fore-
cast systems. However, the near-real-time (NRT) production of high quality datasets and the need to guarantee
long-term records present various challenges. To address these, we present a NRT global dataset of Fraction
of Photosynthetically Active Radiation (FPAR) at 500 m resolution, optimized for agricultural applications. Our
dataset combines MODIS-FPAR (Collection 6.1) and VIIRS-FPAR (Collection 2) data, ensuring continuity from
2000 to well beyond 2030. We applied a robust filtering approach based on the Whittaker smoother to produce
reliable FPAR estimates in NRT, accounting for sparse and irregular spaced observations due to cloud cover.
The dataset is composed of two 10 d filtered timeseries: (1) MODIS-FPAR for 2000 to 2023, being the reference
dataset, and (2) intercalibrated VIIRS-FPAR for 2018 onward. While several methods can effectively smooth
and gap-fill FPAR data (i.e., using observations before and after the estimation date), our method is designed for
optimal filtering in NRT (i.e., using only prior observations). Our approach yields six successive estimates of
the same FPAR data point with increasing quality: an inital estimate immediately after the 10 d reference period,
four subsequent estimates every 10 d using new observations, and a final consolidated estimate 90 d later. The
implemented filtering ingests the available FPAR observations and their original quality assessment (QA) layers.
To avoid unrealistic extrapolation when observations are sparse, we impose constraints, season and location spe-
cific, to FPAR estimates. We then intercalibrated the VIIRS-FPAR with the MODIS-FPAR filtered timeseries,
using a mean difference correction approach, to ensure consistency between both series. This paper describes the
filtering and intercalibration method used, the quality assessment of resulting timeseries, and details the obtained
products and the corresponding QA layers. The NRT FPAR dataset is publicly available through the Joint Re-
search Centre Data Catalogue, https://doi.org/10.2905/1aac79d8-0d68-4f1c-a40f-b6e362264e50 (Seguini et al.,
2025).
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1 Introduction

Climate variability and frequent extreme weather events re-
sult in reduced agricultural productivity, thus contributing to
food price volatility, food insecurity, malnutrition, and global
hunger (FAO and IFAD, 2020; Programme, 2022). Early
warning systems (EWS) and crop yield forecasting systems
(CYFS) use meteorological and Earth Observation (EO) data
(Fritz et al., 2019; Nakalembe et al., 2021) to provide in-
formation on ongoing or potential issues in crop and range-
land production, to assess market implications and food se-
curity concerns. EO technologies are crucial for monitoring
crop and rangeland conditions, providing biophysical data
on vegetation over large areas with high revisit frequency
(Atzberger et al., 2015).

Despite the increasing availability of free data from high-
resolution optical sensors (e.g., from Landsat and Sentinel-
2 missions), low-resolution sensors (250–1000 m) remain
valuable for their frequent revisits (and thus larger availabil-
ity of cloud-free observations) and longer timeseries. The
latter is of utmost importance for anomaly computation and
crop yield forecasting. Anomalies compare the current crop
conditions to long-term climatological statistics, while data-
driven crop yield forecasting uses multi-year EO-based time-
series as predictors against crop yield statistics (Basso and
Liu, 2019; Schauberger et al., 2020; Atzberger et al., 2015).

Currently operating low-resolution optical sensors offer
a timeseries length close to 30 years, the reference length
for long-term statistics according to the World Meteoro-
logical Organization (WMO, 2017). The longest and most-
used timeseries for vegetation monitoring include MODIS
(Moderate-resolution Imaging Spectroradiometer) with 24
years of data; the combined dataset VGT-PV-S3 offering
26 years (VGT stands for Satellite Pour l’Observation de
la Terre, SPOT-VEGETATION; PV for the VGT instru-
ment onboard its successor mission Proba-V; and S3 for
the Ocean and Land Colour Instrument onboard Sentinel-3);
and 42 years from AVHRR (Advanced Very High Resolu-
tion Radiometer) that was flown on multiple satellite plat-
forms. Lastly, VIIRS (Visible Infrared Imaging Radiometer
Suite) timeseries provides 12 years of data and is specifi-
cally designed to ensure continuity with the MODIS time-
series (Román et al., 2024) over an extended period. Indeed,
the JPSS (Joint Polar Satellite System) program includes
three operational VIIRS sensors, i.e., Suomi-NPP (Suomi
National Polar-orbiting Partnership), NOAA-20 and NOAA-
21 (National Oceanic and Atmospheric Administration), and
the two upcoming ones (JPSS-3 and 4) planned to operate
through the late 2030s.

As indicator of biomass condition, vegetation indexes
(e.g., the Normalized Difference Vegetation Index, NDVI;
the Enhanced Vegetation Index, EVI) or biophysical vari-
ables (e.g., the Fraction of Photosynthetically Active Radia-

tion, FPAR) are typically used in operational crop and range-
land monitoring (Cammalleri et al., 2021; Rojas, 2021; Rem-
bold et al., 2023; Wu et al., 2015) and yield forecasting sys-
tems (Meroni et al., 2021; Paudel et al., 2021; Mateo-Sanchis
et al., 2023). In particular, FPAR is more closely linked to
canopy processes, and it is a key biophysical variable for
estimating vegetation productivity and monitoring terrestrial
carbon (Monteith, 1972; Xiao et al., 2019). FPAR is defined
as the fraction of incident photosynthetically active radiation
(PAR, radiation in the 400–700 nm spectral region used by
plants in photosynthesis) absorbed by the green elements of
the vegetation canopy, and it is recognized by the global cli-
mate observing system (WMO et al., 2006) as an essential
climate variable (ECV). Unlike vegetation indexes, which
depend on spectral responses of sensor-specific bands, il-
lumination and observation angle and canopy background,
FPAR is an inherent canopy property and can be retrieved
on observations provided by sensors with different spectral
characteristics, ensuring data continuity across satellite mis-
sions.

MODIS-FPAR and VIIRS-FPAR products (Myneni, 2020;
Park et al., 2018a) are retrieved with the same approach
and specifically produced to guarantee the continuity of the
MODIS mission (Román et al., 2024). The FPAR algorithm
used for MODIS-FPAR was adjusted to the VIIRS spec-
tral characteristics (Park et al., 2018a). The most recent
VIIRS-FPAR products of Collection 2 are derived from the
data of two satellites (Suomi-NPP from 2012 and NOAA-
20 from 2018), deploying a cross-calibration of selected re-
flective solar bands using MODIS Aqua as a reference to re-
duce the bias between the reflectances of the two satellites
(NASA, 2022). These efforts ensure the continuous provi-
sion of a consistent global FPAR data set compatible with
the MODIS-FPAR, as the MODIS instruments will soon be
phased out. The end of the production of the science prod-
ucts, initially planned for August 2023, was extended up to
May–April 2027 (Terra) and August 2026 (Aqua) at max-
imum (LAADS-DAAC, 2024). In 2022, problems had al-
ready been encountered: Aqua in April (LP-DAAC, 2022a)
and Terra in October (LP-DAAC, 2022b) stopped data deliv-
ery due to technical problems and orbital shift, respectively.
In 2023, non-recoverable data loss events for Aqua MODIS
were reported for July (LP-DAAC, 2023a). LP DAAC (The
NASA Land Processes Distributed Active Archive Center)
announced on 17 August 2023 that the Flight Operation
Team for Terra and Aqua MODIS transitioned to Light-Out-
Operations, which can result in additional data losses and
larger data gaps (LP-DAAC, 2023b).

