Articles | Volume 17, issue 12
https://doi.org/10.5194/essd-17-7101-2025
https://doi.org/10.5194/essd-17-7101-2025
Data description paper
 | 
11 Dec 2025
Data description paper |  | 11 Dec 2025

FluxHourly: global long-term hourly 9 km terrestrial water-energy-carbon fluxes

Qianqian Han, Yijian Zeng, Yunfei Wang, Fakhereh Alidoost, Francesco Nattino, Yang Liu, and Bob Su

Related authors

On the Estimation of Global Plant Water Requirement
Yunfei Wang, Yijian Zeng, Zengjing Song, Danyang Yu, Qianqian Han, Enting Tang, Henk de Bruin, and Zhongbo Su
EGUsphere, https://doi.org/10.5194/egusphere-2024-1321,https://doi.org/10.5194/egusphere-2024-1321, 2024
Preprint archived
Short summary
Ensemble of optimised machine learning algorithms for predicting surface soil moisture content at a global scale
Qianqian Han, Yijian Zeng, Lijie Zhang, Calimanut-Ionut Cira, Egor Prikaziuk, Ting Duan, Chao Wang, Brigitta Szabó, Salvatore Manfreda, Ruodan Zhuang, and Bob Su
Geosci. Model Dev., 16, 5825–5845, https://doi.org/10.5194/gmd-16-5825-2023,https://doi.org/10.5194/gmd-16-5825-2023, 2023
Short summary

Cited articles

Altman, N. and Krzywinski, M.: Ensemble methods: bagging and random forests, Nat. Methods, 14, 933-935, https://doi.org/10.1038/nmeth.4438, 2017. 
Baldocchi, D.: `Breathing'of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems, Australian Journal of Botany, 56, 1–26, https://doi.org/10.1071/BT07151, 2008. 
Baldocchi, D.: Measuring fluxes of trace gases and energy between ecosystems and the atmosphere–the state and future of the eddy covariance method, Global change biology, 20, 3600–3609, https://doi.org/10.1111/gcb.12649, 2014. 
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and Wood, E. F.: Present and future Köppen-Geiger climate classification maps at 1-km resolution, Sci. Data, 5, 1-12, https://doi.org/10.1038/sdata.2018.214, 2018. 
Download
Short summary
Understanding how land interacts with the atmosphere is crucial for studying climate change, yet global high-resolution data on energy, water, and carbon exchanges remain limited. This study introduces a new dataset FluxHourly that estimates these exchanges hourly from 2000 to 2020 by combining physical process model, field measurements, and machine learning with satellite and meteorological data. Fluxhourly enables analysis of ecosystem responses to climate extremes.
Share
Altmetrics
Final-revised paper
Preprint