Articles | Volume 17, issue 12
https://doi.org/10.5194/essd-17-7293-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-7293-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The MArine Debris hyperspectral reference Library collection (MADLib)
Ashley Ohall
Skidaway Institute of Oceanography and Department of Marine Sciences, University of Georgia, 10 Ocean Science Circle, Savannah, GA 31411, USA
Kelsey Bisson
Earth Science Division, Ocean Biology and Biogeochemistry Program, National Aeronautics and Space Administration Headquarters, Washington, DC, USA
Shungudzemwoyo P. Garaba
Niedersächsische Zentrum für Marine Sensorik, Carl von Ossietzky Universität Oldenburg, Schleusenstraße 1, 26382 Wilhelmshaven, Germany
Skidaway Institute of Oceanography and Department of Marine Sciences, University of Georgia, 10 Ocean Science Circle, Savannah, GA 31411, USA
Related authors
No articles found.
Robin V. F. de Vries, Shungudzemwoyo P. Garaba, and Sarah-Jeanne Royer
Earth Syst. Sci. Data, 15, 5575–5596, https://doi.org/10.5194/essd-15-5575-2023, https://doi.org/10.5194/essd-15-5575-2023, 2023
Short summary
Short summary
We present a high-quality dataset of hyperspectral point and multipixel reflectance observations of virgin, ocean-harvested, and biofouled multipurpose plastics. Biofouling and a submerged scenario of the dataset further extend the variability in open-access spectral reference libraries that are important in algorithm development with relevance to remote sensing use cases.
Shungudzemwoyo P. Garaba, Michelle Albinus, Guido Bonthond, Sabine Flöder, Mario L. M. Miranda, Sven Rohde, Joanne Y. L. Yong, and Jochen Wollschläger
Earth Syst. Sci. Data, 15, 4163–4179, https://doi.org/10.5194/essd-15-4163-2023, https://doi.org/10.5194/essd-15-4163-2023, 2023
Short summary
Short summary
These high-quality data document a harmful algal bloom dominated by Nodularia spumigena, a cyanobacterium that has been recurring in waters around the world, using advanced water observation technologies. We also showcase the benefits of experiments of opportunity and the issues with obtaining synoptic spatio-temporal data for monitoring water quality. The dataset can be leveraged to gain more knowledge on related blooms, develop detection algorithms and optimize future monitoring efforts.
Els Knaeps, Sindy Sterckx, Gert Strackx, Johan Mijnendonckx, Mehrdad Moshtaghi, Shungudzemwoyo P. Garaba, and Dieter Meire
Earth Syst. Sci. Data, 13, 713–730, https://doi.org/10.5194/essd-13-713-2021, https://doi.org/10.5194/essd-13-713-2021, 2021
Short summary
Short summary
This paper describes a dataset consisting of 47 hyperspectral-reflectance measurements of plastic litter samples. The plastic litter samples include virgin and real samples. They were measured in dry conditions, and a selection of the samples were also measured in wet conditions and submerged in a water tank. The dataset can be used to better understand the effect of water absorption on the plastics and develop algorithms to detect and characterize marine plastics.
Cited articles
Acuña-Ruz, T. and Mattar, C. B.: Thermal infrared spectral database of marine litter debris in Archipelago of Chiloé, Chile, PANGAEA [data set], https://doi.org/10.1016/j.rse.2018.08.008, 2020.
Asadzadeh, S. and Filho, C. R. d. S.: Investigating the capability of WorldView-3 superspectral data for direct hydrocarbon detection, Remote Sensing of Environment, 173, https://doi.org/10.1016/j.rse.2015.11.030, 2016.
Asadzadeh, S. and Filho, C. R. d. S.: Spectral remote sensing for onshore seepage characterization: A critical overview, Earth-Science Reviews, 168, https://doi.org/10.1016/j.earscirev.2017.03.004, 2017.