An intercalibration of the VIIRS-FPAR timeseries with
that of MODIS is feasible with relatively limited efforts
thanks to the similarity of the sensors in terms of spatial
and spectral resolution, and algorithms for FPAR retrieval.
A longer timeseries with near-real-time (NRT) data would
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have been possible using additional sensors (i.e. VGT, PV,
S3, AVHRR). However, this would require the harmoniza-
tion of FPAR data produced by different algorithms and dif-
ferent spatial resolutions (e.g., VGT with spatial resolution
of 1000 m, PV and S3 with 300 m). The AVHRR timeseries
presents even greater challenges, with more than 15 sen-
sors to consider and no FPAR product, but only NDVI at
a coarse 8 km resolution (Pinzon and Tucker, 2014; Pedelty
et al., 2007). The above options present strong intercalibra-
tion challenges, which make results likely less reliable as
compared to the intercalibration of MODIS and VIIRS FPAR
products.

Besides the need for consistent, long-term timeseries,
EWS and CYFS require high quality, continuous and
updated information for effective and timely decision-
making by stakeholders. For this reason, noise and cloud
contamination removal is required both for the historical
archive and in NRT production. For historical observations,
temporal smoothing can effectively reduce noise and cloud
contamination while filling gaps in the timeseries (Goward
and Huemmrich, 1992; Chen et al., 2004; Weiss et al.,
2014), as data points are available before and after each
observation to be smoothed. For NRT data, specific filtering
methods need to be developed, to handle unbalanced data
availability around recent data points (Klisch and Atzberger,
2016; Meroni et al., 2019). Several products exist that offer
high-quality timeseries of biophysical variables, such as
HiQ-LAI (Yan et al., 2025) or GIMMS FPAR4g (Zhao et al.,
2024), but they usually lack some of the mandatory features
needed by operational agricultural monitoring systems
(i.e., long-term record and NRT availability). Typically,
there is no guaranteed NRT data delivery into the future,
nor are datasets filtered to reduce atmospheric influences.
An exception is the Copernicus Land Monitoring Service
that provides continuous, NRT, and filtered timeseries of
biophysical variables from Proba-V and Sentinel-3 satellites
(https://land.copernicus.eu/en/products/vegetation/fraction-
of-absorbed-photosynthetically-active-radiation-v1-0-300m,
last access: 30 September 2025). Nevertheless, the time-
series length offered is too short (around 12 years) for robust
statistical analysis needed for anomaly computation or crop
yield forecasting. In this study we fill this gap by proposing
a new dataset meeting the requirements of continuous, NRT,
and filtered biophysical timeseries for more than 20 years.

This paper describes a new 500 m dataset composed
of two filtered and intercalibrated FPAR timeseries, one
from MODIS and one from VIIRS. This dataset was
produced to support the operational crop monitoring and
yield forecasting activities of the Joint Research Centre of
the European Commission. These include the European
Mars-Crop Yield Forecasting System (M-CYFS) and the
global Anomaly hotspot of Agricultural Production (ASAP,
https://agricultural-production-hotspots.ec.europa.eu/, last
access: 30 September 2025) early warning system. The
FPAR dataset is accompanied by associated quality layers

and has a temporal resolution of 10 d, a time step often
used in operational agricultural monitoring. The dataset
is open and freely available in NRT through the Joint
Research Centre Data Catalogue (https://data.jrc.ec.europa.
eu/dataset/1aac79d8-0d68-4f1c-a40f-b6e362264e50, last
access: 30 September 2025) and on the ASAP website
(https://agricultural-production-hotspots.ec.europa.eu/data/
MO6_FPAR, last access: 30 September 2025). This paper
has the following specific objectives: (i) to introduce the
method used to produce a long-term archive of NRT filtered
FPAR data; (ii) to present the intercalibration performed
between the filtered MODIS-FPAR and the filtered VIIRS-
FPAR; (iii) to evaluate the robustness of the FPAR filtering;
and (iv) to describe the open and free dataset and discuss
its sustainability. The quality of the input FPAR products
relative to ground observation is not within the scope of this
study and is described elsewhere (Yan et al., 2025).

2 Input data

We used the MODIS-FPAR timeseries from Collection 6.1
(2000–2023) and the VIIRS-FPAR timeseries from Collec-
tion 2 (available at the time of analysis from 2018 to 2023),
both with 500 m spatial resolution.

2.1 MODIS FPAR

The MODIS FPAR products are retrieved from a main al-
gorithm that considers the vegetation structural type, the
sun-sensor geometry, the Bidirectional Reflectance Factors
(BRFs) at red and near-infrared spectral bands and their
uncertainties (Knyazikhin et al., 1999; Myneni, 2020). A
back-up algorithm is applied only for cases where no suit-
able solution is obtained from the main algorithm, and re-
lies on the empirical relationship between NDVI and canopy
FPAR (Myneni, 2020). MODIS-FPAR products were col-
lected from the most recent Collection 6.1 through the
Data Pool at the LP DAAC. From 18 February 2000 to
26 June 2002 the timeseries consists of MODIS-FPAR
from Terra (MOD15A2H, 8 d composite, Myneni et al.,
2021b. Since 4 July 2002, a MODIS Terra and Aqua com-
bined product is available (MCD15A3H, 4 d composite, My-
neni et al., 2021c). In case of missing MCD15A3H, we
used MOD15A2H (Terra) or MYD15A2H (Aqua, Myneni
et al., 2021a), if available. This occurred in 2022, when
MCD15A3H data production was interrupted in April (LP-
DAAC, 2022a), and in October (LP-DAAC, 2022b), while
the MYD15A2H or MOD15A2H products were available
(Terra in April 2022, Aqua in October 2022). For each
time composite, we collected the global terrestrial coverage,
composed by 286 tiles of the MODIS sinusoidal tile grid.
Each MODIS tile is provided in Hierarchical Data Format
(HDF), from which we extracted three layers: Fpar_500m,
FparLai_QC and FparExtra_QC. Fpar_500m layer contains
for, each pixel, the maximum FPAR value among daily re-
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trievals within the composite period (8 d for MOD15A2H
and MYD15A2H or 4 d for MCD15A3H). The FparLAi_QC
and FparExtra_QC layers are defined as the quality assess-
ment (QA) products, meant for selection of reliable FPAR
values. The QA products contain information about data
source, detector problems, cloud and cloud shadow presence,
the algorithm used to retrieve FPAR, the presence of snow
or ice, the presence of aerosols, and the presence of cirrus
(see Table A1 for a detiled description). Because no refer-
ence date is provided for the MODIS 4 or 8 d FPAR products,
we set their nominal date to the last day of the compositing
period.

2.2 VIIRS FPAR

For VIIRS, we used the Collection 2 which includes
VNP15A2H (Suomi-NPP satellite, Myneni (2023b) and
VJ115A2H (NOAA-20 satellite, Myneni (2023a) FPAR
products available at the time of analysis (30 June 2023).
Collection 2, available at the time of analysis from 2018,
has the same spatial (500 m) and temporal (8 d composite)
resolution as the MODIS-FPAR products (MOD15A2H and
MYD15A2H). The VIIRS-FPAR Collection 2 aimed at im-
proving consistency with MODIS products by implementing
a cross-calibration to limit the bias to maximum 1 % for se-
lected reflective solar bands, using MODIS Aqua as a ref-
erence (NASA, 2022; Román et al., 2024). We downloaded
VIIRS-FPAR Collection 2 in HDF format from NASA’s
Earthdata cloud. VIIRS-FPAR products have a data struc-
ture similar to MODIS-FPAR products with three layers pro-
vided: Fpar_500m, FparLai_QC and FparExtra_QC. How-
ever, some differences are present in the QA products. Most
notably, the logic of the cloud coverage information was
changed: for VIIRS four levels of cloud probability are pro-
vided instead of the Internal cloud mask and the Cloud state
provided by the MODIS QA products. Similarly, the aerosol
presence is classified in four levels instead of the single flag
provided for MODIS. Table A2 describes in more detail the
VIIRS QA layer contents. Because no reference date is pro-
vided for the VIIRS products, we set this date to the last and
before-last day of the compositing period (the 8th day for
VNP15A2H and the 7th day for VJ115A2H). Different dates
are assigned because our smoothing implementation accepts
one value per day.

