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Abstract. We introduce GlobalBuildingAtlas, a publicly available dataset providing global and complete cov-
erage of building polygons, heights and Level of Detail 1 (LoD1) 3D building models. This is the first open
dataset to offer high quality, consistent, and complete building data in 2D and 3D form at the individual building
level on a global scale. Towards this dataset, we developed machine learning-based pipelines to derive building
polygons and heights (called GBA.Height) from global PlanetScope satellite data, respectively. Also a quality-
based fusion strategy was employed to generate higher-quality polygons (called GBA.Polygon) based on exist-
ing open building polygons, including our own derived one. With more than 2.75 billion buildings worldwide,
GBA.Polygon surpasses the most comprehensive database to date by more than 1 billion buildings. GBA.Height
offers the most detailed and accurate global 3D building height maps to date, achieving a spatial resolution of
3 m× 3 m – 30 times finer than previous global products (90 m), enabling a high-resolution and reliable anal-
ysis of building volumes at both local and global scales. Finally, we generated a global LoD1 building model
(called GBA.LoD1) from the resulting GBA.Polygon and GBA.Height. GBA.LoD1 represents the first com-
plete global LoD1 building models, including 2.68 billion building instances with predicted heights, i.e., with a
height completeness of more than 97 %, achieving RMSEs ranging from 1.5 to 8.9 m across different continents.
With its height accuracy, comprehensive global coverage and rich spatial details, GlobalBuildingAtlas offers
novel insights on the status quo of global buildings, which unlocks unprecedented geospatial analysis possibil-
ities, as showcased by a better illustration of where people live and a more comprehensive monitoring of the
progress on the 11th Sustainable Development Goal of the United Nations. The code is publicly available at
https://github.com/zhu-xlab/GlobalBuildingAtlas (last access: 1 November 2025). The GBA dataset described
in this manuscript can be accessed on mediaTUM under https://doi.org/10.14459/2025mp1782307 (Zhu et al.,
2025b).

1 Introduction

Buildings anchor human life and define the form and func-
tion of urban environments. According to the United Nations
(UN), over 50 % of the global population currently reside
in cities and considering the ongoing urbanization, it is esti-
mated that this ratio will reach nearly 70 % by 2050 (United
Nations, 2024). While urbanization enables more people to

live in connected communities, it also introduces a range of
challenges, including inequalities and urban poverty, inade-
quate transportation infrastructure, air pollution, and limited
access to open public spaces. In response, the UN has estab-
lished “sustainable cities and communities” as its 11th Sus-
tainable Development Goal (SDG 11) in its 2030 Agenda.

To monitor the progress toward this goal, one of the key
indicators being used is the ratio of the land consumption
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rate to the population growth rate (Indicator 11.3.1, United
Nations, 2025) – a ratio that measures how much land is
being developed or consumed relative to the rate at which
the population is growing. This key indicator is computed
based on the built-up area. Although this metric provides
some insights into the spatial distribution of the built envi-
ronment, its reliance on two-dimensional measurements can
lead to biased or misleading interpretations. Cities are in-
herently three-dimensional (3D), and ignoring vertical space
overlooks crucial information about how urban space is ac-
tually used. For example, a densely populated informal set-
tlement may have the same built-up area per capita as a well-
designed urban neighborhood with multi-story buildings, de-
spite their vastly different spatial, social and infrastructural
conditions. Therefore, a more complete understanding of the
actual urban form requires information on building heights,
which would enable obtaining a volumetric perspective of the
built environment. Such 3D insights are essential for urban
planning, infrastructure management and policy-making –
especially in resource-limited contexts where the strategic al-
location of funding and intervention is critical.

Despite its importance, the availability of comprehensive
building height data remains unevenly distributed across the
globe. While developed countries often leverage advanced
technologies to monitor urban development, many regions
undergoing rapid change – particularly in the Global South –
lack the observational infrastructure and technical capacity to
do so. Notably, these are often the areas that are most vulner-
able and most in need of accurate, timely data. A promising
alternative lies in Earth observations from space, which can
offer scalable and repeatable insights independent of local
ground-based or aerial-based resources.

However, existing global-scale building products utilizing
data collected from space fall short in several key aspects.
First, true global coverage and completeness remain limited,
with most datasets covering only continental or national ex-
tents. Second, many existing approaches yield only coarse,
aggregate-level building representations, which are insuffi-
cient for applications requiring more detailed, building-level
information. Third, the reliance on ancillary data – such as
socioeconomic variables, like population – hinders the scal-
ability and timeliness of such product, especially in fast-
changing urban contexts where rapid updates are critical.

