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Abstract. The continuous uptake of anthropogenic CO2 by the ocean leads to ocean acidification, which is an
ongoing threat to marine ecosystem. The ocean acidification rate has been globally documented in the surface
ocean, but this information is limited below the surface. Here, we present a monthly 4D 1°× 1° gridded product
of global seawater pH on the total scale and at in situ temperature (without standardization to 25 °C), derived
from a machine learning algorithm trained on pH observations from the Global Ocean Data Analysis Project
(GLODAP). The proposed pH product covers the years from 1992 to 2020 and depths from the surface to 2 km
on 41 levels. A three-step machine-learning-based algorithm was used to construct the pH product, incorporating
region division via a self-organizing map neural network, predictor selection via the stepwise regression algo-
rithm that adds and removes variables from network inputs based on their contribution to reducing reconstruction
errors, and nonlinear relationship regression by feedforward neural networks (FFNNs). The performance of the
machine learning algorithm was validated using real observations with a cross-validation method, in which four
repeating iterations were carried out with each iteration utilizing a different 25 % subset of observations for vali-
dation and the complementary 75 % subset for training. The proposed pH product is evaluated using comparisons
to time-series observations and the GLODAP pH climatology. The overall root-mean-square error between the
FFNN-reconstructed pH and the GLODAP measurements is 0.028, ranging from 0.044 at the surface to 0.013 at
2000 m. The pH product is distributed via the Marine Science Data Center of the Chinese Academy of Sciences:
https://doi.org/10.12157/IOCAS.20230720.001 (Zhong et al., 2023).

1 Introduction

Since the industrial revolution, the oceans have absorbed ap-
proximately one-quarter of the carbon dioxide (CO2) emit-
ted by human activities (Le Quéré et al., 2010; Friedlingstein
et al., 2023). This continuous absorption of CO2 from the
atmosphere has resulted in a decline in carbonate saturation

states and surface seawater pH – known as ocean acidifica-
tion – which is a phenomenon of great concern (Caldeira and
Wickett, 2003; Feely et al., 2004, 2009; Orr et al., 2005). As
one of the primary environmental challenges that the ocean
currently faces, ocean acidification will have extensive im-
pacts on marine organisms and the ecological environment,
resulting in notable changes in the marine ecosystem. There-
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fore, the assessment of ocean acidification is crucial to under-
stand (1) the response of marine organisms to changes in sea-
water pH and (2) the potential future changes in the capacity
of the global ocean to uptake CO2 (Sabine and Tanhua, 2010;
Guallart et al., 2015).

However, acidification research is greatly limited in terms
of temporal and spatial coverage due to the lack of long-
term, global (coverage), and continuous seawater pH mea-
surements. Accurate seawater pH measurements are only
available from select ship surveys and a limited number of
time-series stations for recent decades (Fay and McKinley,
2013; Takahashi et al., 2014). Recent research using discrete
ship survey measurements has revealed rapid surface ocean
acidification in the Arctic Ocean, with some areas showing
an average decreasing pH trend of –0.0086 yr−1 (Luo et al.,
2016; Terhaar et al., 2020; Qi et al., 2022). Both seawater
pH measurements from time-series stations and discrete ship
surveys suggest notable regional differences in surface ocean
acidification rates (Bates et al., 2014; Lauvset et al., 2015).
In the Sea of Japan/East Sea, the acidification rate in the
deep ocean may be faster than previously considered and
even faster than that reported for the surface ocean (Chen
et al., 2017; Li et al., 2022). Meanwhile, relatively slow acid-
ification has been found in the deep Atlantic Ocean below
2000 m (Guallart et al., 2015), and rising pH values in deep
waters around 1000 m have also been noted in the North Pa-
cific Ocean (Ishizu et al., 2021). With limited reports about
acidification below the surface, there remains a need to en-
hance our understanding of global ocean acidification rates
across varying depths.

The lack of long-term, global (coverage), and continu-
ous seawater pH measurements makes it difficult to expand
the understanding of global deep-ocean acidification using
classic regression methods. Recent applications of machine
learning methods in global reconstructions of marine car-
bonate system variables have facilitated global-scale research
on the acidification and carbon cycle, including the sin-
gle or ensemble-based feedforward neural network (FFNN)
method and the SOM-FFNN method (where SOM stands
for self-organizing map) for the reconstruction of the sur-
face ocean partial pressure of CO2 (pCO2; Landschützer
et al., 2014; Chau et al., 2022, 2024; Zhong et al., 2022), dis-
solved inorganic carbon (DIC; Broullón et al., 2020; Keppler
et al., 2020; Gregor and Gruber, 2021; Chau et al., 2024),
and alkalinity (Broullón et al., 2019; Gregor and Gruber,
2021; Chau et al., 2024). These methods have inspired our
methodology for constructing the global gridded seawater
pH dataset. To date, only surface ocean gridded pH prod-
ucts have been available for acidification research, including
the 1° JMA product (Iida et al., 2021), the 1° OceanSODA-
ETHZ product (Gregor and Gruber, 2021), a 0.25° remote-
sensing-based product (Jiang et al., 2022), and the 0.25°
CMEMS-LSCE product (Chau et al., 2024), which were de-
rived by reconstructing pCO2, DIC, or alkalinity using ma-
chine learning algorithms and subsequently calculating pH

with the CO2SYS program (Lewis et al., 1998). In this pa-
per, we present a monthly gridded global ocean pH prod-
uct covering depths of 0–2000 m from January 1992 to De-
cember 2020, using a machine learning method trained on
pH measurements from the Global Ocean Data Analysis
Project (GLODAP) dataset (Lauvset et al., 2024). The pro-
posed pH product provides regional and global insights into
ocean acidification on timescales ranging from a few years to
multiple decades.

2 Methods

2.1 Data sources and processing

The pH measurements on the total scale and at in situ tem-
perature and pressure from the Global Ocean Data Analysis
Project (GLODAP) dataset (2023 version) were used for neu-
ral network training (Lauvset et al., 2024). The reconstructed
pH product is also on the total scale and at in situ tempera-
ture (without standardization to 25 °C) based on a gridded
global seawater temperature product (Cheng et al., 2017).
We collected gridded products of different variables as po-
tential pH predictors (Table 1), and the selection of these
products was based on two criteria. The first of these was
their potential association with physical, chemical, and bio-
logical ocean process that may affect the seawater pH. The
second criterion was their sufficient availability with respect
to temporal and spatial coverage and their potential asso-
ciation with the unavailable interannual variability in some
climatological products used. Specifically, the mixed-layer
depth, bathymetry, and ocean currents were related to the
physical mixing of seawater and the spatial distribution of
pH. Sea level pressure, surface pressure, wind speed, sea sur-
face height, surface ocean pCO2, and the dry-air mixing ra-
tio of atmospheric CO2 were related to CO2 exchange across
the interface. The multivariate ENSO (El Niño–Southern Os-
cillation) index, the Arctic Oscillation index, and the South-
ern Oscillation index may be related to pH variability over
years or decades in particular regions. The total alkalinity
and DIC reflect the ocean carbonate system and were gener-
ally used to indirectly calculate seawater pH. However, 3D-
field products with sufficient temporal and spatial coverage
are currently not available for these two variables; therefore,
monthly climatological 3D products were used for better
pH spatial distribution. The remote-sensing products are re-
lated to the biological production of organic matter, including
the chlorophyll concentration, diffuse attenuation coefficient,
remote-sensing reflectance, and total absorption/backscatter-
ing. Spatiotemporal sample information, including latitude,
longitude, depth, and sample time, was also used for supple-
mentary variables. Latitude and longitude were normalized
to radians using sine and cosine transformations, to present
connected sample position information. The spatial sample
position and time information of GLODAP measurements
were input in the training of FFNNs, and the spatial posi-
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tion and time of defined 1° and monthly product grids were
input into FFNNs during the interpolation process to output a
gridded product. Most predictor products were obtained with
a monthly and 1°×1° resolution, which can be directly used
without any treatments. In contrast, products with higher res-
olutions were integrated into the same monthly and 1°× 1°
resolution by averaging before they could be used in the re-
lationship fitting. For instance, the mixed-layer depth prod-
uct, originally obtained with a resolution of 0.25°× 0.25°,
was converted to a 1°× 1° resolution by averaging sixteen
0.25° grids into one 1° grid. Similarly, predictor products,
such as the xCO2 product, obtained at a weekly resolution
were converted to a monthly resolution by directly averag-
ing all values within the same month into one value. Prod-
ucts used for the variables listed in Table 1 were chosen due
to their sufficient temporal and spatial coverage and their
application in previous research on carbonate system vari-
able reconstruction. For example, the ECCO2 mixed-layer
depth (MLD) product has been used in reconstructions of the
CMEMS-LSCE surface ocean carbonate system variables
product (Chau et al., 2024) and the MPI-SOM-FFN pCO2
product (Landschützer et al., 2014).

On the other hand, the discrete GLODAP measurements
did not match the monthly 1°× 1° resolution of the pH pre-
dictor products. To be consistent with respect to the temporal
and spatial resolution, the discrete GLODAP measurements
were also merged into a monthly and 1°× 1° resolution by
averaging. The vertical layers of the temperature and salinity
gridded product were used as reference standards for adjust-
ing other collected products and constructing the pH product
(Cheng and Zhu, 2016; Cheng et al., 2017, 2020). These lay-
ers covered a depth range of 0–2000 m with a total of 41
layers, including 0, 5, and 10–100 m at 10 m intervals; 120–
200 m at 20 m intervals; 250–900 m at 50 m intervals; and
1000–2000 m at 100 m intervals. Subsequently, the in situ
seawater measurements of pH, temperature, salinity, latitude,
longitude, and depth from the GLODAP dataset were aver-
aged monthly within the same 1°×1° grid (with the first grid
centered at 89.5° S, 0.5° E) and within the same vertical layer
to match the resolution of the predictor products. As a direct
average was used instead of a weighted average, the average
latitude, longitude, and depth values from the initial measure-
ments within the same 1°× 1° grid were then used as the
new sample position for the derived monthly measurements,
instead of being located at the center point of grids. The pH
measurements obtained after the 1°×1° grid and monthly av-
eraging were employed to establish a neural network model
and fit a nonlinear relationship with the pH predictors.

