Articles | Volume 17, issue 2
https://doi.org/10.5194/essd-17-719-2025
https://doi.org/10.5194/essd-17-719-2025
Data description paper
 | 
24 Feb 2025
Data description paper |  | 24 Feb 2025

A global monthly 3D field of seawater pH over 3 decades: a machine learning approach

Guorong Zhong, Xuegang Li, Jinming Song, Baoxiao Qu, Fan Wang, Yanjun Wang, Bin Zhang, Lijing Cheng, Jun Ma, Huamao Yuan, Liqin Duan, Ning Li, Qidong Wang, Jianwei Xing, and Jiajia Dai

Related authors

Reconstruction of global surface ocean pCO2 using region-specific predictors based on a stepwise FFNN regression algorithm
Guorong Zhong, Xuegang Li, Jinming Song, Baoxiao Qu, Fan Wang, Yanjun Wang, Bin Zhang, Xiaoxia Sun, Wuchang Zhang, Zhenyan Wang, Jun Ma, Huamao Yuan, and Liqin Duan
Biogeosciences, 19, 845–859, https://doi.org/10.5194/bg-19-845-2022,https://doi.org/10.5194/bg-19-845-2022, 2022
Short summary

Related subject area

Domain: ESSD – Ocean | Subject: Chemical oceanography
Exploring the CO2 fugacity along the east coast of South America aboard the schooner Tara
Léa Olivier, Jacqueline Boutin, Gilles Reverdin, Christopher Hunt, Thomas Linkowski, Alison Chase, Nils Haentjens, Pedro C. Junger, Stéphane Pesant, and Douglas Vandemark
Earth Syst. Sci. Data, 17, 3583–3598, https://doi.org/10.5194/essd-17-3583-2025,https://doi.org/10.5194/essd-17-3583-2025, 2025
Short summary
Mapping the global distribution of lead and its isotopes in seawater with explainable machine learning
Arianna Olivelli, Rossella Arcucci, Mark Rehkämper, and Tina van de Flierdt
Earth Syst. Sci. Data, 17, 3679–3699, https://doi.org/10.5194/essd-17-3679-2025,https://doi.org/10.5194/essd-17-3679-2025, 2025
Short summary
Global database of actual nitrogen loss rates in coastal and marine sediments
Yongkai Chang, Ehui Tan, Dengzhou Gao, Cheng Liu, Zongxiao Zhang, Zhixiong Huang, Jianan Liu, Yu Han, Zifu Xu, Bin Chen, and Shuh-Ji Kao
Earth Syst. Sci. Data, 17, 3521–3540, https://doi.org/10.5194/essd-17-3521-2025,https://doi.org/10.5194/essd-17-3521-2025, 2025
Short summary
Tracer-based Rapid Anthropogenic Carbon Estimation (TRACE)
Brendan R. Carter, Jörg Schwinger, Rolf Sonnerup, Andrea J. Fassbender, Jonathan D. Sharp, Larissa M. Dias, and Daniel E. Sandborn
Earth Syst. Sci. Data, 17, 3073–3088, https://doi.org/10.5194/essd-17-3073-2025,https://doi.org/10.5194/essd-17-3073-2025, 2025
Short summary
A continual-learning-based multilayer perceptron for improved reconstruction of three-dimensional nitrate concentrations
Xiang Yu, Huadong Guo, Jiahua Zhang, Yi Ma, Xiaopeng Wang, Guangsheng Liu, Mingming Xing, Nuo Xu, and Ayalkibet M. Seka
Earth Syst. Sci. Data, 17, 2735–2759, https://doi.org/10.5194/essd-17-2735-2025,https://doi.org/10.5194/essd-17-2735-2025, 2025
Short summary

Cited articles

Argo: Argo float data and metadata from Global Data Assembly Centre (Argo GDAC), SEANOE [data set], https://doi.org/10.17882/42182, 2024. 
Bates, N. R.: Interannual variability of the oceanic CO2 sink in the subtropical gyre of the North Atlantic Ocean over the last 2 decades, J. Geophys. Res.-Oceans, 112, C9, https://doi.org/10.1029/2006JC003759, 2007. 
Bates, N. R. and Johnson, R. J.: Acceleration of ocean warming, salinification, deoxygenation and acidification in the surface subtropical North Atlantic Ocean, Commun. Earth Environ., 1, 33, https://doi.org/10.1038/s43247-020-00030-5, 2020. 
Bates, N. R., Astor, Y. M., Church, M. J., Currie, K., Dore, J. E., González-Dávila, M., Lorenzoni, L., Muller-Karger, F., Olafsson, J., and Santana-Casiano, J. M.: A time-series view of changing surface ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification, Oceanography, 27, 126–141, https://doi.org/10.5670/oceanog.2014.16, 2014. 
Broullón, D., Pérez, F. F., Velo, A., Hoppema, M., Olsen, A., Takahashi, T., Key, R. M., Tanhua, T., González-Dávila, M., Jeansson, E., Kozyr, A., and van Heuven, S. M. A. C.: A global monthly climatology of total alkalinity: a neural network approach, Earth Syst. Sci. Data, 11, 1109–1127, https://doi.org/10.5194/essd-11-1109-2019, 2019. 
Download
Short summary
The continuous uptake of atmospheric CO2 by the ocean leads to decreasing seawater pH, which is an ongoing threat to the marine ecosystem. This pH change has been globally documented in the surface ocean, but information is limited below the surface. Here, we present a monthly 1° gridded product of global seawater pH based on a machine learning method and real pH observations. The pH product covers the years from 1992 to 2020 and depths from 0 to 2000 m.
Share
Altmetrics
Final-revised paper
Preprint