3 Study area and ancillary data

Our dataset targets the global extent covered by the MODIS
and VIIRS original products, approximately from 75° N to
56° S and from 180° W to 180° E. It uses a temporal step of
10 d (i.e. dekad), typically employed in agronomic analysis.
A dekad is a nearly 10 d period covering each month with
3 dekads (day 1–10, 11–20, and 21–last day of the month)
and the calendar year with 36 dekads. To focus the analy-
sis of the dataset on the vegetation growing cycle, statistics

were extracted on the average growing season period defined
per pixel using the phenology layer of the ASAP system.
ASAP defines start and end of a fixed growing season at
pixel level based on thresholds on the green-up and decay
phases (Rembold et al., 2015). Because FPAR is produced
also for pixels with a presence of permanent or seasonal wa-
ter, we masked such pixels out. To mask water pixel, we used
a land/water mask derived from the MOD44W Collection 6,
a global map of surface water at 250 m spatial resolution in
the standard MODIS sinusoidal grid (Carroll et al., 2017).
This mask was aggregated to 500 m spatial resolution by la-
belling a pixel as land only if no 250 m water-pixel was in-
cluded. From the remaining, non-watered pixels, we selected
all vegetated pixels accordingly to MCD12Q1 biome map
(Friedl and Sulla-Menashe, 2019) which cover crops, shrubs,
savanna, and forests. Since the main scope of our dataset is
agricultural monitoring, we used two further masks (crop-
land and rangeland) from the JRC-ASAP system (Fritz et al.,
2024) to analyse our results.

4 Methods

The main steps to produce our combined filtered FPAR
dataset are shown in Fig. 1. In this paper, we adopt the def-
initions according to Sedano et al. (2014): smoothing refers
to the interpolation over a time span when observations are
available before and after each data point, while filtering
refers to the estimation of near-real-time (NRT) data us-
ing only past observations. The processing steps regarding
smoothing are described in Sect. 4.1.1 and 4.1.2, while filter-
ing in Sect. 4.1.3. Methods used to assess the quality of the
filtering are described in Sect. 4.2, while the comparison and
alignment between VIIRS-FPAR filtered data and MODIS-
FPAR filtered data is described in Sect. 4.3.

4.1 FPAR smoothing and NRT filtering

Our approach builds on the previous method for develop-
ing a NRT operational MODIS NDVI product (Klisch and
Atzberger, 2016; Meroni et al., 2019) based on the Whittaker
smoother (WS, Eilers, 2003; Atzberger and Eilers, 2011a, b.
In our implementation of the WS, the FPAR observations are
weighted according to the QA products (Sect. 4.1.1), while
all the available observations are used. Compared to the pre-
vious implementations, we revised the weights assigned to
MODIS data and introduced new weights for VIIRS data.
The WS achieves a balance between the fidelity to the orig-
inal data and the roughness of the smoothed curve (i.e., the
second-order differences) by tuning its smoother parameter
λ: a larger λ results in smoother results that align less with
original data. In Sect. 4.1.2 we describe the tuning of the pa-
rameter λ and the smoothing of the whole timeseries (i.e.,
off-line smoothing) for the computation of the long term
statistics. Compared to the previous implementations, we re-
vised the parameter λ and introduced an iterative upper enve-
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Figure 1. Workflow for generating the NRT FPAR dataset from the input FPAR data and the main comparison analysis provided in this
paper. The reference to section of the paper describing the associated building block is reported in brackets. The blocks associated to MODIS
data are in yellow, those associated to VIIRS data in blue, and those to the outputs in green.

lope fit approach to minimize noise from undetected cloudy
observations (Chen et al., 2004). The operational NRT filter-
ing is described in Sect. 4.1.3 while its adaptation in presence
of sparse observations is presented in Sect. 4.1.4. Finally, in
Sect. 4.1.5 we describe the quality products associated with
the NRT filtering. Compared to the previous implementation,
this study modified the adaptation strategy and perfected the
system of the quality layers.

4.1.1 Weighting observations

FPAR data are weighted according to the MODIS and VIIRS
QA products. The attribution of weights to specific combi-
nations of quality indicators was based on the visual inspec-
tion of a large amount of observations, aimed to understand
the relationship between specific quality indicators and data
quality. This process led to the definition of three different
weights associated to specific quality indicators (Table 1).
The weighting scheme was developed by visually inspecting
117 pixel-based FPAR timeseries between 2000 and 2021.
Those 117 samples were obtained from a stratified random
sampling over the MCD12Q1 biome map. We considered
70 samples from the biomes cropland-grasslands, broadleaf
cropland, and savanna, comprising 35 in Europe and 35 in
Africa. The other 47 samples were selected from all eight
available biomes for the whole globe (Fig. B1, Table B1).
The reliability and consistency of each timeseries was visu-
ally assessed and, with focus on short timescale consistency,

assuming that no negative spikes (i.e. rapid drop and rise
of FPAR value) should occur. In assigning the weights, we
followed the recommendations of Myneni (2020) suggesting
that the reliability of an observation is primarily driven by
the algorithm used. We assigned the highest weight (100 %)
to high quality – HQ – observations (i.e., cloud- and snow-
free observations) from the main algorithm. We observed that
in various cases HQ observations were too few, leading to
poor WS performance; however backup algorithm provided
consistent value. Therefore we retained the values from the
backup algorithm, assigning them a weight of 50 %. In ad-
dition, we found that cloud or snow contaminated observa-
tions frequently had plausible FPAR values. In the attempt
to increase the number of usable observations, we assigned
a small weight of 20 % to pixels flagged as contaminated
by either the main or the back-up algorithm. Possible draw-
backs of retaining cloudy observations are mitigated by the
upper-envelope adaptation (described in Sect. 4.1.2) that is
designed to downweight cloudy and negatively biased ob-
servations. The visual inspection of the timeseries also re-
vealed that aerosol flags occurred very frequently and, in
most cases, without detectable impact on FPAR observations.
Therefore, we decided to downweight to 20 % only those ob-
servations flagged as aerosol when MODIS-FPAR data is re-
trieved with the backup algorithm, while for VIIRS-FPAR
data downweighting to 20 % occurred when both Climatol-
ogy and High flags were marked in the QA products, as sug-
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Table 1. Weights proposed for different observation conditions. For
the Gap-filling procedure applied refers to Sect. 4.1.4.

Weight in % Description

100 Main algorithm, no clouds and no snow present
50 Backup algorithm, no clouds, snow, or aerosol present
30 Gap-filling procedure applied
20 Clouds or snow present
20 Aerosol present and backup algorithm
0 FPAR = 100 and backup algorithm
0 Dead detector
0 Fill value

gested by Lyapustin et al. (2021). Finally, we observed a
number of cases with exceptional (and unrealistic as com-
pared to values immediately before and after) FPAR values of
100 %, negatively impacting the smoothing results. In prin-
ciple, both the main and backup algorithm can result in val-
ues large as 100 % (FPAR NASA Science Team, personal
communication), but in the majority of cases we observed
those values when the backup algorithm was used. As con-
sequence, we weighted these erroneously high values as 0 %,
together with those flagged with Fill value (no realistic ob-
servation) and Dead detector (physical error at sensor) in the
QA products.