2.2 Biogeochemical province

To identify the predictors that are most relevant to pH drivers
in different regions, we divide the global ocean into distinct
biogeochemical provinces using self-organizing map (SOM)
neural networks. This was achieved by inputting climatologi-

cal surface seawater temperature, salinity, mixed-layer depth,
chlorophyll concentration, dissolved oxygen, nitrate, phos-
phate, silicate, and pH (Lauvset et al., 2016) into a 4×4 SOM
network, resulting in the partitioning of the global ocean into
16 preliminary provinces. Subsequently, the small “island”
provinces with fewer than 10 connected grids or covered by
fewer than 100 GLODAP pH measurements were merged
with the nearest neighboring provinces, as the pH reconstruc-
tion errors tend to be notably higher due to the extremely low
number of training samples in the nonlinear relationship fit-
ting by networks. In addition, provinces separated by conti-
nents were manually subdivided into distinct provinces, such
as the province spanning the North Pacific and the North At-
lantic. As a result, the global ocean was divided into 14 bio-
geochemical provinces, as shown in Fig. 1. The boundary of
SOM provinces was treated with a cross-boundary method
to relieve the discontinuity in the spatial distribution near the
SOM boundaries (Zhong et al., 2022). Due to the much more
dynamic variation in coastal seawater pH, the global coastal
areas have higher reconstruction errors than the open oceans.
In this study, we removed all coastal areas with bathymetry
shallower than 200 m. Furthermore, because the drivers of
seawater pH near the surface are different for deeper wa-
ters, the ocean area was divided into two layers: the mixed
layer (ranging from 0 m to the mixed-layer depth) and the
intermediate layer (ranging from the mixed-layer depth to
2000 m). Consequently, the gridded product construction in
each province was carried out separately for the two layers.
Application of the SOM method can effectively reduce re-
gional reconstruction errors, but it also generates discontinu-
ity problems near the boundary. Therefore, a cross-boundary
method was used to improve the FFNN performance near the
SOM and vertical boundary (Zhong et al., 2022). The spatial
scale of training samples in each SOM province was expand
out of the boundary for 10 grids and out of the vertical bound-
ary for two layers (Fig. 2). By increasing the additional train-
ing sample outside of the SOM province and vertical layer
boundary, the cross-boundary method can effectively reduce
the appearance of disconnectivity near boundaries (Figs. S1
and S2 in the Supplement).

2.3 The pH product construction

A feedforward neural network (FFNN) with a single hidden
layer was applied to fit the nonlinear relationship between
seawater pH and its predictors to perform spatial interpola-
tion and construct the gridded product:

pH= f (Predictors1,Predictors2, . . .,PredictorsN ), (1)

where f is a nonlinear function built by the FFNN, and pre-
dictors related to chemical, physical, and biological proper-
ties were selected from the products in Table 1. Consider-
ing the regional difference in pH variability and its drivers,
identifying the combination of most relevant predictors in
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Figure 1. Map of the biogeochemical province.

Figure 2. Cross-boundary method for better connectivity near the SOM boundary and vertical boundary.

each region was a critical precondition. Thus, the entire prod-
uct construction method includes the following two steps
(Fig. 3):

1. First, we undertook the selection of the seawater pH
predictors in each province using the stepwise FFNN
algorithm (referred as “(1) Stepwise FFNN” in Fig. 3).
All of the collected products were input into the step-
wise FFNN algorithm to identify the predictors that
yielded the lowest reconstruction errors for seawater pH
(Zhong et al., 2022). The variation in the mean absolute
error (MAE) calculated by the k-fold cross-validation
method is fed back to update the input products. The in-
put variables are selected as pH predictors one by one
such that the MAE decreases the fastest. Specifically,
by comparing the reconstruction errors resulting from
using each collected environmental variable in Table 1
as the only predictor input to the FFNN, the variable
with the lowest error is selected as the first pH predic-
tor and removed from the environmental variables list

used in the subsequent steps. Subsequently, while keep-
ing the first predictor unchanged, reconstruction errors
are compared when each remaining environmental vari-
able is used as the second input for the FFNN. The vari-
able with the lowest error is determined to be the sec-
ond pH predictor. In the same way, new predictors are
sequentially determined. This selection process contin-
ued through multiple iterations until no further reduc-
tion in the MAE was observed, regardless of whether
a variable was added or removed. The variables identi-
fied in previous iterations were then output as the op-
timal pH predictors. As both overfitting caused by co-
correlation and underfitting caused by an insufficient
number of predictors result in significant increases in
pH reconstruction errors, the lowest reconstruction er-
ror is considered to occur between these two states.
In order to eliminate potential co-correlation and pre-
vent overfitting, whenever a new predictor is identified,
the algorithm then also tests whether the reconstruc-

Earth Syst. Sci. Data, 17, 719–740, 2025 https://doi.org/10.5194/essd-17-719-2025



G. Zhong et al.: A global monthly 3D field of seawater pH over 3 decades 725

tion error will decrease when each determined predic-
tor is sequentially removed. The algorithm individually
removes each previously identified predictors immedi-
ately after adding one variable as a predictor. If the error
decreases after removing a previously determined pre-
dictor, this predictor is highly correlated with the other
identified predictors. If a certain predictor is highly cor-
related with existing predictors, this predictor tends to
fail to compete with other variables in the adding of
predictors and is generally removed in the following re-
moval step to reduce reconstruction errors. Therefore,
most of the co-correlation among the selected predictors
is removed in this stepwise FFNN selection procedure.
If products with co-correlations are still selected, some
products may provide important additional information
in specific regions, leading to a greater reduction in re-
construction errors compared with the increase caused
by overfitting. Spatial and temporal variables, such as
latitude, longitude, and time, are directly related to the
spatial or temporal pH patterns, rather than the factor
driving pH variations. This means that these variables
are often co-correlated with other input environmen-
tal variables. In some regions where the environmen-
tal variables sufficiently reflect the factors influencing
pH or where spatial and temporal pH patterns are not
notable, adding latitude, longitude, and time as predic-
tors does not contribute sufficient information and can-
not effectively reduce prediction errors due to the co-
correlation with other predictors. In these cases, these
spatial–temporal variables are not selected as predic-
tors (Tables 2 and 3). In addition, depth is important
with respect to reconstructing the vertical pH distribu-
tion. However, it was not used as a predictor in certain
regions of the mixed layer due to the notable similar-
ity between the vertical pattern of pH and particular en-
vironmental variables used as predictors, such as phos-
phate, nitrate, and silicate. In this case, the FFNN model
learned how pH varied with depth based on the simi-
larity of the vertical pattern between seawater pH and
specific physical or biological conditions indicated by
input environmental variables, and it subsequently re-
constructed seawater pH values at different depths us-
ing 3D fields of these environmental variables. In each
province, pH predictors were selected separately for the
mixed layer (Table 2) and intermediate layer (Table 3).
In certain polar areas and prior to August 2002 when
satellite remote-sensing products (products from Zeu to
Tb678 in Table 1) were not available, the additional se-
lection of predictors was carried out without the use of
satellite remote-sensing products (Table S1 in the Sup-
plement). These satellite products were not used in the
intermediate layer due to low correlation with seawater
pH, with no need for additional selection.

2. Second, we carried out fitting of the nonlinear relation-
ship between the seawater pH and selected predictors
(referred as “(2) FFNN” in Fig. 3). In each province, a
group of FFNNs were trained separately for the mixed
layer and intermediate layer to fit the nonlinear relation-
ship, based on the predictors selected in the first step
and GLODAP pH measurements. To mitigate the in-
fluence of an FFNN’s initial state on reconstructed val-
ues, multiple networks with the same structure but dif-
ferent initial states were trained and their results were
averaged (standard deviation shown in Fig. S5 in the
Supplement). Subsequently, the seawater pH was calcu-
lated by inputting the product of pH predictors into the
trained FFNNs. As the satellite remote-sensing prod-
ucts used in this work lack data during the period be-
fore August 2002 and in certain polar areas during
winter, the FFNNs generated missing values in these
grids when remote-sensing products were used as pre-
dictors. To address these missing values, we selected
additional groups of predictors after removing remote-
sensing products (Table S1) and then trained additional
FFNNs to predict pH in grids with missing values. This
procedure was the same as the reconstruction process
in the intermediate layer, in which the remote-sensing
products were also not used. Finally, the seawater pH
values from all FFNNs were combined to construct the
global ocean 0–2000 m seawater pH gridded product
from January 1992 to December 2020 at a 1°×1° spatial
resolution. The pH data prior to 1992 are unavailable,
as the predictors used from the ECCO2 cube92 product
(Menemenlis et al., 2008) also start from 1992. More-
over, data after 2020 are limited by the coverage of the
surface ocean pCO2 product used and will be updated
in future works.

All FFNNs used in these two steps have the same structure
with a single hidden layer, as using deeper structures tends to
cause overfitting and increase pH reconstruction errors. The
number of neurons was determined by comparing the recon-
struction errors of FFNNs with different neurons based on
the same training samples, testing samples, and pH predictors
and then adopting the number with the lowest reconstruction
error. Specifically, for the stepwise FFNN regression step,
the number of neurons in the FFNNs was determined using
provisional predictors from preliminary experiments with the
number of neurons set to 25.

2.4 Validation and uncertainty

The reconstructed pH product was validated based on pH
measurements from GLODAP and time-series stations. First,
the root-mean-square error (RMSE) between the FFNN pH
and GLODAP pH measurements was calculated using the
k-fold cross-validation method. The GLODAP pH measure-
ments were divided by years, and the k value was 4 to keep
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Figure 3. The procedure of pH product construction. The boxes in the flow diagram are as follows: “(1) Stepwise FFNN” denotes the
algorithm for selecting predictors (Zhong et al., 2022); “(2) FFNN” represents the fitting of the nonlinear relationship between seawater pH
and its predictors; “Collected Environmental Variables” represents the collected products listed in Table 1; and “pH predictors” represents the
selected most informative variables listed in Tables 2 and 3. Remote-sensing products are variables from chlorophyll to total backscattering
in Table 1. The mixed layer is from 0 m to the mixed-layer depth, whereas the intermediate layer is from the mixed-layer depth to 2000 m.

aside 25 % of the independent measurements for testing in
each one of the four iterations. Thus, within every set of 4
consecutive years, pH measurements from 3 years were uti-
lized for training the FFNN model, while the measurements
from the remaining year were employed for testing. This ap-
proach ensured independence between the training and test-
ing groups (Gregor et al., 2019; Zhong et al., 2022). Sub-
sequently, the pH measurements in the testing group were
compared against the FFNN pH values based on the training
group. A total of four iterations were carried out, with each
iteration designating different years as the testing groups,

thereby ensuring that measurements from all years were set
as the test group once and matched with an FFNN value. By
comparing all of the FFNN pH values with GLODAP pH
measurements, the RMSE values of pH and the molar hydro-
gen ion concentration ([H+]) were calculated to evaluate the
performance of the FFNN model. The reconstruction of the
testing group from the training group is similar to the inter-
polation process, wherein the FFNN is trained with existing
measurements to reconstruct pH in unknown areas.