To address these limitations, we introduce GlobalBuildin-
gAtlas (GBA), a global-scale dataset originating from a
pipeline that relies exclusively on optical satellite imagery.
GBA provides comprehensive building polygons, heights
and level of detail 1 (LoD1) 3D building models. Our main
contributions are

– GBA.Polygon. The first complete set of global building
polygons consisting of 2.75 billion buildings, closing
the current gap of more than 40 % global buildings that
were previously not accounted for.

– GBA.Height. The most detailed and accurate global
3D building height map to date, achieving an unprece-
dented spatial resolution of 3 m× 3 m – 30 times finer
than previous global products (90 m), and enabling a
high-resolution and reliable analysis of building vol-
umes at both local and global scales, achieving root
mean square errors (RMSEs) ranging from 38.0 to
580.0 m3 per 100m2 across different continents.

– GBA.LoD1. The first complete global LoD1 building
model, including 2.68 billion building instances with
predicted heights, which achieves RMSEs ranging from
1.5 to 8.9 m across different continents.

2 Related Work

3D building information is crucial for many purposes, in-
cluding urban planning. Such information captures struc-
tural attributes that extend beyond the ground footprint of the
building, including the building height and volume. Table 1
summarizes existing mainstream products that primarily map
3D building information in two main aspects: raster-based
and instance-level building representations.

2.1 Raster-based Building Representation Products

Raster-based building representations provide the statistics
of buildings in regular grids. The products are delivered as
rasters showing aggregated building heights or total build-
ing volumes in a grid format, typically spanning tens to hun-
dreds of meters. The results are often estimated from di-
verse data sources using simple regression models. For ex-
ample, World Settlement Footprint (WSF) 3D (Esch et al.,
2020, 2022) quantifies average building heights, total vol-
umes and building fractions at 90 m resolution. Global Hu-
man Settlement Layers (GHSL) (Pesaresi et al., 2024) model
global building distributions, with GHS-BUILT-H (Pesaresi
and Politis, 2023a) depicting building heights and GHS-
BUILT-V (Pesaresi and Politis, 2023b) depicting volumes
at 250 m resolution. Ma et al. (2024) provided global build-
ing heights at a spatial resolution of 150 m. Generally, these
products are derived either from low-resolution data sources
of multiple modalities, such as Sentinel-1 Synthetic Aper-
ture Radar (SAR) images and Sentinel-2 multi-spectral im-
ages, or from global digital elevation model (DEM) sources
at coarse resolution. To achieve higher resolution mapping,
recently Google (Sirko et al., 2023) demonstrated the poten-
tial of optical satellite imagery for the rapid retrieval of build-
ing information by generating building presence and height
data at a 4 m resolution using only Sentinel-2 images. How-
ever, this dataset is not globally available yet and is primarily
limited to regions in the Global South.

In summary, raster-based products of this kind usually
have a large coverage or even global coverage, but with the
compromise of a lower quality and resolution, restricting
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Table 1. Comparison of existing large-scale building map and building height products. BF: Building footprint; BH: Building height; B: bil-
lion.

Product Data Structure Data Sources BF Coverage BH Coverage Resolution Building Count/with Height Year

WSF 3D Raster S1, S2, TanDEM-X Global Global 90 m / vary from 2011–2019
GHS-BUILT-H Raster 5 Global DEM sources Global Global 250 m / vary from 2000–2011
GBH 2020 Raster LS-8, S1, S2 Global Global 150 m / vary from 2019–2021
Google 2.5D Raster S2 Global South Global South 4 m / 2016–2023 Yearly
GBA.Height (ours) Raster PlanetScope Global Global 3 m / 2019

Microsoft Vector Multi-source VHR images Global excl. China NA, EU, OC / 1.4 B/0.28 B vary from 2014–2021
OSM Vector Human Annotation Global in part Global in part / 0.45 B/0.02 B since 2008
3D-GloBFP Vector 10 different sources Global Global / 1.7 B/1.7 B vary from 2014–2021
GBA.LoD1 (ours) Vector 4 BF sources, PlanetScope Global Global / 2.75 B/2.68 B 2019

their use in applications requiring high granularity at the in-
stance level.

2.2 Instance-level Building Representation Products

Instance-level building representation maps delineate indi-
vidual buildings and assign their corresponding 3D features.
There already exist several 3D building model products at
the instance level, albeit on a smaller scale (e.g., city or
country). For instance, Peters et al. (2022) created 3D-BAG,
the first open 3D building dataset based on Light Detection
and Ranging (LiDAR) data covering the Netherlands; while
the City of Helsinki (2017) released a high-quality 3D se-
mantic city model derived from high-resolution aerial pho-
tographs. Similar models are available in other developed ar-
eas worldwide, e.g., Philadelphia by Pennsylvania State Uni-
versity (2015), and 260 cities in Japan by the Ministry of
Land, Infrastructure, Transport and Tourism (MLIT) Japan
(2024). Although they are derived from high-quality obser-
vations, and are capable of reconstructing detailed 3D build-
ing structures at Level of Detail 2 (LoD2) or higher, such
products are not widely available globally due to their high
operational costs and significant computational demands.