Beaumont, N. J., Aanesen, M., Austen, M. C., Börger, T., Clark, J. R., Cole, M., Hooper, T., Lindeque, P. K., Pascoe, C., and Wyles, K. J.: Global ecological, social and economic impacts of marine plastic, Marine Pollution Bulletin, 142, https://doi.org/10.1016/j.marpolbul.2019.03.022, 2019.
Behrenfeld, M. J., Lorenzoni, L., Hu, Y., Bisson, K. M., Hostetler, C. A., Girolamo, P. D., Dionisi, D., Longo, F., and Zoffoli, S.: Satellite Lidar Measurements as a Critical New Global Ocean Climate Record, Remote Sensing 15, 5567, https://doi.org/10.3390/rs15235567, 2023.
Castagna, A., Dierssen, H. M., Devriese, L. I., Everaert, G., Knaeps, E., and Sterckx, S.: Evaluation of historic and new detection algorithms for different types of plastics over land and water from hyperspectral data and imagery, Remote Sensing of Environment, 298, https://doi.org/10.1016/j.rse.2023.113834, 2023.
Cheshire, A. C., Adler, E., Barbière, J., Cohen, Y., Evans, S., Jarayabhand, S., Jeftic, L., Jung, R. T., Kinsey, S., Kusui, E. T., Lavine, I., Manyara, P., Oosterbaan, L., Pereira, M. A., Sheavly, S., Tkalin, A., Varadarajan, S., Wenneker, B., and Westphalen, G.: UNEP/IOC Guidelines on Survey and Monitoring of Marine Litter, UNEP and IOC, UNEP Regional Seas Reports and Studies, No. 186; IOC Technical Series No. 83, xii + 120 pp., https://www.unep.org/resources/report/unepioc-guidelines-survey-and-monitoring-marine-litter (last access: 10 January 2025), 2009.
Clark, R. N., Swayze, G. A., Livo, K. E., Kokaly, R. F., Sutley, S. J., Dalton, J. B., McDougal, R. R., and Gent, C. A.: Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems, Journal of Geophysical Research: Planets, 108, https://doi.org/10.1029/2002JE001847, 2003.
Corbari, L., Maltese, A., Capodici, F., Mangano, M. C., Sarà, G., and Ciraolo, G.: Indoor spectroradiometric characterization of plastic litters commonly polluting the Mediterranean Sea: toward the application of multispectral imagery, Scientific Reports, 10, https://doi.org/10.1038/s41598-020-74543-6, 2020.
Corbari, L., Minacapilli, M., Ciraolo, G., and Capodici, F.: Indoor laboratory experiments for beach litter spectroradiometric analyses, Scientific Reports, 14, https://doi.org/10.1038/s41598-024-74278-8, 2024.
de Fockert, A., Eleveld, M. A., Bakker, W., Felício, J. M., Costa, T. S., Vala, M., Marques, P., Leonor, N., Moreira, A., Costa, J. R., Caldeirinha, R. F. S., Matos, S. A., Fernandes, C. A., Fonseca, N., Simpson, M. D., Marino, A., Gandini, E., Camps, A., Perez-Portero, A., Gonga, A., Burggraaff, O., Garaba, S. P., Salama, M. S., Xiao, Q., Calvert, R., van den Bremer, T. S., and de Maagt, P.: Assessing the detection of floating plastic litter with advanced remote sensing technologies in a hydrodynamic test facility, Scientific Reports, 14, https://doi.org/10.1038/s41598-024-74332-5, 2024.
de Vries, R. V. F. and Garaba, S. P.: Dataset of spectral reflectances and hypercubes of submerged plastic litter, including COVID-19 medical waste, pristine plastics, and ocean-harvested plastics, 4TU.ResearchData [data set], https://doi.org/10.4121/769cc482-b104-4927-a94b-b16f6618c3b3.v1, 2023.
de Vries, R. V. F., Garaba, S. P., and Royer, S.-J.: Hyperspectral reflectance of pristine, ocean weathered and biofouled plastics from a dry to wet and submerged state, Earth Syst. Sci. Data, 15, 5575–5596, https://doi.org/10.5194/essd-15-5575-2023, 2023a.
de Vries, R. V. F., Garaba, S. P., and Royer, S.-J.: Dataset of spectral reflectances and hypercubes of submerged biofouled, pristine, and ocean-harvested marine litter, 4TU.ResearchData [data set], https://doi.org/10.4121/7c53b72a-be97-478b-9288-ff9c850de64b.v1, 2023b.