Second, the reconstructed seawater pH product was com-
pared with independent pH measurements from the Hawaii
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Table 2. Predictors selected by the stepwise FFNN algorithm in the mixed layer.

Province FFNN neurons pH predictor

P1 Arctic Ocean 10 pCO2, sin(Lat), depth, salinity, Wvel(105 m)

P2 Subpolar North Atlantic 10 Phosphate, DO, Nmon, DIC, salinity, Bathy

P3 Seasonally stratified North Atlantic 75 pCO2 clim, depth, Temp, silicate, pCO2, DIC

P4 Permanently stratified North Atlantic 20 pCO2, phosphate, sin(Lat), depth, SSHanom, Salinityanom,
Wvel(195 m),
Temp, Wvel(in situ), pCO2 clim, DO

P5 Equatorial Atlantic 50 sin(Lat), Tb469, Temp, Tb555, Tb547, nitrate, Tb667, Tb678, Tb488,
Tb645, Tb531, salinity

P6 Subpolar North Pacific 10 DIC, sin(Lat), sin(Long), depth, salinity, Temp, pCO2, Wvel(in situ)

P7 Subtropical North Pacific 50 Temp, sin(Long), sin(Lat), pCO2, phosphate, salinity,pCO2 clim, depth,
cos(Long), nitrate, Salinityanom, Alk

P8 Equatorial Pacific 20 pCO2, silicate, depth, salinity, Temp, wind, Alk, RRS645, Ta555,
Ta547

P9 Equatorial Indian Ocean 10 DO, Tempanom, pCO2, depth, Wvel(in situ), Wvel(195 m), Wvel(65 m)

P10 Subtropical South Atlantic 10 pCO2, DIC, silicate, RRS645,Wvel(in situ), Ta547, Temp, Ta667, salin-
ity,
phosphate, Tb412, Ta412, Tb443, DO, xCO2

P11 Subtropical South Pacific 10 Silicate, pCO2, Tb412, phosphate, depth, Ta488, Tempanom, Ta531

P12 Subtropical southern Indian Ocean 10 pCO2, silicate, phosphate, nitrate, depth, wind

P13 Subpolar Southern Ocean 20 Phosphate, depth, pCO2, pCO2 clim, salinity, DIC, nitrate

P14 Southern Ocean ice 20 Phosphate, Temp, pCO2, depth, salinity, Alk, SSH

The predictors are arranged in order of relative importance, with the variables listed at the front of each province being more effective with respect to reducing reconstruction
errors when used as pH predictors.

Ocean Time-series (HOT; 22°45′ N, 158°00′W; since Octo-
ber 1988; Dore et al., 2009), the Bermuda Atlantic Time-
series Study (BAT; 31°50′ N, 64°10′W; since October 1988;
Bates, 2007; Bates and Johnson, 2020), and the European
Station for Time-Series in the Ocean of the Canary Islands
(ESTOC; 29°10′ N, 15°30′W; from 1995 to 2009; González-
Dávila et al., 2010). The long-term trend was further com-
pared with data from the Irminger Sea station (64.3° N,
28.0° W; from 1983 to 2019; Ólafsson, 2016; Ólafsdóttir
et al., 2020a), the Iceland Sea station (68.0° N, 12.7° W; from
1985 to 2019; Ólafsson, 2012; Ólafsdóttir et al., 2020b), and
the DYFAMED station (42.3° N, 7.5° E; from 1991 to 2017;
Coppola et al., 2024). To better evaluate the performance
of the FFNNs below the surface, the constructed pH prod-
uct was also compared to independent delayed-mode pH-
adjusted data with a quality control flag of 1 from Biogeo-
chemical Argo (BGC-Argo) profiles from the Global Data
Assembly Centre (Claustre et al., 2020; Argo, 2024). Valida-
tion based on these independent measurements from time-
series stations and BGC-Argo profiles provides additional
evidence of data accuracy.

A comparison between the method of training FFNNs with
pH and the method of training FFNNs with [H+] and then
converting to pH was carried out in order to validate which
technique has a lower pH reconstruction error (Fig. S3 in
the Supplement). In addition, to identify the difference in
pH variability uncertainty hidden by the logarithm among
regions with the same pH RMSEs but different pH lev-
els, the uncertainty in the reconstructed pH values was con-
verted from the [H+] RMSE, instead of directly using the pH
RMSE. The pH obtained from the FFNN was first converted
to [H+] to estimate the RMSE. Subsequently, the pH values
were shown as pH0± σ at each given pH0 value, and the lo-
cal uncertainty (σ ) stemming from the FFNN reconstruction
errors was calculated as follows:

σ =−log10
(
10−pH0 −RMSE[H+]

)
− pH0, (2)

where RMSE[H+] is the RMSE of [H+] converted from the
FFNN pH in each layer of all 14 biogeochemical provinces
and pH0 is the local FFNN-predicted pH value. The σ calcu-
lated using this method is simultaneously related to the pH
reconstruction error and the local pH level that serves to con-
vert the overall province FFNN error into local errors and
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Table 3. Predictors selected by the stepwise FFNN algorithm in the intermediate layer.

Province FFNN neurons pH predictor

P1 Arctic Ocean 50 Phosphate, nitrate, salinity, depth, sin(Lat), SSH

P2 Subpolar North Atlantic 20 Phosphate, DO, depth, year, salinity, Temp, nitrate, sin(Lat), Alk,
Wvel(195 m)

P3 Seasonally stratified North Atlantic 10 DIC, nitrate, Temp, depth, sin(Long), year

P4 Permanently stratified North Atlantic 20 Phosphate, Temp, depth, sin(Lat), Nmon, sin(Long), salinity,
Salinityanom,
nitrate, Wvel(in situ)

P5 Equatorial Atlantic 25 Depth, DIC, salinity, sin(Lat), Temp, phosphate, SSH, cos(Long), ni-
trate,
silicate

P6 Subpolar North Pacific 25 Phosphate, salinity, depth, Temp, sin(Lat), silicate, xCO2 anom, Alk,
nitrate

P7 Subtropical North Pacific 50 Phosphate, salinity, Temp, silicate, Nmon, sin(Lat), sin(Long), depth,
Alk,
DIC, nitrate

P8 Equatorial Pacific 25 Phosphate, depth, Temp, sin(Lat), salinity, silicate, xCO2, nitrate,
Wvel(105 m)

P9 Equatorial Indian Ocean 10 Phosphate, depth, pCO2, Wvel(in situ)

P10 Subtropical South Atlantic 10 Temp, DIC, salinity, depth, nitrate, Wvel(65 m), pCO2, pCO2 clim,
DO, Wvel(195 m)

P11 Subtropical South Pacific 25 Phosphate, depth, Temp, xCO2, sin(Lat), silicate, salinity, Alk

P12 Subtropical southern Indian Ocean 25 Phosphate, pCO2, depth, Temp, salinity, pCO2 clim, silicate, DO

P13 Subpolar Southern Ocean 50 DIC, Temp, depth, Nmon, salinity, Alk, DO, silicate, Psurf, Tempanom

P14 Southern Ocean ice 25 cos(Long), sin(Lat), depth, DIC, Temp, salinity

The predictors are arranged in order of relative importance, with the variables listed at the front of each province being more effective with respect to reducing reconstruction
errors when used as pH predictors.

better distinguishes the differences in uncertainty across dif-
ferent regions. The uncertainty in the products used as pH
predictors is one ineluctable source of the pH reconstruction
errors of the FFNN model. However, the direct estimation of
pH uncertainty by summing the uncertainty of each product
used is not feasible. Combining the inherent uncertainties of
different predictor products via error propagation relies on
the partial derivatives of pH to each predictor, but the non-
linear relationships established by the FFNN do not have a
specific formula, leading to the difficulty in calculating the
partial derivatives. Therefore, the local uncertainty in our pH
product was directly estimated from the regional FFNN pH
reconstruction errors and the local pH values following for-
mula (2), instead of synthesizing the inherent uncertainty in
each predictor product used via the propagation of errors.
The inherent uncertainty and construction method of the pre-
dictor products are described in the Sect. S1 in the Supple-
ment.

3 Results and discussion

3.1 Validation of the algorithm

3.1.1 Validation based on GLODAP and time-series
measurements

Compared with the GLODAP dataset, most reconstructed
values of the stepwise FFNN are close to the GLODAP pH
measurements, concentrated around the y = x line (Fig. 4).
Only a few samples differ notably between the pH measure-
ments and the reconstructed values, with an RMSE of 0.028
in the global ocean between 0 and 2000 m. Better perfor-
mance of the FFNN was found in the intermediate layer, with
the testing samples being more concentrated on the y = x
line. The RMSE in the mixed layer was 0.034, whereas it
was higher than 0.026 in the intermediate layer. The minor
difference between the reconstructed value and the pH mea-
surements and the R2 of 0.97 in the intermediate layer may
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Figure 4. Comparison between FFNN pH and GLODAP pH measurements. (a) The mixed layer is from the surface to the mixed-layer
depth. (b) The intermediate layer is from the mixed-layer depth to 2000 m. The black line denotes the y = x line, whereas the red line is the
linear regression between the GLODAP pH and stepwise FFNN pH (Lauvset et al., 2024). Slope denotes the slope of the linear regression.

be caused by less pH variability at depth and a better model
fit with a broader pH value range.

The RMSE values between the FFNN pH and GLO-
DAP pH measurements for most grids were lower than 0.03
(Fig. 5a). The performance of the FFNN was relatively better
in the temperate oceans, with an RMSE of less than 0.02 for
some temperate grids. However, a relatively higher RMSE
was found in the equatorial and polar oceans, especially in
the eastern equatorial Pacific, the near-polar North Pacific,
and the northwestern Indian Ocean. The RMSE was rela-
tively lower in regions with concentrated GLODAP measure-
ments, such as the near-polar North Atlantic, the South At-
lantic, and the southern Indian Ocean.

