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S1. Uncertainty and construction method of selected ocean products 1 

A group of products related to the physical, chemical, and biological activities that 2 

influence the ocean carbonate system were collected as potential pH predictors (Table 3 

1). These products were constructed using different methods in previous research. The 4 

seawater temperature and salinity product were constructed based on measurements 5 

from the World Ocean Database (WOD) using the ensemble optimal interpolation 6 

method with the dynamic ensemble (EnOI-DE) provided by CMIP5 historical 7 

simulations (Cheng et al., 2016; Cheng et al., 2020). The temperature product was 8 

claimed with an uncertainty of about ±0.05°C in the recent few decades, and the 9 

uncertainty of salinity product was about ±0.001~±0.005 at different depths (present as 10 

figures in Cheng et al., 2016 and Cheng et al., 2020; 11 

https://journals.ametsoc.org/view/journals/clim/33/23/full-jcliD200366-f5.jpg and 12 

https://journals.ametsoc.org/view/journals/clim/29/15/full-jcli-d-15-0730.1-f8.jpg). 13 

The climatological Alk product was constructed from Global Ocean Data Analysis 14 

Project version 2.2019 (GLODAPv2019) measurements using a neural network 15 

(NNGv2) method, with the RMSE of 3–6.2 µmol kg−1 (Broullón et al., 2019). The 16 

climatological DIC product was constructed from GLODAPv2019 and the Lamont–17 

Doherty Earth Observatory (LDEO) datasets using a feedforward neural network 18 

(dubbed NNGv2LDEO) method, with a RMSE of 3.6–13.2 µmol kg−1 (Broullón et al., 19 

2020). The climatological dissolved oxygen, nitrate, phosphate, and silicate product 20 

was constructed based on measurements from the World Ocean Database, using an 21 

objective analysis method that generated a first-guess field and then carried out a 22 

correction at all gridpoints as a distance-weighted mean of all gridpoint difference 23 

values that lie within the area around the gridpoint defined by the influence radius 24 

(Garcia et al., 2019a; Garcia et al., 2019b). The producer claimed an average DO bias 25 

of 0.4±4.7 µmol kg-1 below 500 m depth and 1.4±10.9 µmol kg-1 above 500 m depth. 26 

The average biases of nutrient concentration were -0.02±0.07 µmol kg-1 for phosphate, 27 

-0.22±0.95 µmol kg-1 for nitrate, and -0.3±3.8 µmol kg-1 for silicate below 500 m depth, 28 

and were 0.01±0.12 µmol kg-1 for phosphate, 0.2±1.8 µmol kg-1 for nitrate, and 0.8±3.6 29 

µmol kg-1 for silicate above 500 m depth. The Sea surface height (SSH), mixed layer 30 

depth (MLD), and W velocity of ocean current from the ECCO2 cube92 product were 31 

constructed by least squares fit of a global full-depth-ocean and sea-ice configuration 32 

of the Massachusetts Institute of Technology general circulation model to the available 33 

satellite and in-situ data (Menemenlis et al., 2008). The basin-wide median bias error 34 



of the MLD product is -6.6 m and the RMSE is 40 m, and the RMSE of the SSH product 35 

is 9.2 cm. The ERA5 sea level pressure and surface pressure were constructed by the 36 

Integrated Forecasting System (IFS) Cy41r2 model (Hersbach et al., 2020). The 37 

standard deviation of ERA5 sea level pressure and surface pressure are within 1 hPa 38 

and 0.8 hPa in the recent three decades. The NOAA Greenhouse Gas Marine Boundary 39 

Layer Reference xCO2 product is constructed by extending measurements from a subset 40 

of sites from the NOAA Cooperative Global Air Sampling Network, with an uncertainty 41 

within 1 μmol mol-1 in most regions (Lan et al., 2023, 42 

https://gml.noaa.gov/ccgg/mbl/mbl.html). The bi-monthly Multivariate El 43 

Niño/Southern Oscillation index (MEI) was calculated by the first seasonally varying 44 

principal component of six atmosphere–ocean (COADS) variable fields in the tropical 45 