In addition to the aforementioned observation-based tech-
niques, Volunteered Geographic Information (VGI) offers
an alternative approach. While VGI – based on human an-
notations – is often recognized for its positional accuracy,
it typically suffers from limited completeness, particularly
with respect to building height information. Therefore, cur-
rent mainstream products are primarily derived from aerial or
satellite remote sensing data using algorithmic approaches.
Microsoft (Microsoft, 2024) maintains a dataset of 1.4 bil-
lion building footprints, of which approximately 20 % in-
clude estimated building heights. Che et al. (2024) provided
3D-GloBFP – a 3D building footprint dataset encompass-
ing 1.66 billion buildings. Despite achieving substantial cov-
erage in terms of building footprints and height estimates,
none of these datasets are derived from complete or globally
consistent sources. Consequently, the total number of build-
ings represented falls significantly short of the United Na-
tions’ estimate of approximately 4 billion buildings world-

wide (United Nations Human Settlement Program: UN Habi-
tat, 2019).

2.3 Gaps in Existing Products

While raster-based building representation products priori-
tize broader coverage, they suffer from low resolution and
quality limitations. Instance-level representation products,
on the other hand, offer detailed information on individual
buildings but are constrained by limited coverage and in-
complete datasets. Moreover, the production of high-level
building representation products often involves multiple data
sources, complicating the process of updating these datasets
efficiently.

To address these gaps, we propose a novel pipeline to gen-
erate global LoD1 building models based solely on Plan-
etScope images. Leveraging this approach, we generated
3 m-resolution raster height maps alongside globally con-
sistent building polygons. By fusing the generated build-
ing polygons with existing open-source building footprints
based on quality assessments, we constructed a global build-
ing footprint dataset optimized for the highest possible qual-
ity. Finally, we assigned building heights to every individual
building polygon using our generated height maps, which led
to the first complete global LoD1 building models.

3 Data Sources

This section introduces all the data sources that were used to
develop the GlobalBuildingAtlas dataset.

3.1 Satellite Optical Images

We collected global-scale PlanetScope Surface Reflectance
(PSR) imagery to support polygonal building mapping and
height estimation. PSR data are orthorectified, multi-spectral
satellite images provided by Planet’s satellite constellation.
These images undergo atmospheric correction, ensuring that
the reflectance values accurately represent the Earth’s sur-
face properties. The PSR data we utilized include four spec-
tral bands – three in the visible RGB range and one near-
infrared (NIR) band, with a spatial resolution of approxi-
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Table 2. Comparison of existing large-scale building footprint products. B: billion.

Product Coverage Number of Buildings Year

Microsoft Global excl. China 1.4 B vary from 2014–2021
OSM Global in part 0.45 B since 2008
Open Buildings Global South 1.8 B until 2021
CLSM East Asia 0.28 B vary from 2020–2022
3D-GloBFP Global 1.7 B vary from 2014–2021
GBA.Polygon (ours) Global 2.75 B vary from 2014–2021

Figure 1. Distribution of city-scale regions of interest where training and test data were collected. The 3D and 2D training sets were used
to train the building height estimation and building polygon generation pipelines, respectively. Basemap © CARTO © OpenStreetMap
contributors 2025. Distributed under the Open Data Commons Open Database License (ODbL) v1.0.

mately 3 m. Additionally, the PlanetScope constellation of-
fers a high temporal revisit frequency, capturing imagery of
the same location up to daily, which is beneficial for moni-
toring dynamic urban environments.

3.2 Building Footprints

We utilized building footprint datasets from various sources
(see Table 2), including OSM (OpenStreetMap contributors,
2025), Google Open buildings (Google Research, 2023), Mi-
crosoft Building Footprints (Microsoft, 2024), and CLSM
(Shi et al., 2024). Since none of the above-mentioned foot-
prints is complete, we also generated our own global build-
ing polygons from an updated version of GlobalBuildingMap
(Zhu et al., 2024), with a novel building regularization and
polygonization pipeline applied. The building mapping and
regularization networks were trained on PSR imagery us-
ing manually filtered OpenStreetMap (OSM) annotations

with high completeness. The data distribution is illustrated
in Fig. 1. To produce the final complete global building
footprint dataset – GBA.Polygon – we integrated all avail-
able sources, including our own generated polygons, using a
quality-based fusion approach.