Due to the higher seasonal and interannual variability in
seawater pH near the surface ocean, the RMSE decreases
with depth in all basins (Fig. 5b). For the surface ocean, the
RMSE between the FFNN pH and the GLODAP pH mea-
surements was 0.044. The RMSE fluctuates between 0.032
and 0.048 at the subsurface (0–200 m). The RMSE between
the FFNN pH and the GLODAP pH measurements decreased
rapidly from 200 m depth. In the global ocean at 1500–
2000 m depth, the global RMSE was lower than 0.015. How-
ever, the global ocean RMSE at 2000 m depth was 0.013,
with a higher RMSE in the Arctic Ocean and a lower RMSE
in the Southern Ocean. The vertical distribution of the RMSE
and the statistical distribution of the pH difference in differ-
ent basins suggest a relatively higher reconstruction error in
the mixed layer than in the intermediate layer (Fig. 5d). The
vertical difference in the RMSE between the mixed layer and
intermediate layer was most notable in the Arctic and In-
dian oceans, where the RMSE values at different depths were
also higher than the other basins. The RMSE in the surface
Arctic Ocean was higher than 0.10 and decreased rapidly to
0.025 by 450 m depth. On the contrary, the RMSE of the
surface Indian Ocean was 0.018, but it increased to 0.053

by 80 m depth and then decreased continuously with depth.
The high RMSE of subsurface oceans is because there are
almost no GLODAP pH measurements for the entire Indian
Ocean at 50–150 m depth. The RMSE in different years also
suggested a notable influence of the number of pH measure-
ments on the FFNN reconstruction errors. The RMSE in the
early years was relatively higher than in recent years, while
the number of GLODAP measurements increased over the
years (Fig. 5c).

The stepwise FFNN pH product showed variability in
the seawater pH close to the independent time-series obser-
vations of the surface ocean from the HOT, ESTOC, and
BAT stations (Fig. 6). At the BAT station, the RMSE be-
tween the reconstructed pH and time-series observations was
0.013. The surface seawater pH of our stepwise FFNN prod-
uct decreased by 0.0017± 0.0007yr−1 on average over the
past 3 decades at the BAT station, close to the −0.0018±
0.0001yr−1 of BAT time-series observations during the same
period (Bates and Johnson, 2020). At the ESTOC station, the
stepwise FFNN product and time-series observations were
also very consistent, with an RMSE of 0.009 and a similar
long-term trend (González-Dávila et al., 2010). The RMSE
between the stepwise FFNN product and the HOT time-
series observations was also 0.010, and the long-term trend
in the stepwise FFNN pH product was 0.0018±0.0004yr−1,
consistent with the HOT time-series observations. Although
the stepwise FFNN product suggested a smaller seasonal
change scale than the time-series observations at the BAT
station, the seasonal patterns of surface seawater pH were
consistent between the stepwise FFNN product and time-
series observations at all three stations. The extreme values
not reconstructed by the FFNN are mainly observed at the
BAT station near 2010, at the HOT station near 2000 during
La Niña events, and at the HOT station before 2000 during
El Niño events. In contrast, the extreme values not recon-

https://doi.org/10.5194/essd-17-719-2025 Earth Syst. Sci. Data, 17, 719–740, 2025



730 G. Zhong et al.: A global monthly 3D field of seawater pH over 3 decades

Figure 5. Distribution of the RMSE between the FFNN pH values and GLODAP pH measurements. (a) The global spatial distribution of the
RMSE between the FFNN pH and GLODAP pH measurements at 0–2000 m (Lauvset et al., 2024). (b) The basin average RMSE at different
depths. (c) The temporal distribution of the global RMSE. (d) The statistical distribution of the pH difference between reconstructed pH
values and GLODAP pH measurements in each basin.

structed by the FFNN are less common for the ESTOC sta-
tion, where the surface pH did not notably fluctuate during
El Niño or La Niña events. It can be inferred that the extreme
values not reconstructed by the FFNN may be due to its un-
derestimation of the impact of El Niño or La Niña events
on the pH of certain temperate areas. Compared to previ-
ous surface ocean seawater pH products, which were derived
from reconstructed DIC, TA, or pCO2 products, the step-
wise FFNN product was consistent with the pH trend from
the majority of time-series stations (Table 4). The long-term
pH trend in our product at the ESTOC station was slower
than other gridded products, but the result is still close to the
−0.0016±0.0001 yr−1 of real observations. At the Irminger
Sea station, the FFNN pH trend was notably faster compared
with the results of time-series observations. However, dif-
ferences in the pH trend among pH products were most re-
markable at this station. On a global scale, the pH trend in

our FFNN product is−0.0015±0.0002 over the period from
1992 to 2020. There is no significant difference between our
FFNN product, the CMEMS product, and the Copernicus
product considering the current uncertainty.

Compared with the time-series data below the surface, the
FFNN pH was close to the pH observations in the upper few
hundred meters at the BAT and HOT station (Fig. 7). How-
ever, higher RMSE values and larger pH difference ranges
were observed between 500 and 1500 m at the BAT station
and below 300 m at the HOT station. This may be due to the
sparser GLODAP observations used to train the FFNN model
in these areas. Additionally, as depth is used as a pH predictor
in the validation based on the GLODAP dataset, the FFNN
pH values used for validation were outputted at the same
depth as the GLODAP observations. When comparing the
FFNN pH with independent time-series observations, differ-
ences in depth between the pH product and the observations
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Figure 6. A comparison between the FFNN pH and time-series measurements showing the pH value, pH difference, and its distribution and
the pH seasonal variability in the FFNN result and time-series measurements at (a, b) the BAT station, (c, d) the ESTOC station, and (e, f)
the HOT station.

can amplify the calculated pH difference and RMSE. For ex-
ample, the FFNN pH product was reconstructed at bottom
depths of 1800 and 2000 m. Thus, if a time-series observation
was at 1910 m depth, it would be compared with the FFNN
pH value at 2000 m in the independent validation. This depth
difference significantly increases the pH error in the valida-

tion based on independent data. Despite higher RMSEs at
certain depths, the RMSE at most depths in the deep areas
of BAT station and DYFAMED station was below 0.03, indi-
cating that the notable deviations may only occur at the local
scale.
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Figure 7. The RMSE and pH difference between the FFNN pH and time-series observations at different depths for the (a) BAT station
(31°50′ N, 64°10′W) based on data from 1992 to 2020, (b) the HOT station (22°45′ N, 158°00′W) based on data from 1992 to 2020, and (c)
the DYFAMED station (42.3° N, 7.5° E) based on data from 1998 to 2017.

3.1.2 Validation based on BGC-Argo float pH
measurements

Comparison with time-series observations in deeper oceans
suggested that the distribution of the pH reconstruction errors
with depth varies notably across different stations. To better
assess the performance of the FFNN in the reconstruction of
pH at different depths, the FFNN-reconstructed pH was fur-
ther evaluated via comparison with independent BGC-Argo
delayed-mode pH-adjusted data with a quality control flag
of 1 at various depths (Argo, 2024), with the spatial posi-
tions shown in Fig. S6 in the Supplement. In contrast to the
validation results based on the GLODAP dataset, the RMSE
between the FFNN pH and BGC-Argo pH data in the inter-
mediate layer is 0.051, whereas it is higher than 0.035 in the
mixed layer (Fig. 8a and b). In both the mixed layer and inter-
mediate layer, most samples were evenly distributed around
the y = x line. However, in the intermediate layer, some sam-
ples were slightly offset and distributed below the y = x line,
which may be the main reason for the notably higher RMSE
between the FFNN pH and BGC-Argo pH data in the in-
termediate layer. Overall, there is a good linear correlation
between the FFNN-reconstructed pH and independent BGC-
Argo pH data, with R2 values of 0.73 and 0.84 in the mixed
layer and intermediate layer, respectively.

The distribution of pH differences between the FFNN pH
and BGC-Argo pH data at different depths reveals relatively
smaller biases above 500 m (Fig. 8c). However, below 500 m,
the bias between the FFNN pH and BGC-Argo pH data in-
creases with depth and is the most remarkable at 2000 m.
Comparing the pH biases calculated based on the BGC-Argo
dataset and the GLODAP dataset, it is evident that only the
bias between FFNN pH and BGC-Argo pH data tends to be
more notable in deep areas except the Pacific Ocean (Ta-
ble 5). In contrast, greater biases between the FFNN pH and
GLODAP pH occur mainly in the surface layer, with the
largest biases in the surface Indian Ocean. This disparity in
distribution patterns between biases based on the BGC-Argo

dataset and the GLODAP dataset is most remarkable in the
Southern Ocean. Below 1000 m depth, the bias between the
FFNN pH and GLODAP pH is near zero, whereas the bias
between FFNN pH and BGC-Argo pH data is up to a range
of 0.040–0.068 between 1000 m and 2000 m. These differ-
ences between the FFNN pH and BGC-Argo pH data are pri-
marily attributed to the discrepancies between the GLODAP
dataset and the BGC-Argo dataset in the deep ocean, as our
product was based on the GLODAP dataset and small biases
in GLODAP pH were observed in the deep ocean.

3.2 Gridded pH product

3.2.1 Spatial pH distribution

The spatial distribution of the long-term average seawater
pH in the stepwise FFNN product suggests the lowest sur-
face seawater pH in the equatorial Pacific, with an average
value near 8.00 (Fig. 9a), which is in good agreement with
the surface seawater pH range of 7.91–8.12 observed in the
equatorial Pacific in recent decades (Sutton et al., 2014). The
upwelling transporting the deep water with high dissolved in-
organic carbon and low pH to the surface was the main driver.
The equatorial Indian Ocean and the equatorial Atlantic also
show a low surface pH of about 8.05, consistent with the dis-
tribution patterns of the GLODAP pH climatology (Lauvset
et al., 2016). The highest surface pH is found in the Atlantic
sector of the Arctic Ocean, where the average surface pH was
around 8.15 over the past 3 decades. Moreover, the average
surface pH in temperate oceans is relatively higher, such as in
the southern Indian and South Atlantic oceans. In the temper-
ate Pacific Ocean, differences in surface pH levels were ob-
served between the west and east in both our product and the
GLODAP pH climatology, which may have been caused by
the spread of eastern equatorial seawater with an extremely
low pH. At the deeper depth of 1000 m, the spatial distri-
bution pattern of the FFNN pH product is generally consis-
tent with the GLODAP climatology, despite some existing
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Figure 8. The difference between the FFNN pH and BGC-Argo float pH. (a) Comparison between the FFNN pH and BGC-Argo float pH in
the mixed layer. (b) Comparison between the FFNN pH and BGC-Argo float pH in the intermediate layer. (c) Statistical distribution of the
pH difference (FFNN pH minus BGC-Argo float pH) at different depth levels. FFNN pH denotes pH data reconstructed in this work, while
BGC-Argo pH denotes BGC-Argo pH data from the French Coriolis Global Data Assembly Centre (Argo, 2024).

Figure 9. The average pH distribution from the FFNN pH product and GLODAP climatology normalized to the year 2002. The GLODAP
climatology data are from Lauvset et al. (2016).

disturbance due to bad FFNN performance along the SOM
province boundary and the higher FFNN pH in the Southern
Ocean.