Pacific basin (Wolter et al., 2011). The Arctic Oscillation index was calculated as the 46 

first leading mode from the Emperical Orthogonal Function analysis of monthly mean 47 

height anomalies at 1000-hPa of the Northern Hemisphere or 700-hPa of the Southern 48 

Hemisphere (CPC, 2002). The Southern Oscillation Index was calculated based on the 49 

differences in air pressure anomaly between Tahiti and Darwin, Australia (CPC, 2005). 50 

The specific uncertainty of these index products is not provided. The GEBCO global 51 

bathymetric data was constructed using predicted depths based on the V32 gravity 52 

model (Sandwell et al., 2019). The monthly surface ocean pCO2 was constructed using 53 

the SOM-FFNN method based on regional-specific predictors selected by the stepwise 54 

FFNN algorithm, with a global RMSE of 17.99 μatm (Zhong et al., 2022). A 55 

climatological pCO2 product constructed by another SOM-FFNN model was also used, 56 

with the RMSE of 18.3 μatm (Landschützer et al., 2020). The Euphotic Depth product 57 

was constructed from remote sensing reflectance (RRS) data derived inherent optical 58 

properties using Lee algorithm (Lee et al., 2007), with an average percentage error of 59 

13.7%. The chlorophyll concentration product was constructed based on RRS at 2-4 60 

wavelengths between 440 and 670 nm with an uncertainty of 1-2%, using the algorithm 61 

of Hu et al. (2019) that combines an empirical band difference approach at low 62 

chlorophyll concentrations with a band ratio approach at higher chlorophyll 63 

concentrations. The photosynthetically available radiation (PAR) product was based on 64 

the observed Top-of-Atmosphere (TOA) radiances in the 400-700nm range that do not 65 

saturate over clouds using the algorithm of Frouin et al. (2002), with an RMSE of 3.6 66 

Einstein/m2/day. The product of the diffuse attenuation coefficient at 490 nm (Kd490) 67 

was calculated using an empirical relationship derived from in situ measurements 68 



of Kd490 and blue-to-green band ratios of RRS. The remote sensing reflectance 69 

product was derived from ocean color sensors based on the spectral distribution of 70 

reflected visible solar radiation upwelling from below the ocean surface and passing 71 

through the sea-air interface. The total absorption and backscattering products were 72 

calculated using the default global configuration of the Generalized Inherent Optical 73 

Property (GIOP) model (Werdell et al., 2013).  74 

S2. Validation of cross-boundary method 75 

The cross-boundary method reduced the pH predicting error slightly, but improved 76 

the discontinuity problem in the SOM boundary effectively (Figure S1 a-d). However, 77 

the discontinuity problem was not completely solved and some boundary line existed 78 

in the spatial distribution, especially in the deeper ocean that pH measurements are 79 

much sparser (Figure S1 e-f). Even so, the performance of FFNN predicting was better 80 

when the cross-boundary method was applied. Compared with taking average in the 81 

boundary area, the cross-boundary method avoided subjectively modifying the 82 

boundary data. Correspondingly, this method may not solve the discontinuity problem 83 

perfectively in some situations. The cross-boundary method also decreased the 84 

predicting error slightly in vertical boundary areas (2 layers near the mixed layer depth). 85 

However, the improvement was minor in the vertical distribution, due to the natural 86 

existing substantial vertical gradient of seawater pH near the mixed layer depth (Figure 87 

S2). Overall, the cross-boundary method increases information about seawater pH 88 

variation out of boundaries in the neural network learning process, reducing the outliers 89 

near the SOM boundary and vertical boundary. 90 

S3. Comparison of performance between FFNNs training based on pH and [H+] 91 

Due to the logarithmic relationship between pH value and [H+] concentration, 92 

results obtained from training FFNN with pH and from training FFNN with [H+] then 93 

converting outputs into pH may differ. A comparison of predicting errors was conducted 94 

between these two training methods. The results show a nearly consistent pH RMSE 95 

between the FFNN training with pH and with [H+] (Figure 7). As the pH measurements 96 

of all GLODAP samples are closer to a normal distribution than the [H+], the predicting 97 

error was slightly lower in most regions when the FFNN was trained with pH, but the 98 

difference in predicting errors was extremely small. In addition, the FFNN trained using 99 