4.1.2 Off-line smoothing

Off-line smoothing refers here to a smoothing that is per-
formed retrospectively on the full historical timeseries and
not in NRT. This smoothing is performed once and only to
extract the pixel-based statistics that serve the NRT filtering.
We performed the off-line smoothing on MODIS data over
the period 1 January 2003 to 31 December 2021 that can
be considered representative for normal MODIS operations,
when both Terra and Aqua satellites were available and fully
operational (no sensor issues). Only MODIS data were con-
sidered as they offer a significantly longer timeseries com-
pared to the VIIRS timeseries, and as such, are better suited
for statistical analysis. Only pixels with at least 80 HQ obser-
vations in the entire timeseries were retained (flagged as no
data otherwise). We set the WS smoother parameter λ value
to 3000 following previous analysis (Klisch and Atzberger,
2016; Atzberger et al., 2015) and the visual inspection of fit-
ted curves produced with different λ values. The data used
for the smoothing were weighted as described in Sect. 4.1.1.
In addition, the possible residual presence of cloudy observa-
tions (downweighted or fully undetected by the quality flags)
was suppressed by iteratively applying the smoothing to fit
the upper envelope of the FPAR temporal trajectory (Chen
et al., 2004; Beck et al., 2006). This approach was chosen
for its flexibility in capturing vegetation signal changes and
its successful validation in previous studies (Meroni et al.,
2014). From WS’s daily output, FPAR rasters are stored for
one moment within the 10 d (dekad) period. This moment

was fixed to the 5th day of the dekad corresponding to 5th,
15th, 25th of each month. From the complete timeseries of
smoothed 10 d rasters, two classes of long term statistics are
computed per pixel: long-term per-dekad average (LTA) and
dekad-to-dekad variations (i.e., minimum, average and max-
imum difference between every two consecutive dekads of
the year, computed over the full historical timeseries).

4.1.3 NRT filtering

The NRT filtering method consists of a modified version of
the WS applied at the end of every 10 d period from 1 July
2023 onwards. Prior to that date, FPAR data were filtered
with NRT method in hindcasting (i.e., by simulating the lack
of data later in time than the dekad to be filtered). Indeed,
while the off-line smoothing consider all the dekad at once,
with hindacasting we simulated the operational constraints
to obtain a consistent dataset computed in NRT mode. Hind-
casts were done for MODIS from 21 May 2000 onwards, and
for VIIRS since the start of Collection 2, at time of analysis
(1 January 2018). The NRT filtering principle is the same
as described in Sect. 4.1.2, while its application is slightly
different. In NRT, we use the FPAR observations within a
time window of 190 d before the day of the filtering (TWL,
Temporal Window Length), and constrain the output filtered
values under certain conditions (Sect. 4.1.4). Our filtering es-
timates the FPAR value for the latest 10 d period, C0, and the
four previous 10 d periods. In this way, as time passes, the
same FPAR value is first produced (consolidation stage 0,
C0) and then updated four times (consolidation stages 1 to
4: C1, C2, C3 and C4), before reaching a final consolidation
stage CF, 90 d after its first C0 estimation. The filtered val-
ues between C4 and CF (e.g., C5–C8) are not stored, as the
impact of the update is minimal.

4.1.4 NRT filtering with sparse observations

When HQ observations in the latest 40 d of the TWL are
sparse, WS estimates for earlier stages, and notably those
close to C0, are prone to provide unrealistic FPAR values be-
cause of extrapolation effects, as only past observations are
available. To limit this effect, Klisch and Atzberger (2016)
introduced a constraint to the filtered FPAR values. Here,
this is implemented separately for two different cases: (i) at
least one HQ observation in the last 40 d from the date of
smoothing, (ii) no HQ observations in that period. In case
(i) an anchor point is defined as the latest estimated stage
which is followed by at least one HQ observation (e.g., C3
in Fig. 2b). For the subsequent stage (e.g., C2), we accept
filtered FPAR value if its variation from the anchor point re-
mains within the minimum-maximum range, derived from
dekad-to-dekad variation obtained from the off-line smooth-
ing procedure (Sect. 4.1.2). If the filtered value exceeds this
range, it is truncated to the correspondent boundary value.
The new filtered (and potentially constrained) stage (e.g., C2)
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then becomes the anchor point for the next iteration until the
C0 value is calculated. In case (ii), an initial gap-filling pro-
cedure is used. The first anchor point is set to the C4 data
point from the previous date of filtering (e.g., star point in
Fig. 2c). Then, to gap-fill the missing observation for the
next 10 d period, a synthetic FPAR value is computed based
on LT statistics (with given weight of 30 %). However, in-
stead of using the LT average directly (that may be far larger
or smaller in case the current season is better or worse than
the average season) the synthetic value is obtained by adding
to the anchor point FPAR value the corresponding average
dekad-to-dekad variation. This new point becomes the an-
chor for the next iteration. The process is repeated up to com-
puting five FPAR replacement values (C4 to C0). The filter-
ing and the constraint mechanisms are then applied, as in (i).
In the exceptional case of less than five HQ observation in
the TWL, missing values are replaced directly with corre-
sponding LTA values, and the filtering and constraint mecha-
nisms are applied as in, as in (i). With the filtering procedure,
we obtained two timeseries of filtered data: one for MODIS-
FPAR and one for VIIRS-FPAR.

4.1.5 NRT quality layers

We keep trace of our filtering mechanism path (e.g. the ap-
plication of gap-filling procedure) in a status map (SMP),
produced for each dekad and consolidation stage at pixel
level (Sect. 7). Together with the SMP we produce four addi-
tional QA layers: number of HQ observations between stages
C4 and C0 (NWM), average weight of observations between
stages C4 and C0 (QWM), number of days from the last HQ
observation to the last day of the 10 d window (NLM), and
weight of last available observation (QLM). NWM, QWM,
NLM, and QLM refer to quality and availability of obser-
vations within the TLW. Indeed, the lower the number of
HQ observations available (NWM and NLM) and the smaller
the weight of the observations used (QWM and QLM), the
less reliable are the FPAR estimates for the unconsolidated
stages. The QA layers are stored once with the reference date
of C0 and are valid for all stages produced at the specific date.

4.2 FPAR filtering assessment

To assess the quality of the filtering we: (i) evaluated its
robustness by comparing, for each single dekad, the FPAR
value of the unconsolidated stages (i.e., C0 to C4) with the
value of the consolidated stage (i.e., CF), assumed to be the
best FPAR estimate (Meroni et al., 2019); (ii) evaluated the
utility of the constraint mechanism (Sect. 4.1.3) by an ab-
lation study. In both cases, the assessment was performed
on a subsample of the FPAR global rasters, following the
approach described (Meroni et al., 2019). Our sample was
obtained by spatially subsampling the global rasters by se-
lecting the central pixel within a not-overlapping window of
41× 41 FPAR pixels; this approach reduced computational

time but still captured global vegetation patterns (Toté et al.,
2017). As a result, the sample is composed of timeseries from
324 004 pixels. All the stages were computed using only the
filtered MODIS-FPAR timeseries as it offers a significantly
longer timeseries compared to the VIIRS timeseries, and thus
provides more robust statistics.