The vertical distribution of the average pH in the proposed
product showed a notable pH decrease with increasing depth
in the upper 500 m of different basins (Fig. 10). The seawater
pH was the lowest at nearly 500 m and rose with increasing
depth at 500–2000 m in the Pacific and Atlantic oceans. The
distribution pattern of the seawater pH in the Indian Ocean

was similar to that in the South Pacific, with the lowest sea-
water pH appearing near 1000 m. The subsurface seawater
with low pH in the Atlantic Ocean and Indian Ocean was
mainly concentrated in the equatorial region. In contrast, sub-
surface seawater with low pH in the Pacific Ocean appeared
in subpolar and equatorial regions. The overall distribution
pattern of the reconstructed pH is in good agreement with
previous research (Lauvset et al., 2016, 2020). It can be con-
cluded that the FFNN fitted the relationship between GLO-

https://doi.org/10.5194/essd-17-719-2025 Earth Syst. Sci. Data, 17, 719–740, 2025



734 G. Zhong et al.: A global monthly 3D field of seawater pH over 3 decades

Table
4.C

om
parison

ofthe
surface

acidification
rate

w
ith

a
previous

productfordifferenttim
e-series

stations
and

ata
globalscale.

Stations
Period

Tim
e

series
Stepw

ise
FFN

N
JM

A
C

M
E

M
S

O
S-E

T
H

Z
C

opernicus
(C

opernicus
observation

(this
study)

(Iida
etal.,2021)

(C
hau

etal.,2024)
(G

regoretal.,2021)
M

arine
Service,2020)

B
A

T
1992–2020

−
0
.0018

±
0
.0001

−
0
.0017

±
0
.0007

−
0
.0018

±
0
.0002

−
0
.0018

±
0
.0002

−
0
.0018

±
0
.0002

–
E

STO
C

1995–2010
−

0
.0016

±
0
.0001

−
0
.0014

±
0
.0005

−
0
.0022

±
0
.0003

−
0
.0020

±
0
.0002

−
0
.0017

±
0
.0003

–
H

O
T

1992–2020
−

0
.0018

±
0
.0001

−
0
.0018

±
0
.0004

−
0
.0020

±
0
.0001

−
0
.0021

±
0
.0001

−
0
.0019

±
0
.0001

–
Iceland

Sea
1992–2019

−
0
.0020

±
0
.0004

−
0
.0028

±
0
.0002

−
0
.0030

±
0
.0003

−
0
.0015

±
0
.0002

−
0
.0020

±
0
.0002

–
Irm

ingerSea
1992–2019

−
0
.0025

±
0
.0004

−
0
.0022

±
0
.0002

−
0
.0027

±
0
.0002

−
0
.0017

±
0
.0003

−
0
.0016

±
0
.0003

D
Y

FA
M

E
D

1998–2017
−

0
.0010

±
0
.0008

−
0
.0005

±
0
.0003

–
−

0
.0017

±
0
.0003

−
0
.0023

±
0
.0004

G
lobal

1992–2020
–
−

0
.0015

±
0
.0002

−
0
.0018

±
0
.0000

−
0
.0017

±
0
.0004

−
0
.0018

±
0
.0000

−
0
.0017

±
0
.0002

T
he

trends
from

differentproducts
forcom

parison
w

ere
recalculated

based
on

data
during

sam
e

period
noted

in
the

second
colum

n.T
he

stepw
ise

FFN
N

productw
as

reconstructed
from

pH
m

easurem
ents

w
ith

a
1°
×

1°
and

m
onthly

resolution
from

1992
to

2020,covering
the

globalopen
ocean

from
0

to
2000

m
.T

he
JM

A
productw

as
reconstructed

from
D

IC
and

A
lk

w
ith

1°
and

m
onthly

resolutions
from

1990
to

2022,covering
the

globalsurface
ocean

excepta
portion

ofthe
A

rctic.T
he

C
M

E
M

S
productw

as
reconstructed

from
p

C
O

2
and

A
lk

w
ith

1°
or0.25°

resolutions
and

a
m

onthly
resolution

from
1985

to
2021,covering

the
globalsurface

ocean
excepta

portion
of

the
A

rctic.T
he

O
S-E

T
H

Z
productw

as
reconstructed

from
p

C
O

2
and

A
lk

w
ith

1°
and

m
onthly

resolutions
from

1982
to

2022,covering
the

globalsurface
ocean

exceptthe
A

rctic.T
he

C
opernicus

productis
a

m
ean

seaw
ater

pH
tim

e
series

and
trend

from
1985

to
2021

from
m

ulti-observation
reprocessing.

DAP seawater pH and its predictors well and that the pro-
posed pH product has good accuracy.

Based on the pH predictors selected by the stepwise FFNN
algorithm, differences in the processes driving pH variabil-
ity were identified between the mixed layer and the inter-
mediate layer in most provinces. In the mixed layer, surface
ocean pCO2 was identified as the most informative predictor
in many provinces, followed by temperature and the nutrient
concentration. This suggests that the CO2 exchange between
the surface ocean and the atmosphere is the primary driver
of pH variability, followed by biological CO2 utilization and
seasonal changes in the seawater temperature. In contrast,
phosphate was identified as the most informative predictor in
the intermediate layer, followed by temperature and depth.
This suggests that the primary process driving pH variability
is the remineralization of organic matter, converting organic
carbon into inorganic forms and also releasing nitrogen and
phosphorus. Given the notably smaller seasonal temperature
changes in the intermediate layer compared with the mixed
layer, the selection of temperature as an important pH pre-
dictor may indicate a notable influence of ocean warming
on seawater pH variability. Additionally, depth was also se-
lected as an important predictor in the intermediate layer. The
observed pattern of seawater pH decreasing with increasing
depth in most provinces, as suggested by the constructed pH
product, may be the main reason.

3.2.2 Uncertainty

As described in Sect. 2, the FFNN pH was converted to
[H+] to calculate the regional RMSE of [H+] between the
FFNN results and GLODAP measurements, and the RMSE
of [H+] in each SOM province was then used to calculate the
pH product uncertainty caused by the construction algorithm
(Eq. 2). Due to higher reconstruction errors, the pH product
uncertainty is relatively higher near the surface (Fig. 11). The
uncertainty is generally lower than 0.02 at depths from 500 to
2000 m, except for some regions near the SOM province and
vertical boundary. Although we have used a cross-boundary
method to improve the FFNN performance near the SOM
and vertical boundary, there are still some discontinuity prob-
lems and relatively higher uncertainty. This is because the
pH values on two sides of the SOM boundary were recon-
structed from two different FFNN models that were trained
with different samples and used different predictors. Thus,
if one of the FFNN models experiences worse performance
due to insufficient training samples or predictors, the pH val-
ues on two sides of the SOM boundary will still differ no-
tably, resulting in discontinuity along the boundary. There-
fore, regional-scale analysis based on pH values near SOM
boundaries should be carried out more cautiously when us-
ing our product. In addition, the equatorial and polar re-
gions show an uncertainty higher than 0.04. This is because
the FFNN performance tends to be worse in regions with
the highest and lowest pH levels, compared with regions in
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Table 5. The pH bias by area and depth computed with the BGC-Argo and GLODAP dataset.

Area 0–50 m 50–200 m 200–500 m 500–1000 m 1000–1500 m 1500–2000 m

Pacific BGC-Argo bias 0.028 0.016 −0.003 −0.013 0.027 −0.004
N 16 433 34 708 36 431 19 840 8772 3565

GLODAP bias −0.001 −0.001 0.000 0.000 0.000 −0.001
N 18 687 26 629 22 746 24 843 12 613 13 817

Atlantic BGC-Argo bias 0.018 0.019 0.013 −0.021 0.031 0.068
N 3285 6832 7152 3565 1622 1288

GLODAP bias 0.000 0.000 −0.001 −0.001 0.000 0.000
N 11 808 15 894 14 330 18 056 10 686 11 780

Indian BGC-Argo bias 0.023 0.034 0.025 −0.022 0.000 0.036
N 407 916 920 491 241 57

GLODAP bias −0.006 −0.001 −0.003 −0.004 −0.004 −0.001
N 3145 5397 5124 5276 3457 3421

Southern BGC-Argo bias 0.008 0.000 0.001 0.015 0.040 0.068
N 66 436 130 563 135 817 72 564 27 579 18 692

GLODAP bias 0.004 0.001 0.001 0.000 0.000 0.000
N 7983 12 268 10 457 10 341 6169 5800

Global BGC-Argo bias 0.012 0.004 0.001 0.008 0.036 0.057
N 86 561 173 019 180 320 96 460 38 214 23 602

GLODAP bias −0.001 0.000 0.000 −0.001 −0.001 0.000
N 46 415 66 635 57 491 62 447 34 994 37 008

Note that N is the number of BGC-Argo or GLODAP samples used to compute the biases.

Figure 10. Climatological vertical distribution of the zonal average FFNN pH in the main basins. The pH values shown at each latitude were
averaged from pH values across all longitudes within each major basin.
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Figure 11. Uncertainty in the FFNN pH product in the main basins.

which pH values are near average. Especially in the Arctic
Ocean, the pH measurements are much sparser, leading to
the highest reconstruction error and pH uncertainty. There-
fore, the proposed pH product should be cautiously used in
regional analysis near the boundaries or equatorial and polar
regions.

4 Data availability

The materials used in this research, including the grid-
ded seawater pH product (NetCDF files for all indi-
vidual years), the MATLAB code for reconstruction
and validation, and other materials (available as .m
or .mat files), are available from the Marine Science
Data Center of the Chinese Academy of Sciences at
https://doi.org/10.12157/IOCAS.20230720.001 (Zhong
et al., 2023). The pH measurements used are avail-
able from GLODAP (https://glodap.info/index.php/
merged-and-adjusted-data-product-v2-2023/, last ac-
cess: 5 February 2024, Lauvset et al., 2024). Data products
used for predictors are available from the references listed in
Table 1.