English, D. C. and Hu, C.: Field and laboratory measured floating matter reflectance initial results, EcoSIS [data set], https://doi.org/10.21232/NxTTJsta, 2020.
Galgani, F., Maes, T., and Li, D.: Plastic and oceans, Analysis of Microplastics and Nanoplastics, https://doi.org/10.1016/B978-0-443-15779-0.00004-3, 2025.
Garaba, S., Arias, M., Corradi, P., Harmel, T., de Vries, R., and Lebreton, L.: Concentration, anisotropic and apparent colour effects on optical reflectance properties of virgin and ocean-harvested plastics, Journal of Hazardous Materials, 406, https://doi.org/10.1016/j.jhazmat.2020.124290, 2021a.
Garaba, S., Castagna, A., Devriese, L., Dierssen, H., Everaert, G., Knaeps, E., and Sterckx, S.: Spectral reflectance measurements of dry and wet plastic materials, asphalt, concrete klinker from UV-350 nm to SWIR-2500 nm around Spuikom, Belgium, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.937185, 2021b.
Garaba, S. P. and Dierssen, H. M.: Spectral reference library of 11 types of virgin plastic pellets common in marine plastic debris, EcoSIS [data set], https://doi.org/10.21232/C27H34, 2017.
Garaba, S. P. and Dierssen, H. M.: An airborne remote sensing case study of synthetic hydrocarbon detection using short wave infrared absorption features identified from marine-harvested macro- and microplastics, Remote Sensing of Environment, 205, https://doi.org/10.1016/j.rse.2017.11.023, 2018.
Garaba, S. P. and Dierssen, H. M.: Spectral reflectance of dry and wet marine-harvested microplastics from Kamilo Point, Pacific Ocean, EcoSIS [data set], https://doi.org/10.21232/r7gg-yv83, 2019a.
Garaba, S. P. and Dierssen, H. M.: Spectral reflectance of washed ashore macroplastics, EcoSIS [data set], https://doi.org/10.21232/ex5j-0z25, 2019b.
Garaba, S. P. and Dierssen, H. M.: Spectral reflectance of dry marine-harvested microplastics from North Atlantic and Pacific Ocean, EcoSIS [data set], https://doi.org/10.21232/jyxq-1m66, 2019c.
Garaba, S. P. and Dierssen, H. M.: Hyperspectral ultraviolet to shortwave infrared characteristics of marine-harvested, washed-ashore and virgin plastics, Earth Syst. Sci. Data, 12, 77–86, https://doi.org/10.5194/essd-12-77-2020, 2020.
Garaba, S. P. and Harmel, T.: Top-of-atmosphere hyper and multispectral signatures of submerged plastic litter with changing water clarity and depth, Optics Express, 30, 16553–16571, https://doi.org/10.1364/OE.451415, 2022.
Garaba, S. P., Acuña-Ruz, T., and Mattar, C. B.: Hyperspectral longwave infrared reflectance spectra of naturally dried algae, anthropogenic plastics, sands and shells, Earth Syst. Sci. Data, 12, 2665–2678, https://doi.org/10.5194/essd-12-2665-2020, 2020a.
Garaba, S. P., de Vries, R. V. F., Knaeps, E., Mijnendonckx, J., and Sterckx, S.: Spectral reflectance measurements of dry and wet virgin plastics at varying water depth and water clarity from UV to SWIR (SEV-1), 4TU.ResearchData [data set], https://doi.org/10.4121/uuid:9ee3be54-9132-415a-aaf2-c7fbf32d2199, 2020b.