4.2.1 Filtering robustness

To assess the robustness of the filtering, we compared the
FPAR stages from C4 to C0 against CF, by dekad. We com-
puted the mean absolute error (MAE) and the mean error
(ME) for each pixel and each MODIS dekad between 1 May
2003 and 31 December 2021. We expressed them as Cx (con-
solidation stage x) error compared to CF, with the notation
_Stage_Cx, following Eqs. (1) and (2. )

MAE_Stage_Cx=
∑
y

∑
i

|FPAR_Cxyi −FPAR_CFyi |
N

(1)

ME_Stage_Cx=
∑
y

∑
i

(FPAR_Cxyi −FPAR_CFyi)
N

(2)

Cx is the consolidation stage x (x = 0, . . .,4), CF is the fi-
nal and reference consolidated stage, y is the year (19 years
in total), i is the dekad, and N the total number of samples.
The metrics were temporally aggregated over the average
growing season of each pixel and spatially averaged over the
three strata: vegetated, cropland, and rangeland (Sect. 3).

4.2.2 Ablation study

To assess whether the constraint mechanism results in more
accurate NRT FPAR estimates, we performed an ablation
study. We generated a non-constrained MODIS-FPAR fil-
tered timeseries using the same settings as in Sect. 4.1.3, but
without applying the constraint mechanism and we then com-
puted MAE_Stage_Cx and ME_Stage_Cx (see Sect. 4.2.1)
for the non-constrained timeseries. Finally, we compared
these error metrics to those obtained from the constrained-
timeseries. We used data from 1 January 2003 to 31 Decem-
ber 2021, from MODIS only, for the same reasons outlined
in Sect. 4.2.

4.3 Intercalibration of FPAR filtered timeseries

With the objective of combining the VIIRS and MODIS
FPAR filtered timeseries, we first visually compared them
and found spatial and temporal differences. As these differ-
ences may affect operational monitoring and forecasting ac-
tivities, we decided to systematically assess the presence of
bias and to intercalibrate the filtered VIIRS-FPAR timeseries
on the longer filtered MODIS-FPAR timeseries. Such analy-
sis was done over the 5 years of overalpping data available at
the time of analysis, between 1 July 2018 and 30 June 2023.
After initial test with several intercalibration methods (Cec-
cherini et al., 2013; Cammalleri et al., 2019; Gudmundsson
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Figure 2. Panel (a) shows an example of the NRT filtering approach with enough HQ observations in the latest 40 d and no constraint
mechanism applied. Panel (b) displays an example of applying the constraint mechanism that modifies the values of C0 and C1 as their first
SW filtering estimation is out of the admissible value range (i.e., yellow triangles). Panel (c) shows an example of applying the gap-filling
and constraint mechanism. The blue dots are the gap-filled values as from the LTA. After the gap-filling, the filtering proceeds with filtering
and constraint mechanism.

et al., 2012) we opted to apply the mean difference MD cor-
rection. MD correction has the advantages that can be applied
using a short overlap period as MODIS-FPAR Collection 6.1
and VIIRS-FPAR Collection 2 and can account for tempo-
ral and spatial differences, where applied per-dekad and per-
pixel. We computed the global rasters of the dekadal MD be-
tween the filtered FPAR timeseries of MODIS and VIIRS for
each consolidation stage. Each filtered FPAR value derived
from filtered VIIRS-FPAR timeseries was then corrected by
adding its corresponding dekadal MD value, pixel-specific
and consolidation stage-specific.

4.3.1 Intercalibration assessment

To assess the differences between the same stage of the fil-
tered and intercalibrated VIIRS FPAR timeseries and the fil-
tered MODIS timeseries we used again MAE and ME but
with the notation _Sensor to mark the difference in the do-
main of application and coverage period as compared to
Sect. 4.2.1. MAE_Sensor and ME_Sensor were calculated
for each pixel and each dekad between 1 July 2018 and 30
June 2023, following Eqs. (3) and (4).

MAE_Sensor_Cx=
∑
y

∑
i

(|FPAR_VIIRS_Cxyi −FPAR_MODIS_Cxyi |
N

(3)

ME_Sensor_Cx=
∑
y

∑
i

((FPAR_VIIRS_Cxyi −FPAR_MODIS_Cxyi)
N

(4)

FPAR_VIIRS is the filtered and intercalibrated FPAR
timeseries of VIIRS, FPAR_MODIS is the filtered timeseries
of MODIS, Cx is the consolidation stage x (x = 0, . . .,4,F ).
MAE_Sensor and ME_Sensor were temporally and spatially
aggregated as those of Eqs. (1) and (2.)

5 Results

5.1 NRT filtered FPAR timeseries

We produced two global timeseries of filtered FPAR, one
based on MODIS-FPAR filtered data and one on the inter-
calibrated VIIRS-FPAR filtered data. A total of 16 global
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rasters were produced every 10 d for both series (from 20
August 2000 to 31 December 2023 for MODIS, since 1 Jan-
uary 2018 for VIIRS). Each set of 16 rasters was composed
by the six FPAR consolidation stages (i.e., C0, C1, C2, C3,
C4, CF), the associated SMP rasters (6 rasters), and the four
QA rasters (NWM, QWM, NLM, QLM). Figure3a shows an
example of the global raster from the intercalibrated VIIRS-
FPAR timeseries for dekad 13 of 2023 (1 to 10 May 2023).
It nicely shows the gradient of vegetation vigour in Europe,
with FPAR values around 80 % in the West and between 40 %
to 60 % in the East, and very low FPAR values for the Iberian
Peninsula due to the severe drought conditions that spring
(EC-JRC, 2023). Figure 3b illustrates the SMP for the same
dekad, indicating the quality of the information provided. For
the largest share of vegetated land the FPAR values were ob-
tained with favourable filtering conditions with no need for
constraint or gap-filling procedures. In contrast, constraint
and gap-filled procedures were used where prolonged peri-
ods of snow or clouds occurred (orange or red colours), as at
higher latitude, or at elevated altitude (e.g. the Alps) and over
tropical forests. The corresponding QA layers are presented
in Fig. C1a–d.

5.2 NRT filtering robustness

We assessed the robustness of the NRT filtering by evaluat-
ing its accuracy in predicting CF value during the growing
season. A preliminary visual assessment of the timeseries
for each consolidation stage at the selected sample points
showed convergence toward the CF, as illustrated in Fig. 4.
For example, in early 2022, FPAR was strongly overesti-
mated for C0, although values were still realistic and close to
the LTA. From the second estimation (C1) onwards, FPAR
values moved significantly closer to the final CF. Later, in
March 2022, C0 underestimated the CF due to persistent low-
quality observations (weighted at 20 %), whereas the C1 es-
timation, incorporating new HQ data, was already very close
to the CF. Despite our filtering has a conservative approach
relying on historic information (e.g., constraint mechanism),
it effectively estimates FPAR values that deviate from the
average. This is particularly evident in the 2022–2023 agri-
cultural season, when green-up occurred much earlier than
the average (Fig. 4). Figure 5 presents a quantitative evalua-
tion, showing the FPAR differences between all consolida-
tion stages and CF. The density distributions converge to-
ward 0 % error as the consolidation progresses, indicating
improved FPAR estimation with more observations. The dis-
tribution of relative errors indicates that the C2 estimation
already provides a good approximation of CF, with the dis-
tribution closely resembling that of C4.