[H+] occasionally produced negative [H+] in regions with extremely low [H+]. 100 

Therefore, it is better to train FFNN using pH rather than using [H+] in the 101 

reconstruction process of the pH product. 102 



The distribution patterns of regional pH RMSE and [H+] RMSE are inconsistent 103 

whenever the FFNN was trained using pH or [H+]. In fact, the pH RMSE of the 104 

intermediate layer in regions such as the subarctic North Pacific and the equatorial 105 

Pacific is significantly lower than that in the intermediate layer of the Arctic Ocean, but 106 

their [H+] RMSE is higher than that of the intermediate layer in the Arctic Ocean (Figure 107 

7a and 7b). This is caused by the effect of the logarithmic relationship. If the pH values 108 

are different for the same pH RMSE, the corresponding [H+] RMSE will be different. 109 

Therefore, the uncertainty of the pH product is calculated based on the [H+] RMSE and 110 

pH value, rather than solely based on the pH RMSE.  111 

 112 
  113 



Figure S1. Statistical distribution of GLODAP samples used for training and testing in each 114 
province. Iteration 1-4: repeated evaluation with different training and testing samples dividing by 115 
years. Samples in 1992, 1996, …, 2020 were used for testing and the rest were used for training in 116 
iteration 1; samples in 1993, 1997, …, 2017 were used for testing and the rest were used for 117 
training in iteration 2. 118 

 119 
 120 



Figure S2. Validation of cross-boundary method for pH predicting in the SOM boundary. a-121 
b): comparison of FFNN predicted pH with GLODAP in all SOM boundary areas; c-f): 122 
comparison of spatial distribution at 0 m and 1000 m in January 2020. 123 

 124 

 125 
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Figure S3. Validation of cross-boundary method for pH predicting in the vertical boundary. 128 
a) and b): comparison of FFNN predicted pH with GLODAP in all vertical boundary areas (2 129 
layers near the mixed layer depth); c) and d): comparison of vertical distribution at different basin 130 
in January 2020. 131 

 132 

 133 
Figure S4. Comparison of pH RMSE and [H+] RMSE from training FFNN using pH and using 134 
[H+]. a): pH RMSE of FFNN trained using pH and [H+] in each biogeochemical province, the 135 
predicted [H+] from FFNN trained using [H+] was converted to pH for estimating pH RMSE. b): 136 
[H+] RMSE of FFNN trained using pH and [H+] in each biogeochemical province; c): [H+] RMSE 137 
of FFNN trained using pH and [H+] in each vertical layer; the predicted pH from FFNN trained 138 
using pH was converted to [H+] for estimating [H+] RMSE. The numbers shown in the X-axis 139 
represent the SOM province in Figure 1. 140 

 141 
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Figure S5. Mean standard deviation between FFNN pH with different initial status. 144 

 145 

 146 
 147 
Figure S6. Station map of used delayed-mode BGC-Argo pH-adjusted data with quality 148 
control flag 1.  149 
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Table S1. Predictors selected by the stepwise FFNN algorithm in the Mixed layer for period 155 
before August 2002. The predictors are arranged in order of relative importance, with the 156 
variables listed at the front of each province being more effective in reducing predicting errors 157 
when used as pH predictors. 158 

Province 
FFNN 

neurons 
Predictors 

P5 Equatorial Atlantic 25 Phosphate, Temp, SLP, DIC, Psurf, TA, pCO2, Wvel(in-situ), 

DO 

P8 Equatorial Pacific 10 pCO2, Depth, sLat, Temp, Sal, DIC, Wvel(in-situ), Nitrate 

P10 Subtropical South 

Atlantic 

20 pCO2, Silicate, Nitrate, Wvel(65m), Wvel(in-situ), 

Wvel(195m) 

P11 Subtropical South 

Pacific 

10 Phosphate, pCO2, Depth, sLat, Silicate, pCO2 clim, 

Wvel(5m), Wvel(105m) 
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