3.3 LiDAR

As the most precise 3D measurement available, we used
aerial LiDAR data covering a wide range of geolocations
(see Fig. 1) in developed countries. A comprehensive list of
the covered countries is provided in Appendix A. These data
are publicly released by governments for open use. Due to
the high operational cost of LiDAR observations, no such
data are available in Africa. LiDAR observations were pri-
marily acquired in 2019 to ensure temporal consistency with
the PSR data. When 2019 acquisitions were not available,
data from adjacent years were utilized. Since the coverage is
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concentrated in developed regions, where building changes
are generally limited, the temporal discrepancies between the
PSR data and the 3D labels are expected to be negligible.
We processed the LiDAR data into normalized digital sur-
face models (nDSMs), which represent the heights of ground
objects. These nDSMs served as reference data for training
our neural networks.

4 Methodology

4.1 Overall Workflow

The overall workflow for generating the GlobalBuildingAt-
las dataset is illustrated in Fig. 2. The workflow can be
divided into 4 sections, including global data acquisition,
global building polygon generation, global building height
estimation and post processing, i.e., global LoD1 model gen-
eration.

4.2 Global Data Acquisition

This section details the acquisition, organization and pre-
processing of PSR data to prepare them for the sub-
sequent deep learning models and LoD1 model genera-
tion. We divided the Earth’s surface into grid cells of
0.2°× 0.2°. Grids overlapping with built-up areas, as de-
fined by the Global Urban Footprint (GUF) dataset (Esch
et al., 2010, 2011, 2012, 2013), were selected as our areas
of interest. For these regions, we acquired satellite imagery
from 2019 that intersects with the selected grids, aiming to
maximize coverage. In total, approximately 800 000 Plan-
etScope scenes were downloaded, each with a spatial reso-
lution of 3 m and covering an area of about 287.5 km2.

To ensure data quality, we applied a cloud filter that re-
tained only scenes with less than 10 % cloud cover. In areas
where suitable cloud-free imagery from 2019 was unavail-
able, the dataset was supplemented with images from 2018.
For each 0.2°× 0.2° grid cell, PSR imagery was mosaicked
using a scene prioritization strategy guided by the corre-
sponding Unusable Data Masks (UDMs), ensuring the selec-
tion of the clearest and most complete pixels across overlap-
ping scenes.

4.3 Global Building Polygon Generation

This section outlines the global-scale building polygon gen-
eration process, as illustrated in the upper middle part of
Fig. 2. We begin by describing the curation of the train-
ing data, followed by a detailed description of the building
footprint extraction model, the regularization model, and the
polygonization method used to generate the building poly-
gons. Finally, we present the filtering process employed to
remove false-positive polygons.

4.3.1 Data Curation

To construct a dataset for training the building polygon gen-
eration model, we sampled PSR image patches from 107 pre-
defined regions of interest (RoIs) distributed globally. These
RoIs included 92 densely built urban areas and 15 non-urban
regions, such as ocean, forest, desert, and mountain environ-
ments, which served as negative samples.

PSR imagery overlapping with the RoIs was divided into
patches of size 256× 256 to ensure compatibility with the
deep learning models, resulting in a total of 142 722 train-
ing samples. For each sampled PSR image patch, we ob-
tained building polygons from OSM for regions outside of
China. For Chinese cities, we used annotations provided by
the dataset published by Cao and Huang (2021). All the ac-
quired building polygon annotations were rasterized to the
spatial resolution of 3 m to match the resolution of the PSR
images.

4.3.2 Building Map Extraction

A building map extraction network was designed to map the
input PSR images to binary building masks. This followed an
encoder–decoder architecture based on UPerNet (Xiao et al.,
2018), with ConvNeXt-Tiny (Liu et al., 2022) serving as the
backbone. The network is supervised by cross-entropy loss.
Following the practice in Zhao et al. (2017), an auxiliary loss
is calculated using the third-layer features extracted from
ConvNeXt backbone to enhance the feature representation.
Before being fed into the network, image patches were up-
scaled by a factor of 4 and cropped to a size of 512× 512.
The network was trained for 160 000 iterations with a batch
size of 8, using the AdamW optimizer (Loshchilov and Hut-
ter, 2019). The global inference was built-up on the pipeline
for generating GlobalBuildingMap, as described in Zhu et al.
(2024).

4.3.3 Building Map Regularization

The building map extraction network described in Sect. 4.3.2
generates binary building masks from input satellite images
by applying a threshold of 0.5 to the predicted probability
maps. However, the resulting masks are often noisy, with ad-
jacent buildings merging due to the limited resolution of the
PSR images, which are typically insufficient to capture fine
building details. To address this, we trained a building map
regularization network to refine the generated masks to im-
prove their accuracy and delineation.