5.3 Ablation study results

We evaluated the utility of the constraint approach as de-
scribed in Sect. 4.2.2. We averaged MAE for each consol-

idation stage, for all vegetated pixels, over all the grow-
ing seasons in the 19 available years of the MODIS-FPAR
timeseries. We computed two error metrics with and without
constrained filtering, which were compared stage by stage.
Results (Fig. D1) showed similar spatial patterns, with the
highest errors in northern latitudes and in tropical regions.
Constrained filtering significantly reduced MAE, in particu-
lar for the C0 stage. High MAE in these regions was mainly
due to low-quality FPAR observations (e.g., persistent cloud
or snow coverage), but the constraints prevented unrealis-
tic spikes and frequent drops in FPAR values. ME analysis
for C0 confirmed that unconstrained filtering predominantly
led to negative ME values, while constrained filtering re-
sulted in slightly positive ME values. This indicated that con-
strained filtering at C0 mildly overestimated CF, whereas un-
constrained filtering underestimated it more significantly. As
expected, this effect diminished in later consolidation stages
as more data became available, reducing MAE. These results
demonstrate the added value of the constraint mechanism and
justify its operational use.

5.4 Evaluation of the MODIS-VIIRS intercalibration

We compared the MODIS-FPAR and VIIRS-FPAR filtered
timeseries through cumulative distribution functions (CDFs)
of MAE_Sensor and ME_Sensor for each consolidation
stage, with and without the MD correction. Without MD
correction, the mean ME_Sensor was already very small,
around −1 % across all consolidation stages, indicating a
slight underestimation of MODIS-FPAR filtered values by
VIIRS-FPAR filtered values. This agrees with the findings
of Román et al. (2024) that examined the continuity be-
tween row MODIS-FPAR Collection 6.1 and from VIIRS-
FPAR Collection, found that VIIRS slightly underestimated
MODIS FPAR, and suggested the two FPAR products could
be used interchangeably. The analysis of MAE_Sensor re-
vealed larger dispersion between the two timeseries, with
most (> 70 %) pixels exhibiting a MAE_Sensor below 5 %
(Rangeland and Vegetation) and 6 % (Cropland) across the
majority of consolidation stages. For all land cover types
considered, MAE_Sensor decreased as the consolidation
stage progressed, as earlier consolidation stages (e.g., C0)
are more sensitive to cloud and snow screening differences
(Sect. 2). The MD correction reduced discrepancies across
all consolidation stages (Fig. 6, continuous lines) as shown
by the CDFs for the intercalibrated timeseries. This indi-
cates that the best agreement between the two timeseries as
the filtered FPAR values stabilized and approached true val-
ues (i.e., CF) with around 50 % of CF pixels exhibiting a
MAE_Sensor error lower than 2 % for the rangeland and veg-
etation pixels, while slitghly higher (2.5 %) for cropland pix-
els. When the geographical distribution of MAE_Sensor was
considered (Fig. C2) we observed consistent patterns across
all consolidation stages. Larger MAE_Sensor between un-
calibrated timeseries was found in areas with more persis-
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Figure 3. Global maps of intercalibrated VIIRS-FPAR filtered for dekad 13 of 2023 (period 1–10 May 2023). Panel (a) displays the fil-
tered FPAR values, and panel (b) the SMP status map describing which operations were performed to compute the final FPAR value. The
abbreviations of Filt. and const. stand for filtering and constrained, respectively.

tent cloud cover (i.e. the tropics and areas at high latitude)
as shown by Fig. C2a while MD correction (Fig. C2b) effec-
tively reduced MAE_Sensor, especially at high and medium
latitudes.

6 Example of applying the intercalibrated FPAR
series for crop monitoring

We illustrate the potential use and advantages of the inter-
calibrated timeseries with an example application. The com-
putation of FPAR anomalies (i.e. deviation of current val-
ues from historical average, Sect. 1) is a standard approach
in NRT monitoring of crop biomass. Negative anomalies
typically indicate biomass deficit, while positive anomalies
a surplus with respect to normal. Figure 7 showcases an
anomaly assessment for arable land pixels for the county
of Oise, France. We generated three relative FPAR anomaly
maps for the period 1–10 May (dekad 13) 2023, using as
reference the average FPAR computed over the timeseries
(2002–2023) of CF stage from MODIS-FPAR data. The
first anomaly map (Fig. 7a) is produced from the original
VIIRS-FPAR data (reference doy 121, original 8 d compos-
ite VNP15A2H.002_Fpar_doy2023121000000); the second
(Fig. 7b) is produced using C0 stage from the intercalibrated
VIIRS-FPAR filtered data, the third (Fig. 7c) using the CF

stage from the same timeseries as in panel (b). As CF stage
represents the best FPAR estimation, we consider the result-
ing anomaly map as the truth.

The original VIIRS-FPAR data is limited by cloud cov-
erage, misses both positive and negative anomalies over
large areas. In contrast, our filtering approach demonstrates
a clear advantage already at the C0 stage, where the entire
area exhibits a consistent FPAR anomaly closely matching
the CF-based anomaly. This demonstrates our method’s re-
liability in estimating FPAR values, even with sparse and
cloud-contaminated observations, when missing observa-
tions would normally be flagged as unavailable, leading to
uninformed interpretations of vegetation status. Addition-
ally, since EWS and CYFS workflows summarize data at
the administrative unit level (e.g., average anomaly or FPAR
value), aggregating only cloud-free areas may result in FPAR
values that do not accurately reflect real conditions. Our pro-
posed approach overcomes these limitations by providing
timely, reliable data for EWS and CYFS, ensuring consistent
updates for stakeholders. By estimating FPAR values despite
sparse or cloud-contaminated data, it supports more accurate
and informed decision-making process.
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Figure 4. Temporal profile of MODIS-FPAR filtered data for an arable land pixel in Portugal for the period 1 January 2001 to 31 October
2023. CF, C4, C3, C2, C1, C0 represent the consolidation stages and LTA is the average computed over the CF timeseries. The bottom panel
provides a detailed view of the 2022–2023 data. Dots represent the non-filtered FPAR values as from MOD15A2H.061 and MCD15A3H.061,
coloured according to the weight assigned.

Figure 5. Violin plots of FPAR differences computed between the MODIS-FPAR values of each consolidation stage (C0, C1, C2, C3, C4)
and the correspondent final stage (CF), for the global FPAR raster of dekad from 1 to 10 May 2023. The values are calculated considering
all vegetated pixels.

7 Dataset description

We publicly released two timeseries that updated every 10 d:
(1) 10 d filtered MODIS-FPAR global raster from 21 August
2000 to 31 December 2023; (2) 10 d intercalibrated VIIRS-
FPAR filtered global rasters from 1 July 2018 to present.
Both datasets are provided together with associated QA
rasters. For the MODIS dataset we provide for each global

10 d FPAR raster the CF stage and the associated SMP, the
other consolidation layers could be made available upon re-
quest to the functional email JRC-ASAP@ec.europa.eu. For
the VIIRS dataset we provide the following set of rasters: the
six consolidation stages (C0, C1, C2, C3, C4, CF), the as-
sociated SMP for each consolidation stage, and the four QA
layers (i.e., NWM, QWM, NLM, QLM). All rasters are pro-
vided in geographic coordinates (EPSG 4326) with a spatial
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Figure 6. MAE_Sensor and ME_Sensor computed between the MODIS-FPAR filtered data and (i) the VIIRS-FPAR filtered data (represented
with dotted line) or (ii) the intercalibrated VIIRS-FPAR filtered data (represented with continuous line). The analysis is provided for each
consolidation stage for all global vegetated pixels, for the respective land cover classes, during the five overlapping growing seasons between
MODIS-FPAR data and VIIRS-FPAR data (1 September 2018 to 31 August 2023). The x axis shows the relative difference of FPAR values
between the filtered timeseries, while the y axis indicates the CDF.

resolution of approximately 500 m (0.004464°). Water pix-
els are masked using the land/water mask, as from Table 3.
The output format is a compressed GeoTIFF. All outputs are
produced in NRT time mode (actual or hindcast). FPAR val-
ues are scaled to 8-bits in the same way as to the original
files (Myneni, 2020; Park et al., 2018a). The FPAR rasters
have a dimensionless physical unit (ratio), 8-bit data type,
and the valid data range is rescaled to 0–100. Flag values
are reported in Table 3. Each NRT global raster and its qual-
ity layers are released two days after the end of the dekad
(e.g., for the dekad 1–10 May, the releasing date would be
12 May). Apart from the quality control internal to the fil-
tering operational process (e.g., check for missing tiles) at
each release the products are randomly sampled and visually
inspected to control for visible artefacts.