Garaba, S. P., Albinus, M., Bonthond, G., Flöder, S., Miranda, M. L. M., Rohde, S., Yong, J. Y. L., and Wollschläger, J.: Bio-optical properties of the cyanobacterium Nodularia spumigena, Earth Syst. Sci. Data, 15, 4163–4179, https://doi.org/10.5194/essd-15-4163-2023, 2023.
GIZ: Advances in remote sensing of plastic waste, Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, edited by: Giang, P. and Ortwig, N., 87 pp., https://www.giz.de/en/downloads/giz-2023-en-advances-in-remote-sensing-of-plastic-waste.pdf (last access: 10 January 2025), 2023.
Goddijn-Murphy, L., Martínez-Vicente, V., Dierssen, H. M., Raimondi, V., Gandini, E., Foster, R., and Chirayath, V.: Emerging Technologies for Remote Sensing of Floating and Submerged Plastic Litter, Remote Sensing 16, 1770, https://doi.org/10.3390/rs16101770, 2024.
Guo, X. and Li, P.: Mapping plastic materials in an urban area: Development of the normalized difference plastic index using WorldView-3 superspectral data, ISPRS Journal of Photogrammetry and Remote Sensing, 169, https://doi.org/10.1016/j.isprsjprs.2020.09.009, 2020.
Hu, C.: On the logic of remote detection of plastic litter in the aquatic environments: A revisit, Remote Sensing of Environment, 329, https://doi.org/10.1016/j.rse.2025.114911, 2025.
Hu, C., Qi, L., English, D. C., Wang, M., Mikelsons, K., Barnes, B. B., Pawlik, M. M., and Ficek, D.: Pollen in the Baltic Sea as viewed from space, Remote Sensing of Environment, 284, https://doi.org/10.1016/j.rse.2022.113337, 2023.
Huth-Fehre, T., Feldhoff, R., Kantimm, T., Quick, L., Winter, F., Cammann, K., Broek, W. v. d., Wienke, D., Melssen, W., and Buydens, L.: NIR – Remote sensing and artificial neural networks for rapid identification of post consumer plastics, Journal of Molecular Structure, 348, https://doi.org/10.1016/0022-2860(95)08609-Y, 1995.
Knaeps, E., Strackx, G., Meire, D., Sterckx, S., Mijnendonckx, J., and Moshtaghi, M.: Hyperspectral reflectance of marine plastics in the VIS to SWIR (2), 4TU.ResearchData [data set], https://doi.org/10.4121/12896312.v2, 2020.
Knaeps, E., Sterckx, S., Strackx, G., Mijnendonckx, J., Moshtaghi, M., Garaba, S. P., and Meire, D.: Hyperspectral-reflectance dataset of dry, wet and submerged marine litter, Earth Syst. Sci. Data, 13, 713–730, https://doi.org/10.5194/essd-13-713-2021, 2021.
Kremezi, M., Kristollari, V., Karathanassi, V., Topouzelis, K., Kolokoussis, P., Taggio, N., Aiello, A., Ceriola, G., Barbone, E., and Corradi, P.: Pansharpening PRISMA Data for Marine Plastic Litter Detection Using Plastic Indexes, IEEE Journals & Magazine, IEEE Xplore, IEEE Access, 9, https://doi.org/10.1109/ACCESS.2021.3073903, 2021.
Kühn, F., Oppermann, K., and Hörig, B.: Hydrocarbon Index – an algorithm for hyperspectral detection of hydrocarbons, International Journal of Remote Sensing, 25, https://doi.org/10.1080/01431160310001642287, 2004.
Leone, G., Catarino, A. I., De Keukelaere, L., Bossaer, M., Knaeps, E., and Everaert, G.: Hyperspectral reflectance dataset for dry, wet and submerged plastics in clear and turbid water, Marine Data Archive [data set], https://doi.org/10.14284/530, 2021.