During training, we generated two binary masks, M̂ and
M, using building polygon annotations, treating them as the
network’s input and output, respectively. M̂ was created by
rasterizing the building polygon annotations to match the
resolution of the corresponding images, with random noise
added to the vertices and edges of the polygons. In contrast,
M was generated similarly, but without any added noise. By
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Figure 2. Workflow of the proposed pipeline. The basemap in the “Building Model” image is derived from © OpenStreetMap contributors
2025. Distributed under the Open Data Commons Open Database License (ODbL) v1.0. © Google and the Google logo are trademarks of
Google LLC. © Microsoft and the Microsoft logo are trademarks of Microsoft Corporation.

learning to predict M from M̂, the network was able to de-
noise the generated binary masks, producing regularized and
more accurate building mask representations.

Since both networks followed an encoder-decoder archi-
tecture, the architecture and training details of the building
map regularization network were identical to those of the
building map extraction network described in Sect. 4.3.2.

4.3.4 Building Polygonization and Simplification

After the regularized binary building maps were generated,
the subsequent building polygonization and simplification al-
gorithms mapped them to polygonal representations. Specif-
ically, the binary masks were first converted into dense vec-
tor representations using a contour tracing-like algorithm
provided by the GDAL library (The GDAL Development
Team, 2020). Then, a polygon simplification algorithm, as
described in Zhang et al. (2025a), was applied to simplify
the polygonal representation.

4.3.5 False Positives Filtering

Since the available training data do not sufficiently cover
the diverse terrains and land cover types worldwide, and the
quality of satellite data can vary by region, the generated
building polygons may include false positives, particularly
in areas with cloud cover, snow, water bodies, forests, and
similar features. To filter out these false positives, we im-
plemented a filtering strategy based on the global land cover
map product World Cover (Zanaga et al., 2021). We began
by dilating the built-up mask of the World Cover map with
a 250 m window size, and then filter out any generated poly-
gons that fell outside the masked area.

4.4 Global Building Height Estimation

The proposed pipeline acquires 3D building information ex-
clusively from optical satellite imagery, ensuring broad ac-
cessibility and ease of data acquisition. We utilized deep
learning methods that are particularly well-suited for this
task, as they can effectively leverage large-scale data while
offering flexibility and scalability – key advantages for global
geospatial applications. This section details the height infor-
mation retrieval process, illustrated in the lower middle part
of Fig. 2. We first describe the curation of the training data
and then elaborate on the monocular height estimation pro-
cess.

4.4.1 Data Curation

The dataset used for training the monocular height estima-
tion model consisted of samples from 168 city-scale RoIs
worldwide (see Fig. 1). These regions were primarily located
in North America, Europe and Oceania, where high-quality
3D observations are more readily available. The 3D data
originated from LiDAR point clouds released by govern-
ments, which were processed into height maps in raster
format – specifically, normalized digital surface models
(nDSMs) that match the resolution of PSR imagery. The
nDSMs were cropped into patches of size 256× 256, yield-
ing a total of 231 656 samples.

4.4.2 Monocular Height Estimation

We trained an HTC-DC Net (Chen et al., 2023) to predict
heights from single images, following a classification-
regression paradigm. The model consisted of an
EfficientNet-B5 (Tan and Le, 2020) backbone for fea-
ture extraction, a classification module, and a hybrid
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regression process. The classification module employed a
vision transformer encoder (Dosovitskiy et al., 2020) to
capture relationships between local and global features,
dynamically determining bin edges and their corresponding
probabilities. The classification output is treated as a dis-
tribution, which was refined through the hybrid regression
process to obtain the final height prediction. The network
was trained for 150 epochs with a batch size of 8, using the
AdamW optimizer (Loshchilov and Hutter, 2019).

4.4.3 Uncertainty Quantification

To assess the uncertainty of the predicted height values, we
employed the test-time augmentation (TTA) technique dur-
ing the inference process. Inference was conducted on mo-
saicked PSR imagery on a 0.2°× 0.2° scale using a slid-
ing window approach. The window slides with a stride of
128 pixels, allowing up to 4 predictions per pixel. The vari-
ance across these 4 predictions serves as the uncertainty mea-
sure for height prediction.

4.5 Global LoD1 Building Model Generation

The generation of the global LOD1 building model relies
on the availability of high-quality global building polygons
and the corresponding building heights. Given the limited
availability of accurate and detailed global building height
datasets, GBA.Height represents the most suitable option for
this purpose. However, to leverage existing large-scale build-
ing footprint datasets – such as the vector sources listed in
Table 2, which were derived from higher-quality input data –
we introduce a quality-guided fusion strategy. This approach,
detailed in Sect. 4.5.1, enables the integration of multiple
building polygon sources. The final global LoD1 building
model was then constructed based on this fused footprints
and our generated GBA.Height, as described in Sect. 4.5.2.