8 Recommended use of the timeseries

In view of an operational use of our dataset, we suggest the
approach depicted in Fig. 8 to select the relevant stages and
timeseries for NRT analysis.

Suppose that the current date is the 11 January 2025 the
operational timeseries First, in an attempt to use the highest
data quality we recommand to use CF outputs from the be-
ginning of the timeseries (dekad 24 of 2000, covering dates
from 21 to August 2000) until the last produce CF stage, i.e.
90 d ago (dekad 28 of 2024, from 1 to 10 October 2024).
From that date up to 40 d ago (30 November 2024) we would
rely on C4 stage, having the highest quality among the NRT
consolidation stages. The last four dekads we would use C3
(dekad 34 of 2024, from 1 to 10 December 2024), C2 (dekad
35 of 2024, from 11 to 20 December 2024), C1 (dekad 36
of 2024, from 21 to 31 December 2024) and C0 (dekad 1 of
2025, from 1 to 10 January 2025) stages. Second, during the
overlap period between our MODIS and VIIRS FPAR time
series (2018–2023), we suggest to start using VIIRS from the
start of its availability (2018) to ensure the maximum coher-
ence of FPAR between the latest years and NRT data.

9 Data availability

NRT data are available within 24 h from the end of
each dekad, typically at 12:00 UTC+2 of the day 1,
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Figure 7. Three different maps of relative FPAR anomalies for 1–10 May (dekad 13) 2023, for the county of Oise, an important agricultural
region in northern France. The historic reference used to calculate the three anomalies is the multi-year CF average of dekad 13 using the
full MODIS-FPAR filtered timeseries. Panel (a) shows the relative anomaly map obtained using the original 8 d composite VIIRS-FPAR data
(doy 121 of 2023). Panel (b) shows the relative anomaly map using stage C0 from intercalibrated VIIRS-FPAR filtered data from dekad 13
of 2023. For panel (c) the relative anomaly map is obtained using the stage CF from the intercalibrated VIIRS-FPAR filtered data from dekad
13 of 2023. Pixels masked and labelled as Not relevant arable land have an arable land cover less than 10 %, according to Corine Land Cover
2018 (LMS, 2018).

Table 2. Quality information stored during NRT filtering per dekadal raster, SMP is provided for each stage, the other indicators are provided
for C0 only, all layers have data format of 8-bit unsigned integers.

Parameter Description Units Flag values Valid range

SMP Status map indicating the filtering
condition

– 1. Data not processed (water, other land)
2. Filtered
3. Filtered and constrained
4. Gap-filled and filtered
5. Gap-filled, filtered and constrained
6. Gap-filled (no input files at all available)

–

NWM Number of HQ observations between
stages C4 and C0

– 251, 254, 255 0–13

QWM Average weight of observations
between stages C4 and C0

% 251, 254, 255 0–100

NLM Number of days from the last HQ
observation to the last day of the
temporal window

Days 250, 251, 254, 255 0–190

QLM Weight of last available observation % 251, 254, 255 0–100
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Figure 8. Example of suggested operational timeseries as would be at the date of 11 January 2025.

Table 3. Flag values of the output rasters

Flag value Description

250 (NLM only) no HQ observations
251 non-vegetated land
254 water
255 no data (e.g. too few observations)

11 and 21 of each month. The filtered FPAR time-
series of both MODIS and VIIRS can be accessed
through the public JRC Data Catalogue. The MODIS-
FPAR filtered dataset is available at the following
persistent identifier https://doi.org/10.2905/1aac79d8-
0d68-4f1c-a40f-b6e362264e50 (Seguini et al., 2025) or
can be directly downloaded from the following server
https://agricultural-production-hotspots.ec.europa.eu/data/
MO6_FPAR/ (last access: 30 September 2025). The server
data structure is divided according to the data source with
one folder dedicated to the MODIS data and another to the
intercalibrated VIIRS data. Subfolders contain the associated
consolidation stage products.

The structure of the subfolders follows the year and con-
solidation stage order. Each geotiff has a naming convention
like SSYYDDVVVCX, where SS describes the sensor (MT
for MODIS and IT for intercalibrated VIIRS), YY the year,
DD the dekad of reference, VVV the name of the product and
X the stage. As example it1819FPRC1 indicates the consoli-
dation stage C1 from the intercalibrated VIIRS-FPAR filtered
data for year 2018 and dekad 19. Associated to each Geotiff
raster a text files contains all the reference metadata. An ex-
ample of the metadata file is reported in Table E1.

To facilitate product exploration, rasters and statistics
at regional level (including temporal trajectories aggre-
gated over cropland and rangeland areas) can be vi-
sualized in the online Warning Explorer of the ASAP
system (https://agricultural-production-hotspots.ec.europa.
eu/wexplorer, last access: 30 September 2025).

10 Conclusions

We released a dataset of two timeseries, from MODIS and
VIIRS, of global FPAR data at 500 m resolution, updated ev-
ery 10 d since 2000. This dataset is optimized for agricultural
applications, including NRT monitoring of biomass produc-
tivity of cropland and rangeland, and crop yield forecast-
ing. We tuned the filtering parameters using cropland pix-
els from Europe and Africa and applied specific algorithms
(e.g., constraint mechanisms and gap-filling) for periods with
only low-quality observations. As demonstrated in the abla-
tion study (Sect. 4.2.2), applying constraints to early FPAR
estimations (C0 to C4) with few or no HQ observations leads
to better alignment with the consolidated CF value, com-
pared to unconstrained estimations. To avoid unrealistically
extrapolated FPAR values in absence of HQ information, our
estimations are set to be conservative, relying on historic in-
formation (i.e., gap-filling and constraint approaches). This
approach guarantees that the NRT value of FPAR is always
estimated, thus allowing subsequent analysis that otherwise
could be potentially hampered by missing data. Our dataset
thus meets the operational needs of early warning systems
(EWS) and crop yield forecasting systems (CYFS), serving
accurate FPAR estimation instead of missing information. In
addition to NRT requirements, EWS and CYFS require long
timeseries to capture interannual variability in crop growth.
With the MODIS sensor mission nearing its end, and on-
going acquisition issues since 2022, we have generated a
VIIRS-FPAR timeseries, corrected over the MODIS-FPAR
data, to extend the record into the coming years. Although
continuity between MODIS Collection 6.1 and VIIRS Col-
lection 2 FPAR timeseries was planned and confirmed, we
still observed some discrepancies. A simple correction pro-
cedure (MD) significantly reduced these discrepancies across
various consolidation stages and regions, though small dif-
ferences remain. With the recent release of the VIIRS-FPAR
Collection 2 data from 2012 onward, more advanced intercal-
ibration methods are currently being tested, benefiting from
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greater overlap between MODIS-FPAR and VIIRS-FPAR
data. The JPSS program ensures the sustainability of this pro-
cessing pipeline, with VIIRS-NOAA-21 now operational and
plans for two more satellites (JPSS-3 and JPSS-4) to ensure
continuity through the early 2030s. NRT gap-filled data pro-
vision and long term data records can find applications be-
yond EWS and CYFS, e.g. in EO-based Index Insurance pro-
grams (De Leeuw et al., 2014) where seasonal FPAR anoma-
lies are used as the index to determine payouts. We recom-
mend data users to utilize the MODIS-FPAR filtered time-
series from 21 August 2000 to 31 December 2017 and from
1 January 2018 onward the intercalibrated VIIRS-FPAR fil-
tered timeseries. We plan to keep the operational products
updated for the changing landscape of data availability in re-
sponse to the foreseen availability of other VIIRS sensors in
the near future. To serve the community, data are, and will
remain, freely available.

