Articles | Volume 17, issue 12
https://doi.org/10.5194/essd-17-6647-2025
https://doi.org/10.5194/essd-17-6647-2025
Data description paper
 | 
01 Dec 2025
Data description paper |  | 01 Dec 2025

GlobalBuildingAtlas: an open global and complete dataset of building polygons, heights and LoD1 3D models

Xiao Xiang Zhu, Sining Chen, Fahong Zhang, Yilei Shi, and Yuanyuan Wang

Related authors

GlobalGeoTree: A Multi-Granular Vision-Language Dataset for Global Tree Species Classification
Yang Mu, Zhitong Xiong, Yi Wang, Muhammad Shahzad, Franz Essl, Holger Kreft, Mark van Kleunen, and Xiao Xiang Zhu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-613,https://doi.org/10.5194/essd-2025-613, 2025
Preprint under review for ESSD
Short summary
ChatEarthNet: a global-scale image–text dataset empowering vision–language geo-foundation models
Zhenghang Yuan, Zhitong Xiong, Lichao Mou, and Xiao Xiang Zhu
Earth Syst. Sci. Data, 17, 1245–1263, https://doi.org/10.5194/essd-17-1245-2025,https://doi.org/10.5194/essd-17-1245-2025, 2025
Short summary
Physics-aware machine learning for glacier ice thickness estimation: a case study for Svalbard
Viola Steidl, Jonathan Louis Bamber, and Xiao Xiang Zhu
The Cryosphere, 19, 645–661, https://doi.org/10.5194/tc-19-645-2025,https://doi.org/10.5194/tc-19-645-2025, 2025
Short summary
Learning Building Floor Numbers from Crowdsourced Streetview Images
Yifan Tian, Yao Sun, and Xiao Xiang Zhu
Abstr. Int. Cartogr. Assoc., 7, 171, https://doi.org/10.5194/ica-abs-7-171-2024,https://doi.org/10.5194/ica-abs-7-171-2024, 2024
Calving front monitoring at a subseasonal resolution: a deep learning application for Greenland glaciers
Erik Loebel, Mirko Scheinert, Martin Horwath, Angelika Humbert, Julia Sohn, Konrad Heidler, Charlotte Liebezeit, and Xiao Xiang Zhu
The Cryosphere, 18, 3315–3332, https://doi.org/10.5194/tc-18-3315-2024,https://doi.org/10.5194/tc-18-3315-2024, 2024
Short summary

Cited articles

Cao, Y. and Huang, X.: A deep learning method for building height estimation using high-resolution multi-view imagery over urban areas: A case study of 42 Chinese cities, Remote Sensing of Environment, 264, 112590, https://doi.org/10.1016/j.rse.2021.112590, 2021. a
Che, Y., Li, X., Liu, X., Wang, Y., Liao, W., Zheng, X., Zhang, X., Xu, X., Shi, Q., Zhu, J., Zhang, H., Yuan, H., and Dai, Y.: 3D-GloBFP: the first global three-dimensional building footprint dataset, Earth Syst. Sci. Data, 16, 5357–5374, https://doi.org/10.5194/essd-16-5357-2024, 2024. a, b, c, d
Chen, S., Shi, Y., Xiong, Z., and Zhu, X. X.: HTC-DC Net: Monocular Height Estimation From Single Remote Sensing Images, IEEE Transactions on Geoscience and Remote Sensing, 61, 1–18, https://doi.org/10.1109/TGRS.2023.3321255, 2023. a
City of Helsinki: Helsinki 3D City Model, [3D model], https://hri.fi/data/en_GB/dataset/helsingin-3d-kaupunkimalli (last access: 1 November 2025), 2017. a
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.: An image is worth 16 × 16 words: Transformers for image recognition at scale, arXiv [preprint], https://doi.org/10.48550/arXiv.2010.11929, 2020. a
Download
Short summary
We introduce GlobalBuildingAtlas, a publicly available dataset offering global and complete coverage of building polygons (GBA.Polygon), heights (GBA.Height) and Level of Detail 1 3D models (GBA.LoD1). This is the first open dataset to offer high quality, consistent, and complete building data in 2D and 3D at the individual building level on a global scale. With more than 2.75 billion buildings worldwide, it surpasses the most comprehensive database to date by more than 1 billion buildings.
Share
Altmetrics
Final-revised paper
Preprint