Leone, G., Catarino, A. I., De Keukelaere, L., Bossaer, M., Knaeps, E., and Everaert, G.: Hyperspectral reflectance dataset of pristine, weathered, and biofouled plastics, Earth Syst. Sci. Data, 15, 745–752, https://doi.org/10.5194/essd-15-745-2023, 2023.
Martí, E., Martin, C., Galli, M., Echevarría, F., Duarte, C. M., and Cózar, A.: The Colors of the Ocean Plastics, Environmental Science & Technology, 54, https://doi.org/10.1021/acs.est.9b06400, 2020.
Martínez-Vicente, V., Clark, J. R., Corradi, P., Aliani, S., Arias, M., Bochow, M., Bonnery, G., Cole, M., Cózar, A., Donnelly, R., Echevarría, F., Galgani, F., Garaba, S. P., Goddijn-Murphy, L., Lebreton, L., Leslie, H. A., Lindeque, P. K., Maximenko, N., Martin-Lauzer, F.-R., Moller, D., Murphy, P., Palombi, L., Raimondi, V., Reisser, J., Romero, L., Simis, S. G. H., Sterckx, S., Thompson, R. C., Topouzelis, K. N., van Sebille, E., Veiga, J. M., and Vethaak, A. D.: Measuring Marine Plastic Debris from Space: Initial Assessment of Observation Requirements, Remote Sensing, 11, 2443, https://doi.org/10.3390/rs11202443, 2019.
Masoumi, H., Safavi, S. M., and Khani, Z.: Identification and classification of plastic resins using near infrared reflectance, Int. J. Mech. Ind. Eng, 6, 213–220, 2012.
Maximenko, N. and Hafner, J.: Near-real time model product to support marine debris research and operations in Hawaii and in the eastern North Pacific, International Pacific Research Center, IPRC Technical Note No. 7, 17 pp., https://iprc.soest.hawaii.edu/publications/tech_notes/NPac-GP-TechNote-7.pdf (last access: 10 January 2025), 2024.
Maximenko, N., Corradi, P., Law, K. L., Van Sebille, E., Garaba, S. P., Lampitt, R. S., Galgani, F., Martinez-Vicente, V., Goddijn-Murphy, L., Veiga, J. M., Thompson, R. C., Maes, C., Moller, D., Löscher, C. R., Addamo, A. M., Lamson, M. R., Centurioni, L. R., Posth, N. R., Lumpkin, R., Vinci, M., Martins, A. M., Pieper, C. D., Isobe, A., Hanke, G., Edwards, M., Chubarenko, I. P., Rodriguez, E., Aliani, S., Arias, M., Asner, G. P., Brosich, A., Carlton, J. T., Chao, Y., Cook, A.-M., Cundy, A. B., Galloway, T. S., Giorgetti, A., Goni, G. J., Guichoux, Y., Haram, L. E., Hardesty, B. D., Holdsworth, N., Lebreton, L., Leslie, H. A., Macadam-Somer, I., Mace, T., Manuel, M., Marsh, R., Martinez, E., Mayor, D. J., Le Moigne, M., Molina Jack, M. E., Mowlem, M. C., Obbard, R. W., Pabortsava, K., Robberson, B., Rotaru, A.-E., Ruiz, G. M., Spedicato, M. T., Thiel, M., Turra, A., and Wilcox, C.: Frontiers | Toward the Integrated Marine Debris Observing System, Frontiers in Marine Science, 6, https://doi.org/10.3389/fmars.2019.00447, 2019.
Moroni, M., Mei, A., Leonardi, A., Lupo, E., and Marca, F. L.: PET and PVC Separation with Hyperspectral Imagery, Sensors, 15, 2205–2227, https://doi.org/10.3390/s150102205, 2015.
Mutuku, J., Yanotti, M., Tocock, M., and MacDonald, D. H.: The Abundance of Microplastics in the World's Oceans: A Systematic Review, Oceans, 5, 398–428, https://doi.org/10.3390/oceans5030024, 2024.