4.5.1 Quality-guided Building Polygon Fusion

As shown in Table 2, different instance-level building
footprint products exhibit varying degrees of complete-
ness across different regions. Even in areas where multiple
building footprint products are available, their quality dif-
fers significantly. To leverage the strengths of all available
datasets, we performed a quality-guided polygon fusion pro-
cess to produce a final global building footprint dataset –
GBA.Polygon.

The fusion processing was carried out within each admin-
istration boundary as defined by the GADM dataset (GADM,
2025). The process begins with selecting a base layer, i.e., the
primary source, which should represent the highest-quality
building footprint at a given location. Zhu et al. (2024)
compared various building footprint datasets across differ-
ent continents and concluded that OpenStreetMap (OSM)
is the most suitable base layer for all continents except

South America and Africa. In these two regions, Google’s
Open Building dataset outperforms others due to its well-
delineated and superior preservation of details.

However, while these datasets may provide the best quality
at a large scale, concerns about their completeness remain. To
address this limitation, we introduced a secondary source to
complement the primary dataset with region-specific cover-
age.

To address this, we evaluated other sources against the
base layer to identify the most suitable secondary source,
with the ranking determined using a combined metric of re-
call and area gain. Recall measures the building areas in the
primary source that are covered by a given secondary source,
while area gain quantifies the additional building area intro-
duced by the secondary source. The source with the high-
est combined metric was selected as the secondary source,
ensuring that it aligned well with the primary source while
maximizing the inclusion of new building footprints.

Finally, the selected primary and secondary sources were
merged at the instance level. All buildings from the primary
source were retained, and any additional buildings from the
secondary source were incorporated into the final dataset.
This approach ensures that the final polygon set integrates
the strengths of the two most reliable data sources, resulting
in a more complete and accurate global building footprint
product.

4.5.2 LoD1 Building Model Generation

To generate the final LoD1 building models, the predicted
height maps were integrated with the fused building foot-
prints to assign a height value to each building instance.
This height value was determined by selecting the maximum
height within each building’s footprint. The variance at the
location where the maximum value was taken served as the
uncertainty measure for the corresponding building instance.

5 Results

5.1 Dataset Overview

Our resulting GlobalBuildingAtlas dataset consists of global
building polygons (GBA.Polygon), building height maps
(GBA.Height) and LoD1 models (GBA.LoD1). Figure 3
gives an overview on the GlobalBuildingAtlas dataset. It il-
lustrates the global distribution of building volumes (in the
middle) as well as statistics on the building counts, areas and
volumes and associated errors by continent (top), and show-
cases the resulting building height map and LoD1 model
from selected areas in North America (middle-left) and Asia
(middle-right), respectively. The bottom subfigures offer a
closer look at the building volume distribution in 10 repre-
sentative cities across the globe, using the same colormap
as the global map for consistency. The total building count
across the globe is 2.75 billion, corresponding to a total

https://doi.org/10.5194/essd-17-6647-2025 Earth Syst. Sci. Data, 17, 6647–6668, 2025



6654 X. X. Zhu et al.: GlobalBuildingAtlas

Figure 3. Overview of our resulting GlobalBuildingAtlas dataset, consisting of global building polygons (GBA.Polygon), building height
map (GBA.Height) and LoD1 models (GBA.LoD1). The top section presents the dataset statistics by continent, including the number of
buildings, total building area and volume, as well as height RMSE and volume RMSE across the test cities. The middle section displays
the global distribution of building volume, computed over 480 m× 480 m grid cells. The bottom section offers a closer look at the building
volume distribution in 10 representative cities, using the same colormap as the global map for consistency. LoD1 model visualization base
images © Google Maps.

building area of 506.64 billion m2 (square meters) and a total
building volume of 2.85 trillion m3 (cubic meters). This sug-
gests that the actual global building count is lower than the
UN’s estimation of 4 billion. As anticipated, building vol-
umes are concentrated in metropolitan regions, with notable
clusters in East Asia, Europe, and North America.

The global distribution of building-related metrics by con-
tinent reveals significant geographic variations in terms of
quantity and scale.

Asia leads in nearly all metrics, with an estimated 1.22 bil-
lion buildings, the highest among all the continents. This re-
flects both the continent’s large population and the extensive
urban development across countries such as China, India,
and those in Southeast Asia. Africa follows with approxi-
mately 540 million buildings, surpassing Europe (403 mil-
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lion) and North America (295 million) in terms of building
count. South America contributes around 264 million build-
ings, while Oceania has the lowest count at 14 million build-
ings.