5 Conclusions

Quantifying the global seawater pH variability is important
for understanding the future responses of oceans with respect
to the uptake of anthropogenic CO2. A 4D global seawater
pH product covering depths from the surface to 2000 m and
the years from 1992 to 2020 was reconstructed in this work.
This product serves as a reference for guiding acidification
surveys by providing a general understanding of acidifica-
tion process at different depths at the basin scale and indi-
cating areas with potential fast or slow acidification rates.
Additionally, the pH product provides insights into acidifica-
tion research and can be used to analyze the influence of spe-
cific ocean processes on acidification rates and the broader
impacts of acidification on a large scale when direct obser-
vations are unavailable. However, caution should be exer-
cised when using this product for regional analyses at a small
spatial scale. The analysis of the pH RMSE and uncertainty
suggested that the proposed pH product remains limited in
equatorial and polar regions and along the SOM boundary
lines. This limitation was caused by sparse measurements
and method disadvantages, which can be mitigated via future
improvement works. Potential improvement may be achieved
by increasing the number of predictor products to capture the
pH drivers, testing more machine learning algorithms, and
accumulating more seawater pH observations. Furthermore,
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the method used to reconstruct the pH product can be applied
in the reconstruction of global fields of other ocean chemical
variables, such as nutrients, particulate organic carbon, and
dissolved inorganic carbon. The global field of these vari-
ables may further improve the pH product accuracy, as clima-
tological products of these variables were used as pH predic-
tors and lacked information on interannual variability. Over-
all, decreasing seawater pH will influence the metabolism of
marine organisms and result in notable changes in the ma-
rine ecosystem. Discrete observations may be insufficient to
support research on large scales. With the machine learn-
ing method in this work, discrete pH measurements were
mapped to global gridded fields to fill the unsampled ar-
eas. Our product can be used for the analysis of seasonal
to decadal and regional to global pH variability, to break
through the limitation of discrete observations.

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/essd-17-719-2025-supplement.

Author contributions. BQ, YW, and BZ: collection of the data
product; JM, QW, and JX: synthesis of the data product; GZ, JD,
LD, and NL: methodology; XL, JS, and HY: model improvement;
GZ and XL: writing – original draft; JS, FW, and LC: writing –
review and editing.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. The authors are grateful for data support
from the Marine Science Data Center and Public Technical Ser-
vice Center, Institute of Oceanology, Chinese Academy of Sci-
ences. We wish to thank GLODAP for sharing the pH observa-
tion data and BGC-Argo for sharing the pH float data. The lat-
ter data were collected and made freely available by the Interna-
tional Argo Program and the national programs that contribute to
it (http://www.argo.ucsd.edu, last access: 11 November 2024, http:
//argo.jcommops.org, last access: 11 November 2024). The Argo
Program is part of the Global Ocean Observing System.

Financial support. This work was funded by the National Nat-
ural Science Foundation of China (grant no. 42176200); the
National Key Research and Development Program (grant no.
2022YFC3104305); the Laboratory for Marine Ecology and

Environmental Science, Qingdao National Laboratory for Ma-
rine Science and Technology (grant nos. LSKJ202204001 and
LSKJ202205001); the Shandong Province and Yantai City Talent
programs; and the Science Fund for Creative Research Groups
of the National Natural Science Foundation of China (grant no.
42221005).

Review statement. This paper was edited by Frédéric Gazeau
and reviewed by two anonymous referees.

References

Argo: Argo float data and metadata from Global Data As-
sembly Centre (Argo GDAC), SEANOE [data set],
https://doi.org/10.17882/42182, 2024.

Bates, N. R.: Interannual variability of the oceanic CO2 sink
in the subtropical gyre of the North Atlantic Ocean over
the last 2 decades, J. Geophys. Res.-Oceans, 112, C9,
https://doi.org/10.1029/2006JC003759, 2007.

Bates, N. R. and Johnson, R. J.: Acceleration of ocean warming,
salinification, deoxygenation and acidification in the surface sub-
tropical North Atlantic Ocean, Commun. Earth Environ., 1, 33,
https://doi.org/10.1038/s43247-020-00030-5, 2020.

Bates, N. R., Astor, Y. M., Church, M. J., Currie, K., Dore, J. E.,
González-Dávila, M., Lorenzoni, L., Muller-Karger, F., Olafs-
son, J., and Santana-Casiano, J. M.: A time-series view of chang-
ing surface ocean chemistry due to ocean uptake of anthro-
pogenic CO2 and ocean acidification, Oceanography, 27, 126–
141, https://doi.org/10.5670/oceanog.2014.16, 2014.

Broullón, D., Pérez, F. F., Velo, A., Hoppema, M., Olsen, A.,
Takahashi, T., Key, R. M., Tanhua, T., González-Dávila, M.,
Jeansson, E., Kozyr, A., and van Heuven, S. M. A. C.:
A global monthly climatology of total alkalinity: a neu-
ral network approach, Earth Syst. Sci. Data, 11, 1109–1127,
https://doi.org/10.5194/essd-11-1109-2019, 2019.

Broullón, D., Pérez, F. F., Velo, A., Hoppema, M., Olsen, A., Taka-
hashi, T., Key, R. M., Tanhua, T., Santana-Casiano, J. M., and
Kozyr, A.: A global monthly climatology of oceanic total dis-
solved inorganic carbon: a neural network approach, Earth Syst.
Sci. Data, 12, 1725–1743, https://doi.org/10.5194/essd-12-1725-
2020, 2020.

Caldeira, K. and Wickett, M. E.: Anthropogenic carbon and ocean
pH, Nature, 425, 365–365, https://doi.org/10.1038/425365a,
2003.

Chau, T. T. T., Gehlen, M., and Chevallier, F.: A seamless ensemble-
based reconstruction of surface ocean pCO2 and air–sea CO2
fluxes over the global coastal and open oceans, Biogeosciences,
19, 1087–1109, https://doi.org/10.5194/bg-19-1087-2022, 2022.

Chau, T.-T.-T., Gehlen, M., Metzl, N., and Chevallier, F.: CMEMS-
LSCE: a global, 0.25°, monthly reconstruction of the surface
ocean carbonate system, Earth Syst. Sci. Data, 16, 121–160,
https://doi.org/10.5194/essd-16-121-2024, 2024.

Chen, C. T. A., Lui, H. K., Hsieh, C. H., Yanagi, T., Kosugi, N.,
Ishii, M., and Gong, G. C.: Deep oceans may acidify faster than
anticipated due to global warming, Nat. Clim. Chang., 7, 890–
894, https://doi.org/10.1038/s41558-017-0003-y, 2017.

https://doi.org/10.5194/essd-17-719-2025 Earth Syst. Sci. Data, 17, 719–740, 2025

https://doi.org/10.5194/essd-17-719-2025-supplement
http://www.argo.ucsd.edu
http://argo.jcommops.org
http://argo.jcommops.org
https://doi.org/10.17882/42182
https://doi.org/10.1029/2006JC003759
https://doi.org/10.1038/s43247-020-00030-5
https://doi.org/10.5670/oceanog.2014.16
https://doi.org/10.5194/essd-11-1109-2019
https://doi.org/10.5194/essd-12-1725-2020
https://doi.org/10.5194/essd-12-1725-2020
https://doi.org/10.1038/425365a
https://doi.org/10.5194/bg-19-1087-2022
https://doi.org/10.5194/essd-16-121-2024
https://doi.org/10.1038/s41558-017-0003-y


738 G. Zhong et al.: A global monthly 3D field of seawater pH over 3 decades

Cheng, L. and Zhu, J.: Benefits of CMIP5 multimodel ensemble
in reconstructing historical ocean subsurface temperature varia-
tions, J. Climate, 29, 5393–5416, https://doi.org/10.1175/JCLI-
D-15-0730.1, 2016.

Cheng, L., Trenberth, K. E., Fasullo, J., Boyer, T., Abra-
ham, J., and Zhu, J.: Improved estimates of ocean heat
content from 1960 to 2015, Sci. Adv., 3, e1601545,
https://doi.org/10.1126/sciadv.1601545, 2017.

Cheng, L., Trenberth, K. E., Gruber, N., Abraham, J. P., Fa-
sullo, J. T., Li, G., Mann, M. E., Zhao, X., and Zhu, J.:
Improved estimates of changes in upper ocean salinity
and the hydrological cycle, J. Climate, 33, 10357–10381,
https://doi.org/10.1175/JCLI-D-20-0366.1, 2020.

Claustre, H., Johnson, K. S., and Takeshita, Y.: Observing the global
ocean with biogeochemical-Argo, Annu. Rev. Mar. Sci., 12,
23–48, https://doi.org/10.1146/annurev-marine-010419-010956,
2020.

Climate Prediction Center: Daily Arctic Oscillation Index [data
set], https://www.cpc.ncep.noaa.gov/products/precip/CWlink/
daily_ao_index/ao_index.html (last access: 5 September 2024),
2002.

Climate Prediction Center: Southern Oscillation Index [data set],
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/
ensocycle/soi.shtml (last access: 5 September 2024), 2005.

Copernicus Marine Service: Global Ocean acidification – mean sea
water pH time series and trend from Multi-Observations
Reprocessing, Mercator Ocean International [data set],
https://doi.org/10.48670/MOI-00224, 2020.

Coppola, L., Diamond, R. E., Carval, T., Irisson, J., and
Desnos, C.: Dyfamed observatory data, SEANOE [data set],
https://doi.org/10.17882/43749, 2024.

Dore, J. E., Lukas, R., Sadler, D. W., Church, M. J., and Karl, D. M.:
Physical and biogeochemical modulation of ocean acidification
in the central North Pacific, P. Natl. Acad. Sci. USA, 106, 12235–
12240, https://doi.org/10.1073/pnas.0906044106, 2009.

Fay, A. R. and McKinley, G. A.: Global trends in surface ocean
pCO2 from in situ data, Global Biogeochem. Cy., 27, 541–557,
https://doi.org/10.1002/gbc.20051, 2013.

Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J.,
Fabry, V. J., and Millero, F. J.: Impact of anthropogenic CO2
on the CaCO3 system in the oceans, Science, 305, 362–366,
https://doi.org/10.1126/science.1097329, 2004.

Feely, R. A., Doney, S. C., and Cooley, S. R.: Ocean
acidification: Present conditions and future changes
in a high-CO2 world, Oceanography, 22, 36–47,
https://doi.org/10.5670/oceanog.2009.95, 2009.

Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M.,
Bakker, D. C. E., Hauck, J., Landschützer, P., Le Quéré, C.,
Luijkx, I. T., Peters, G. P., Peters, W., Pongratz, J., Schwing-
shackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B.,
Alin, S. R., Anthoni, P., Barbero, L., Bates, N. R., Becker, M.,
Bellouin, N., Decharme, B., Bopp, L., Brasika, I. B. M., Cad-
ule, P., Chamberlain, M. A., Chandra, N., Chau, T.-T.-T., Cheval-
lier, F., Chini, L. P., Cronin, M., Dou, X., Enyo, K., Evans, W.,
Falk, S., Feely, R. A., Feng, L., Ford, D. J., Gasser, T., Ghattas, J.,
Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Har-
ris, I., Hefner, M., Heinke, J., Houghton, R. A., Hurtt, G. C.,
Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jer-
sild, A., Jiang, F., Jin, Z., Joos, F., Kato, E., Keeling, R. F.,

Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I.,
Körtzinger, A., Lan, X., Lefèvre, N., Li, H., Liu, J., Liu, Z.,
Ma, L., Marland, G., Mayot, N., McGuire, P. C., McKin-
ley, G. A., Meyer, G., Morgan, E. J., Munro, D. R., Nakaoka, S.-
I., Niwa, Y., O’Brien, K. M., Olsen, A., Omar, A. M., Ono, T.,
Paulsen, M., Pierrot, D., Pocock, K., Poulter, B., Powis, C. M.,
Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C.,
Rosan, T. M., Schwinger, J., Séférian, R., Smallman, T. L.,
Smith, S. M., Sospedra-Alfonso, R., Sun, Q., Sutton, A. J.,
Sweeney, C., Takao, S., Tans, P. P., Tian, H., Tilbrook, B., Tsu-
jino, H., Tubiello, F., van der Werf, G. R., van Ooijen, E., Wan-
ninkhof, R., Watanabe, M., Wimart-Rousseau, C., Yang, D.,
Yang, X., Yuan, W., Yue, X., Zaehle, S., Zeng, J., and Zheng, B.:
Global Carbon Budget 2023, Earth Syst. Sci. Data, 15, 5301–
5369, https://doi.org/10.5194/essd-15-5301-2023, 2023.

Garcia, H. E., Weathers, K. W., Paver, C. R., Smolyar, I.,
Boyer, T. P., Locarnini, R. A., Zweng, M. M., Mishonov, A. V.,
Baranova, O. K., Seidov, D., and Reagan, J. R.: World Ocean
Atlas 2018, Volume 3: Dissolved Oxygen, Apparent Oxygen
Utilization, and Dissolved Oxygen Saturation, edited by: Mis-
honov, A., NOAA Atlas NESDIS 83, 38 pp., https://archimer.
ifremer.fr/doc/00651/76337 (last access: 1 September 2020),
2019a.

Garcia, H. E., Weathers, K. W., Paver, C. R., Smolyar, I.,
Boyer, T. P., Locarnini, R. A., Zweng, M. M., Mishonov, A. V.,
Baranova, O. K., Seidov, D., and Reagan, J. R.: World Ocean At-
las 2018. Vol. 4: Dissolved Inorganic Nutrients (phosphate, ni-
trate and nitrate+nitrite, silicate), edited by: Mishonov, A. (Tech-
nical Editor), NOAA Atlas NESDIS 84, 35 pp., https://archimer.
ifremer.fr/doc/00651/76336/ (last access: 5 September 2024),
2019b.

GEBCO: GEBCO Compilation Group – GEBCO_2022
Grid, The General Bathymetric Chart of the Oceans,
https://doi.org/10.5285/e0f0bb80-ab44-2739-e053-
6c86abc0289c, 2022.

González-Dávila, M., Santana-Casiano, J. M., Rueda, M. J., and
Llinás, O.: The water column distribution of carbonate system
variables at the ESTOC site from 1995 to 2004, Biogeosciences,
7, 3067–3081, https://doi.org/10.5194/bg-7-3067-2010, 2010.

Gregor, L. and Gruber, N.: OceanSODA-ETHZ: a global gridded
data set of the surface ocean carbonate system for seasonal to
decadal studies of ocean acidification, Earth Syst. Sci. Data, 13,
777–808, https://doi.org/10.5194/essd-13-777-2021, 2021.

Gregor, L., Lebehot, A. D., Kok, S., and Scheel Monteiro, P. M.:
A comparative assessment of the uncertainties of global sur-
face ocean CO2 estimates using a machine-learning ensemble
(CSIR-ML6 version 2019a) – have we hit the wall?, Geosci.
Model Dev., 12, 5113–5136, https://doi.org/10.5194/gmd-12-
5113-2019, 2019.

Guallart, E. F., Fajar, N. M., Padín, X. A., Vázquez-Rodríguez, M.,
Calvo, E., Ríos, A. F., Hernández-Guerra, A., Pelejero, C., and
Pérez, F. F.: Ocean acidification along the 24.5° N section in the
subtropical North Atlantic, Geophys. Res. Lett., 42, 450–458,
https://doi.org/10.1002/2014gl062971, 2015.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schep-
ers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Bal-
samo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M.,
Chiara, G. D., Dahlgren, P., Dee, D., Diamantakis, M., Dra-

Earth Syst. Sci. Data, 17, 719–740, 2025 https://doi.org/10.5194/essd-17-719-2025

https://doi.org/10.1175/JCLI-D-15-0730.1
https://doi.org/10.1175/JCLI-D-15-0730.1
https://doi.org/10.1126/sciadv.1601545
https://doi.org/10.1175/JCLI-D-20-0366.1
https://doi.org/10.1146/annurev-marine-010419-010956
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao_index.html
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao_index.html
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensocycle/soi.shtml
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensocycle/soi.shtml
https://doi.org/10.48670/MOI-00224
https://doi.org/10.17882/43749
https://doi.org/10.1073/pnas.0906044106
https://doi.org/10.1002/gbc.20051
https://doi.org/10.1126/science.1097329
https://doi.org/10.5670/oceanog.2009.95
https://doi.org/10.5194/essd-15-5301-2023
https://archimer.ifremer.fr/doc/00651/76337
https://archimer.ifremer.fr/doc/00651/76337
https://archimer.ifremer.fr/doc/00651/76336/
https://archimer.ifremer.fr/doc/00651/76336/
https://doi.org/10.5285/e0f0bb80-ab44-2739-e053-6c86abc0289c
https://doi.org/10.5285/e0f0bb80-ab44-2739-e053-6c86abc0289c
https://doi.org/10.5194/bg-7-3067-2010
https://doi.org/10.5194/essd-13-777-2021
https://doi.org/10.5194/gmd-12-5113-2019
https://doi.org/10.5194/gmd-12-5113-2019
https://doi.org/10.1002/2014gl062971


G. Zhong et al.: A global monthly 3D field of seawater pH over 3 decades 739

gani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haim-
berger, L., Healy, S., Hogan, R. J., Hólm E., Janisková M., Kee-
ley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Ros-
nay, P. D., Rozum, I., Vamborg, F., Villaume, S., and Thé-
paut, J. N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc.,
146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.

Iida, Y., Takatani, Y., Kojima, A., and Ishii, M.: Global trends of
ocean CO2 sink and ocean acidification: an observation-based
reconstruction of surface ocean inorganic carbon variables, J.
Oceanogr., 77, 323–358, https://doi.org/10.1007/s10872-020-
00571-5, 2021.

Ishizu, M., Miyazawa, Y., and Guo, X.: Long-term varia-
tions in ocean acidification indices in the Northwest Pa-
cific from 1993 to 2018, Climatic Change, 168, 1–20,
https://doi.org/10.1007/s10584-021-03239-1, 2021.

Jiang, Z., Song, Z., Bai, Y., He, X., Yu, S., Zhang, S., and Gong, F.:
Remote Sensing of Global Sea Surface pH Based on Massive
Underway Data and Machine Learning, Remote Sens.-Basel, 14,
2366, https://doi.org/10.3390/rs14102366, 2022.

Keppler, L., Landschützer, P., Gruber, N., Lauvset, S. K.,
and Stemmler, I.: Seasonal carbon dynamics in the
near-global ocean, Global Biogeochem. Cy., 34,
e2020GB006571, https://doi.org/10.1029/2020GB006571,
2020.

Lan, X., Tans, P., Thoning, K., and NOAA Global Moni-
toring Laboratory: NOAA Greenhouse Gas Marine Bound-
ary Layer Reference – CO2, NOAA GML [Data set],
https://doi.org/10.15138/DVNP-F961, 2023.

Landschützer, P., Gruber, N., Bakker, D. C., and Schus-
ter, U.: Recent variability of the global ocean car-
bon sink, Global Biogeochem. Cy., 28, 927–949,
https://doi.org/10.1002/2014gb004853, 2014.

Landschützer, P., Laruelle, G. G., Roobaert, A., and Reg-
nier, P.: A uniform ppCO2 climatology combining open
and coastal oceans, Earth Syst. Sci. Data, 12, 2537–2553,
https://doi.org/10.5194/essd-12-2537-2020, 2020.

Lauvset, S. K., Gruber, N., Landschützer, P., Olsen, A., and
Tjiputra, J.: Trends and drivers in global surface ocean pH
over the past 3 decades, Biogeosciences, 12, 1285–1298,
https://doi.org/10.5194/bg-12-1285-2015, 2015.

Lauvset, S. K., Key, R. M., Olsen, A., van Heuven, S., Velo, A.,
Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jut-
terström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Perez, F. F.,
Suzuki, T., and Watelet, S.: A new global interior ocean
mapped climatology: the 1°×1° GLODAP version 2, Earth Syst.
Sci. Data, 8, 325–340, https://doi.org/10.5194/essd-8-325-2016,
2016.

Lauvset, S. K., Carter, B. R., Pérez, F. F., Jiang, L. Q., Feely, R. A.,
Velo, A., and Olsen, A.: Processes driving global interior ocean
pH distribution, Global Biogeochem. Cy., 34, e2019GB006229,
https://doi.org/10.1029/2019gb006229, 2020.

Lauvset, S. K., Lange, N., Tanhua, T., Bittig, H. C., Olsen, A.,
Kozyr, A., Álvarez, M., Azetsu-Scott, K., Brown, P. J., Carter, B.
R., Cotrim da Cunha, L., Hoppema, M., Humphreys, M. P., Ishii,
M., Jeansson, E., Murata, A., Müller, J. D., Pérez, F. F., Schir-
nick, C., Steinfeldt, R., Suzuki, T., Ulfsbo, A., Velo, A., Woosley,
R. J., and Key, R. M.: The annual update GLODAPv2.2023: the
global interior ocean biogeochemical data product, Earth Syst.

Sci. Data, 16, 2047–2072, https://doi.org/10.5194/essd-16-2047-
2024, 2024.

Le Quéré, C., Takahashi, T., Buitenhuis, E. T., Rödenbeck, C., and
Sutherland, S. C.: Impact of climate change and variability on
the global oceanic sink of CO2, Global Biogeochem. Cy., 24, 4,
https://doi.org/10.1029/2009GB003599, 2010.

Lewis, E., Wallace, D., and Allison, L. J.: Program developed for
CO2 system calculations [code], https://doi.org/10.2172/639712,
1998.

Li, L., Chen, B., Luo, Y., Xia, J., and Qi, D.: Factors control-
ling acidification in intermediate and deep/bottom layers of the
Japan/East Sea, J. Geophys. Res.-Oceans, 127, e2021JC017712,
https://doi.org/10.1029/2021jc017712, 2022.