NASEM: Reckoning with the U.S. Role in Global Ocean Plastic Waste, The National Academies of Sciences, Engineering, and Medicine, Washington, DC978-0-309-45885-6, 269 pp., https://doi.org/10.17226/26132, 2021.
Ohall, A., Bisson, K., and Rivero-Calle, S.: MArine Debris hyperspectral reference Library collection (MADLib), 4TU.ResearchData [data set], https://doi.org/10.4121/059551d3-2383-4e20-af2d-011c9a59d3ac, 2025.
Olyaei, M., Ebtehaj, A., and Ellis, C. R.: A Hyperspectral Reflectance Database of Plastic Debris with Different Fractional Abundance in River Systems, Scientific Data, 11, https://doi.org/10.1038/s41597-024-03974-x, 2024.
Palombi, L. and Raimondi, V.: Experimental Tests for Fluorescence LIDAR Remote Sensing of Submerged Plastic Marine Litter, Remote Sensing, 14, 5914, https://doi.org/10.3390/rs14235914, 2022.
Park, Y.-J., Sainte-Rose, B., and Garaba, S. P.: Detecting the Great Pacific Garbage Patch floating plastic litter using WorldView-3 satellite imagery, Optics Express, 29, 35288–35298, https://doi.org/10.1364/OE.440380, 2021.
Smith, G. and Garaba, S. P.: Insights from monitoring abundances and characteristics of plastic leakage in city waterways and tourist beaches of Cambodia, Environmental Challenges, 19, https://doi.org/10.1016/j.envc.2025.101121, 2025.
Tasseron, P., Emmerik, T. v., Peller, J., Schreyers, L., and Biermann, L.: Advancing Floating Macroplastic Detection from Space Using Experimental Hyperspectral Imagery, Remote Sensing, 13, 2335, https://doi.org/10.3390/rs13122335, 2021.
Thompson, R. C., Courtene-Jones, W., Boucher, J., Pahl, S., Raubenheimer, K., and Koelmans, A. A.: Twenty years of microplastic pollution research – what have we learned?, Science, 386, https://doi.org/10.1126/science.adl2746, 2024.
UNEP: Drowning in Plastics – Marine Litter and Plastic Waste Vital Graphics, United Nations Environment Programme (UNEP), Secretariats of the Basel, Rotterdam and Stockholm Conventions (BRS) and GRID-Arendal, 77 pp., https://wedocs.unep.org/xmlui/bitstream/handle/20.500.11822/36964/VITGRAPH.pdf (last access: 10 January 2025), 2021.
Wang, S., Zhao, W., Sun, D., Li, Z., Shen, C., Bu, X., and Zhang, H.: Unveiling reflectance spectral characteristics of floating plastics across varying coverages: insights and retrieval model, Optics Express, 32, 22078–22094, https://doi.org/10.1364/OE.521004, 2024.
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., and Bourne, P. E.: The FAIR Guiding Principles for scientific data management and stewardship, Scientific Data, 3, 1–9, https://doi.org/10.1038/sdata.2016.18, 2016.
Zhang, P., Du, P., Guo, S., Zhang, W., Tang, P., Chen, J., and Zheng, H.: A novel index for robust and large-scale mapping of plastic greenhouse from Sentinel-2 images, Remote Sensing of Environment, 276, https://doi.org/10.1016/j.rse.2022.113042, 2022.
Short summary
Remote sensing of marine debris is limited by the lack of a unifying spectral reference library to support algorithm development. The open-access MArine Debris hyperspectral reference Library collection (MADLib), with 24889 hyperspectral reflectances from 3032 diverse debris samples, is a well-curated database of representative spectra. We describe the available data, discuss gaps, and propose improved metadata schemes to expand the MADLIB collection and support sensor and algorithm development.
Remote sensing of marine debris is limited by the lack of a unifying spectral reference library...
Altmetrics
Final-revised paper
Preprint