Despite Africa’s relatively high number of buildings, its
total building area is significantly lower, amounting to only
38 billion m2, in contrast to Asia’s 218 billion m2, Europe’s
138 billion m2, and North America’s 79 billion m2. South
America and Oceania contribute 28 and 5 billion m2, respec-
tively. This disparity indicates that African buildings tend to
be smaller in size, possibly reflecting the dominance of low-
rise or informal structures – an expected pattern in less de-
veloped or peri-urban areas.

A similar pattern can be observed with the building
volume statistics. Asia again ranks highest, with a cumu-
lative building volume of approximately 1.272 trillion m3,
followed by Europe (763 billion m3) and North America
(538 billion m3). Africa, despite its large number of struc-
tures, contributes only 117 billion m3, further underscor-
ing the prevalence of small-scale or single-story buildings.
South America and Oceania contribute 123 billion m3 and
26 billion m3, respectively.

The building height and volume estimation accuracy of the
GlobalBuildingAtlas dataset across continents is mainly in-
fluenced by several factors: (1) variations in building mor-
phology, (2) the representation of regional characteristics
in the training data, and (3) the comprehensiveness and
quality of the validation data. The global average height
RMSE of GBA.LoD1 stands at 5.5 m. The lowest error is
observed in Oceania (1.5 m), followed by Europe (4.1 m),
North America (5.3 m), and Asia (5.9 m). South Amer-
ica, however, exhibits a significantly higher height RMSE
of 8.9 m, suggesting a greater uncertainty or variation in
building morphology, possibly due to a mixture of in-
formal and vertical developments in urban regions. The
global average volume RMSE of GBA.LoD1 is approx-
imately 152.6 m3 per 100m2. South America again shows
the highest error at 586.8 m3 per 100m2, which may be at-
tributed to compounding uncertainties in both the build-
ing footprint and height estimation. Asia follows with
247.7 m3 per 100m2, then Europe (150.9 m3 per 100m2),
North America (135.5 m3 per 100m2), and Oceania with
the lowest error at 46.8 m3 per 100m2. Furthermore,
GBA.Height enhances building volume estimation in South
America and Asia, achieving RMSE values of 580.0 and
38.0 m3 per 100m2, respectively.

In summary, the statistics reflect significant continental
differences in the scale of the built environment and estima-
tion accuracy. While Asia dominates in terms of the building
count, area, and volume, Africa’s high building count but low
aggregate volume and area underscores the heavy presence
of small-scale and potentially informal constructions. Con-
versely, Europe and Oceania demonstrate relatively lower es-
timation errors, suggesting a higher consistency in terms of
the building structures and their better representation in the

training data. South America, despite its moderate building
count, emerges as a region with notably high estimation er-
rors, indicating potential challenges in urban morphology or
limitations in the training data.

These findings provide valuable insights for global-scale
urban modeling, infrastructure planning, and geospatial ana-
lytics.

5.2 Comparison with Existing Products

The released GlobalBuildingAtlas dataset provides compre-
hensive information for both raster-based and instance-level
building representation. For comparison, we compared it
against three raster-based products, namely GHS-BUILT-H
(Pesaresi and Politis, 2023b), WSF-3D (Esch et al., 2022),
and Google 2.5D (Sirko et al., 2023), as well as two instance-
level products, namely Microsoft (Microsoft, 2024) and 3D-
GloBFP (Che et al., 2024).

5.2.1 Validation Dataset

We collected a test dataset (see Fig. 1) comprising LoD1
building data from government sources across 28 cities in
Asia, Europe, North America, South America, and Oceania
to evaluate the performance of the various building height
products. Note, owing to the lack of reference data in Africa,
it was not possible to conduct a quantitative evaluation in that
region.

5.2.2 Metrics

The evaluation covered assessments of both 2D build-
ing footprint and 3D building information, The quality of
2D building footprints was quantified using the following
metrics.

– Intersection over union (IoU). IoU was used to evaluate
both the raster-based and instance-level building prod-
ucts. For evaluating raster-based building map, we ras-
terized the reference polygons to 3 m resolution, resiz-
ing the building map to the same resolution and then
calculated the IoU of the building area. For the instance-
level building products, the IoU was calculated at the
polygon level.

