Articles | Volume 17, issue 12
https://doi.org/10.5194/essd-17-6703-2025
https://doi.org/10.5194/essd-17-6703-2025
Data description paper
 | 
03 Dec 2025
Data description paper |  | 03 Dec 2025

CropLayer: a 2 m resolution cropland map of China for 2020 from Mapbox and Google satellite imagery

Hao Jiang, Mengjun Ku, Xia Zhou, Qiong Zheng, Yangxiaoyue Liu, Jianhui Xu, Dan Li, Chongyang Wang, Jiayi Wei, Jing Zhang, Shuisen Chen, and Jianxi Huang

Related authors

Turbidity maximum zone index: a novel model for remote extraction of the turbidity maximum zone in different estuaries
Chongyang Wang, Li Wang, Danni Wang, Dan Li, Chenghu Zhou, Hao Jiang, Qiong Zheng, Shuisen Chen, Kai Jia, Yangxiaoyue Liu, Ji Yang, Xia Zhou, and Yong Li
Geosci. Model Dev., 14, 6833–6846, https://doi.org/10.5194/gmd-14-6833-2021,https://doi.org/10.5194/gmd-14-6833-2021, 2021
Short summary

Cited articles

Bhosale, Y. H., Zanwar, S. R., Ali, S. S., Vaidya, N. S., Auti, R. A., and Patil, D. H.: Multi-plant and multi-crop leaf disease detection and classification using deep neural networks, machine learning, image processing with precision agriculture-A review, International Conference on Computer Communication and Informatics (ICCCI), 1–7, https://doi.org/10.1109/ICCCI56745.2023.10128246, 2023. 
Bontemps, S., Arias, M., Cara, C., Dedieu, G., Guzzonato, E., Hagolle, O., Inglada, J., Morin, D., Rabaute, T., and Savinaud, M.: “Sentinel-2 for agriculture”: Supporting global agriculture monitoring, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 4185–4188, https://doi.org/10.1109/IGARSS.2015.7326748, 2015. 
Burt, P. J., Hong, T.-H., and Rosenfeld, A.: Segmentation and estimation of image region properties through cooperative hierarchial computation, IEEE Transactions on Systems Man and Cybernetics, 11, 802–809, https://doi.org/10.1109/TSMC.1981.4308619, 1981. 
Chen, T. and Guestrin, C.: Xgboost: A scalable tree boosting system, Proceedings of the 22nd  ACM SIGKDD international conference on knowledge discovery and data mining, 785–794, https://doi.org/10.1145/2939672.2939785, 2016. 
Chen, X., Yu, L., Du, Z., Liu, Z., Qi, Y., Liu, T., and Gong, P.: Toward sustainable land use in China: A perspective on China's national land surveys, Land Use Policy, 123, 106428, https://doi.org/10.1016/j.landusepol.2022.106428, 2022. 
Download
Short summary
Existing cropland datasets in China show significant discrepancies. We created a high-resolution cropland map of China for 2020, using imagery from Mapbox and Google. By combining image quality assessments, active learning for semantic segmentation, and results integration. The accuracy achieved to 88.73 %, with 30 out of 32 provincial units reporting area estimates within ±10 % of official statistics. In contrast, only 9 to 1 provinces from 7 existing datasets meet the same accuracy standard.
Share
Altmetrics
Final-revised paper
Preprint