Appendix A: QA Layer information used

Table A1. The MODIS FPAR QA layer information used in the filtering process (Myneni, 2020).

Layer name Bit No. Parameter
name

Bit Description Filtering usage

1 Sensor 0 Terra Additional information
1 Aqua

2 Dead 0 Detectors apparently fine for up to 50 % of channels 1, 2 Exclude invalid
Detector 1 Dead detectors caused > 50 % adjacent detector retrieval observations

FparLai_QC 3–4 Cloud 00 Significant clouds NOT present (clear) Downweight
state 01 Significant clouds WERE present unreliable

10 Mixed cloud present in pixel observations
11 Cloud state not defined, assumed clear

5–7 SCF_QC 000 Main (RT) method used, no saturation Downweight
001 Main (RT) method used with saturation unreliable
010 Empirical algorithm due to bad geometry observations
011 Empirical algorithm due to other problems
100 Pixel value not produced at all

2 Snow or ice 0
1

No snow nor ice detected
Snow or ice detected

Downweight unreliable
observations

3 Aerosol 0
1

No or low atmospheric aerosol detected
Average or high aerosol levels detected

Downweight unreliable
observations

FparExtra_QC 4 Cirrus 0
1

No cirrus detected
Cirrus detected

Downweight unreliable
observations

5 Internal
cloud mask

0
1

No clouds
Clouds detected

Downweight unreliable
observations

6 Cloud
shadow

0
1

No cloud shadow detected
Cloud shadow detected

Downweight unreliable
observations
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Table A2. The VIIRS FPAR QA layer information used in the filtering process (Park et al., 2018b).

Layer name Bit No. Parameter
name

Bit Description Filtering usage

0–2 SCF_QC 000 Main (RT) method used, no saturation Downweight
001 Main (RT) method used with saturation unreliable

FparLai_QC 010 Empirical algorithm due to bad geometry observations
011 Empirical algorithm due to other problems
100 Pixel value not produced at all

2 Dead Detector 0
1

Both red and NIR detectors are fine
At least one band has dead detector

Exclude invalid
observations

0–1 Cloud 00 Confident clear Downweight
detection 01 Probably clear unreliable
and confidence 01 Probably cloudy observations

01 Confident cloudy

2 Cloud shadow 0
1

No cloud shadow
Shadow

Downweight
unreliable
observations

FparExtra_QC 3 Thin cirrus 0
1

No cirrus detected
Cirrus was detected

Downweight
unreliable
observations

4–5 Aerosol 00 Climatology Downweight
quantity 01 Low unreliable

10 Average observations
11 High

6 Snow/Ice 0
1

No
Yes

Downweight
unreliable
observations

Appendix B: Sampling

Figure B1. Sample points used to find suitable settings for weighting and implementing the Whittaker filter at the global level (red to
represent all biomes) and in Europe and Africa (blue to focus on agricultural land use); biome data (Friedl and Sulla-Menashe, 2019).
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Table B1. Sample points distribution according to their geographical position and biome

Biome Europe Africa Global Total

B1 Grasslands/cereal crops 25 21 12 58
B2 Shrublands – – 5 5
B3 Broadleaf croplands 9 12 5 26
B4 Savanna 1 2 9 12
B5 Evergreen Broadleaf Forests (EBF) – – 4 4
B6 Deciduous Broadleaf Forests (DBF) – – 4 4
B7 Evergreen Needleleaf Forests (DNF) – – 6 6
B8 Deciduous Needleleaf Forests (DNF) – – 2 2
Total 35 35 47 117

Appendix C: QA Layers produced

Figure C1. Examples of QA Layers produced during the filtering of MODIS FPAR as described in Table 2 for the period 1–10 May (dekad
13) 2023.
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Figure C2. Geographical distribution of MAD according to the consolidation stage FPAR for vegetated pixels during the growing season
(201819–202318). MAD is computed in reference to the MODIS-FPAR filtered timeseries using VIIRS-FPAR filtered timeseries (left) or
intercalibrated VIIRS-FPAR filtered timeseries (right).
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Appendix D: Ablation study

Figure D1. The upper panel shows the MAE_Stage computed for C0 stage from the MODIS-FPAR filtering, using the constraint mechanism.
The lower panel displays the same metric computed without using constraints. FPAR values are expressed in %.

Appendix E: Metadata

Table E1. Filed name and description of the metadata of a FPAR global raster.

Filed name Description

Driver Type of driver used to produce the file
File Original location of the file
Size Width and height in n°of pixel
Coordinate System is: Type of coordinate systems expressed in EPSG code
Origin Coordinates of the raster origins
Pixel size Width and height of each pixel expressed in the reference unit
AREA_OR_POINT Type of information
consolidation_period Period of consolidation according to the filtering nomenclature (from C0 to CF)
file_creation Date of creation of the file
flags Flags used
highest_actual_value The highest value in the file
highest_possible_value The upper maximum value accepted
lineage File name
lowest_actual_value The minimum value in the file
lowest_possible_value The minimum maximum value accepted
program The version of the program used
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Below, in italics an example of metadata associated to the
intercalibrated VIIRS-FPAR file for the consolidation stage
C1 for the period 1–10 May (dekad 13) 2023.

Driver: GTiff/GeoTIFF
Files: /vitodata/Mars/MEP/MVIIRS/V070/GLO/ACT/IMG/
2018/it2313FPRC1.tif
Size is 80640, 29346
Coordinate System is:
GEOGCS[”WGS 84”,
DATUM[”WGS_1984”,
SPHEROID[”WGS 84”,6378137,298.257223563,
AUTHORITY[”EPSG”,”7030”]],
AUTHORITY[”EPSG”,”6326”]],
PRIMEM[”Greenwich”,0],
UNIT[”degree”,0.0174532925199433],
AUTHORITY[”EPSG”,”4326”]]
Origin = (-180.004464285714988,75.004464285715002)
Pixel Size = (0.004464285715000,-0.004464285715000)
Metadata:
AREA_OR_POINT=Area
consolidation_period=C1
creator=VITO
date=20230501
days=10
description=MODIS/VIIRS, FPAR, Smoothed 500m,
Product-version=V070
file_creation=2024-03-25T10:41:43
flags=251=other land, 254=water, 255=not processed
highest_actual_value=100
highest_possible_value=100
lineage=it2313FPRC1.tif
lowest_actual_value=0
lowest_possible_value=0
program=0.1.1
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