Luo, Y., Boudreau, B. P., and Mucci, A.: Disparate acidifica-
tion and calcium carbonate desaturation of deep and shal-
low waters of the Arctic Ocean, Nat. Commun., 7, 12821,
https://doi.org/10.1038/ncomms12821, 2016.

Menemenlis, D., Campin, J. M., Heimbach, P., Hill, C., Lee, T.,
Nguyen, A., Schodlok, M., and Zhang, H.: ECCO2: High reso-
lution global ocean and sea ice data synthesis, Mercat. Ocean Q.
Newsl., 31, 13–21, 2008.

NASA Ocean Biology Processing Group: Aqua MODIS Level
3 Mapped Chlorophyll Data, Version R2022.0, NASA
Ocean Biology Distributed Active Archive Center [data
set], https://doi.org/10.5067/AQUA/MODIS/L3M/CHL/2022,
2022a.

NASA Ocean Biology Processing Group: Aqua MODIS
Level 3 Mapped Downwelling Diffuse Attenuation Co-
efficient Data, Version R2022.0, NASA Ocean Bi-
ology Distributed Active Archive Center [data set],
https://doi.org/10.5067/AQUA/MODIS/L3M/KD/2022, 2022b.

NASA Ocean Biology Processing Group: Aqua MODIS Level 3
Mapped Inherent Optical Properties Data, Version R2022.0,
NASA Ocean Biology Distributed Active Archive Center [data
set], https://doi.org/10.5067/AQUA/MODIS/L3M/IOP/2022,
2022c.

NASA Ocean Biology Processing Group: Aqua MODIS
Level 3 Mapped Photosynthetically Available Ra-
diation Data, Version R2022.0, NASA Ocean Bi-
ology Distributed Active Archive Center [data set],
https://doi.org/10.5067/AQUA/MODIS/L3M/PAR/2022, 2022d.

NASA Ocean Biology Processing Group: Aqua MODIS Level 3
Mapped Remote-Sensing Reflectance Data, Version R2022.0,
NASA Ocean Biology Distributed Active Archive Center [data
set], https://doi.org/10.5067/AQUA/MODIS/L3M/RRS/2022,
2022e.

Ólafsdóttir, S. R., Benoit-Cattin, A., and Danielsen, M.: Dissolved
inorganic carbon (DIC), total alkalinity, temperature, salinity,
nutrients and dissolved oxygen collected from discrete samples
and profile observations during the R/Vs Arni Fridriksson and
Bjarni Saemundsson Irminger Sea (FX9) time series cruises in
the North Atlantic Ocean in from 2014-02-11 to 2022-08-09
(NCEI Accession 0209072), NOAA National Centers for Envi-
ronmental Information [data set], https://doi.org/10.25921/vjmy-
8h90, 2020a.

Ólafsdóttir, S. R., Benoit-Cattin, A., and Danielsen, M.: Dissolved
inorganic carbon (DIC), total alkalinity, temperature, salinity, nu-
trients and dissolved oxygen collected from discrete samples and
profile observations during the R/Vs Arni Fridriksson and Bjarni

https://doi.org/10.5194/essd-17-719-2025 Earth Syst. Sci. Data, 17, 719–740, 2025

https://doi.org/10.1002/qj.3803
https://doi.org/10.1007/s10872-020-00571-5
https://doi.org/10.1007/s10872-020-00571-5
https://doi.org/10.1007/s10584-021-03239-1
https://doi.org/10.3390/rs14102366
https://doi.org/10.1029/2020GB006571
https://doi.org/10.15138/DVNP-F961
https://doi.org/10.1002/2014gb004853
https://doi.org/10.5194/essd-12-2537-2020
https://doi.org/10.5194/bg-12-1285-2015
https://doi.org/10.5194/essd-8-325-2016
https://doi.org/10.1029/2019gb006229
https://doi.org/10.5194/essd-16-2047-2024
https://doi.org/10.5194/essd-16-2047-2024
https://doi.org/10.1029/2009GB003599
https://doi.org/10.2172/639712
https://doi.org/10.1029/2021jc017712
https://doi.org/10.1038/ncomms12821
https://doi.org/10.5067/AQUA/MODIS/L3M/CHL/2022
https://doi.org/10.5067/AQUA/MODIS/L3M/KD/2022
https://doi.org/10.5067/AQUA/MODIS/L3M/IOP/2022
https://doi.org/10.5067/AQUA/MODIS/L3M/PAR/2022
https://doi.org/10.5067/AQUA/MODIS/L3M/RRS/2022
https://doi.org/10.25921/vjmy-8h90
https://doi.org/10.25921/vjmy-8h90


740 G. Zhong et al.: A global monthly 3D field of seawater pH over 3 decades

Saemundsson time series IcelandSea (LN6) cruises in the North
Atlantic Ocean from 2014-02-18 to 2022-08-16 (NCEI Acces-
sion 0209074), NOAA National Centers for Environmental In-
formation [data set], https://doi.org/10.25921/qhed-3h84, 2020b.

Ólafsson, J.: Partial pressure (or fugacity) of carbon diox-
ide, dissolved inorganic carbon, temperature, salinity and
other variables collected from discrete samples, profile
and time series profile observations during the R/Vs Arni
Fridriksson and Bjarni Saemundsson time series Iceland–
Sea (LN6) cruises in the North Atlantic Ocean from 1985-
02-22 to 2013-11-26 (NCEI Accession 0100063). NOAA
National Centers for Environmental Information [data set],
https://doi.org/10.3334/cdiac/otg.carina_icelandsea, 2012.

Ólafsson, J.: Partial pressure (or fugacity) of carbon dioxide, dis-
solved inorganic carbon, temperature, salinity and other variables
collected from discrete sample and profile observations using
CTD, bottle and other instruments from ARNI FRIDRIKSSON
and BJARNI SAEMUNDSSON in the North Atlantic Ocean
from 1983-03-05 to 2013-11-13 (NCEI Accession 0149098),
NOAA National Centers for Environmental Information [data
set], https://doi.org/10.3334/cdiac/otg.carina_irmingersea_v2,
2016.

Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C.,
Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F.,
Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R.,
Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G. K.,
Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer, R.,
Slater, R. D., Totterdell, I. J., and Yool, A.: Anthro-
pogenic ocean acidification over the twenty-first century and
its impact on calcifying organisms, Nature, 437, 681–686,
https://doi.org/10.1038/nature04095, 2005.

Qi, D., Ouyang, Z., Chen, L., Wu, Y., Lei, R., Chen, B., Feely, R. A.,
Anderson, L. G., Zhong, W., Lin, H., Polukhin, A., Zhang, Y.,
Zhang, Y., Bi, H., Lin, X., Luo, Y., Zhuang, Y., He, J., Chen, J.,
and Cai, W. J.: Climate change drives rapid decadal acidifica-
tion in the Arctic Ocean from 1994 to 2020, Science, 377, 1544–
1550, https://doi.org/10.1126/science.abo0383, 2022.

Sabine, C. L. and Tanhua, T.: Estimation of anthropogenic CO2
inventories in the ocean, Annu. Rev. Mar. Sci., 2, 175–198,
https://doi.org/10.1146/annurev-marine-120308-080947, 2010.

Sutton, A. J., Feely, R. A., Sabine, C. L., McPhaden, M. J., Taka-
hashi, T., Chavez, F. P., Friederich, G. E., and Mathis, J. T.: Nat-
ural variability and anthropogenic change in equatorial Pacific
surface ocean pCO2 and pH, Global Biogeochem. Cy., 28, 131–
145, https://doi.org/10.1002/2013GB004679, 2014.

Takahashi, T., Sutherland, S. C., Chipman, D. W., Goddard, J. G.,
Ho, C., Newberger, T., Sweeney, C., and Munro, D. R.: Cli-
matological distributions of pH, pCO2, total CO2, alkalinity,
and CaCO3 saturation in the global surface ocean, and tem-
poral changes at selected locations, Mar. Chem., 164, 95–125,
https://doi.org/10.1016/j.marchem.2014.06.004, 2014.

Terhaar, J., Kwiatkowski, L., and Bopp, L.: Emergent constraint
on Arctic Ocean acidification in the twenty-first century, Na-
ture, 582, 379–383, https://doi.org/10.1038/s41586-020-2360-3,
2020.

Wolter, K. and Timlin, M. S.: El Niño/Southern Oscillation be-
haviour since 1871 as diagnosed in an extended multivari-
ate ENSO index (MEI ext), Int. J. Climatol., 31, 1074–1087,
https://doi.org/10.1002/joc.2336, 2011.

Zhong, G., Li, X., Song, J., Qu, B., Wang, F., Wang, Y., Zhang, B.,
Sun, X., Zhang, W., Wang, Z., Ma, J., Yuan, H., and Duan, L.:
Reconstruction of global surface ocean pCO2 using region-
specific predictors based on a stepwise FFNN regression algo-
rithm, Biogeosciences, 19, 845–859, https://doi.org/10.5194/bg-
19-845-2022, 2022.

Zhong, G., Li, X., and Song, J.: Global ocean gridded seawa-
ter pH during 1992–2020 at 0–2000 m depth based on Step-
wise FFNN algorithm 2023 version, Marine Science Data
Center of the Chinese Academy of Sciences [data set],
https://doi.org/10.12157/IOCAS.20230720.001, 2023.

Earth Syst. Sci. Data, 17, 719–740, 2025 https://doi.org/10.5194/essd-17-719-2025

https://doi.org/10.25921/qhed-3h84
https://doi.org/10.3334/cdiac/otg.carina_icelandsea
https://doi.org/10.3334/cdiac/otg.carina_irmingersea_v2
https://doi.org/10.1038/nature04095
https://doi.org/10.1126/science.abo0383
https://doi.org/10.1146/annurev-marine-120308-080947
https://doi.org/10.1002/2013GB004679
https://doi.org/10.1016/j.marchem.2014.06.004
https://doi.org/10.1038/s41586-020-2360-3
https://doi.org/10.1002/joc.2336
https://doi.org/10.5194/bg-19-845-2022
https://doi.org/10.5194/bg-19-845-2022
https://doi.org/10.12157/IOCAS.20230720.001

	Abstract
	Introduction
	Methods
	Data sources and processing
	Biogeochemical province
	The pH product construction
	Validation and uncertainty

	Results and discussion
	Validation of the algorithm
	Validation based on GLODAP and time-series measurements
	Validation based on BGC-Argo float pH measurements

	Gridded pH product
	Spatial pH distribution
	Uncertainty


	Data availability
	Conclusions
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