– Average precision of building polygons at an IoU
threshold of 0.5 (APpoly

50 ). To evaluate the quality of
building polygons with vectorized building data, we
adopted the standard average precision (AP) metric,
which is widely used in object detection and instance
segmentation (Everingham et al., 2010). Specifically,
we computed the AP for building polygons using an IoU
threshold of 0.5, denoted as APpoly

50 , following the clas-
sic evaluation protocol.
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– Average recall of building polygons at an IoU thresh-
old of 0.5 (ARpoly

50 ). In addition to evaluating the aver-
age precision (ARpoly

50 ), we also computed the average
recall (AR) to assess how comprehensive the dataset’s
ability to comprehensively capture building instances
is. Specifically, ARpoly

50 was determined to measure the
recall performance of detected building polygons at an
IoU threshold of 0.5, following the standard evaluation
protocol.

– N -ratio of the detected building count. To evaluate the
accuracy of the different instance-level building prod-
ucts, we employed the N -ratio metric, defined as the
ratio between the number of detected buildings and the
corresponding ground truth count. This metric provides
a straightforward measure of how well the predicted
building counts align with reference data. An N -ratio
closer to 1 indicates better performance.

The assessment of the 3D building information included
estimated building volume and height accuracy, correspond-
ing to the instance-level and raster-based building represen-
tations, respectively.

– Root mean square error (RMSEBV) and mean abso-
lute error (MAEBV) of the estimated building volume.
The ground truth building models and the instance-level
building datasets were rasterized. The RMSE and MAE
were computed on a per-pixel basis with a 1 m× 1 m
grid resolution.

– RMSE (RMSEBH) and MAE (MAEBH) of the estimated
building heights. Building instances in the ground truth
and in the various datasets were matched according to
the maximum overlapping area. The RMSE and MAE
of the building height were then computed based on
these matched pairs.

– Building height completeness (Comp.). This metric rep-
resents the proportion of ground truth buildings (in
numbers) for which valid predictions are available. A
prediction is considered valid if it exceeds a minimum
building height threshold, which was set to 1 m in this
study.

5.2.3 Quantitative Results

We present the quantitative comparison results of various
building height products in Table 3. To provide a quick vi-
sual summary, the key metrics and characteristics are also
illustrated in Fig. 4.

For metrics related to 2D building footprints – includ-
ing APpoly

50 , ARpoly
50 , N -ratio, and IoU – our building poly-

gon dataset GBA.Polygon consistently achieves the best per-
formance across most regions, with the exception of South
American cities. This demonstrates the effectiveness of our

proposed quality-guided polygon fusion strategy in lever-
aging existing multi-source vectorized building footprint
datasets.

In terms of building height-related metrics, both our
raster-format height product GBA.Height and vector-format
LoD1 model GBA.LoD1 achieve the highest completeness
scores across all categories. This suggests that the generated
height map provides the most comprehensive and meaning-
ful coverage of building heights over the reference polygons.
For building volume estimation, as measured by RMSEBV
and MAEBV, our GBA.LoD1 outperforms all other com-
pared methods across every continent except South Amer-
ica, confirming its suitability for city-scale volume estima-
tion. Lastly, in terms of building height accuracy – measured
by RMSEBH and MAEBH – our GBA.LoD1 delivers the best
results in North America and Oceania, and remains compet-
itive or only slightly behind other methods in the remain-
ing regions, confirming its consistent high-quality across the
globe.

Due to the lack of reference data in Africa, the results
could not be directly evaluated. However, the satisfactory
performance observed in South America – where both train-
ing and test data are similarly limited and building mor-
phology and regional characteristics differ significantly from
those of more developed regions – suggests that the results in
Africa would likely be acceptable.

5.2.4 Qualitative Results

To provide an intuitive understanding of the performance
of various large-scale building height products, we visu-
alize the results from the different methods on selected
test cities across multiple continents: Portland, USA for
North America, Medellín, Colombia for South America, Bor-
deaux, France for Europe, Launceston, Australia for Ocea-
nia, and Wakayama, Japan for Asia. As shown in Fig. 5,
the raster-based products, such as GHS-BUILT-H (Pesaresi
et al., 2024; Pesaresi and Politis, 2023a) and WSF 3D (Esch
et al., 2020, 2022), provide coarse, city-scale building height
estimates but fail to capture the detailed building geome-
tries – a critical limitation for many downstream applica-
tions. Google 2.5D (Sirko et al., 2023) produces accurate
building heights in South American cities, like Medellín, but
its geographic coverage is limited primarily to the Global
South. Microsoft’s LoD1 model offers detailed polygon-level
height estimations with good spatial resolution. However, it
lacks coverage in Asia and South America and tends to un-
derestimate heights in European and Asian cities, such as
Bordeaux and Wakayama. 3D-GloBFP (Che et al., 2024)
provides global but incomplete coverage, yet tends to over-
estimate building heights, especially in Medellín and Bor-
deaux. In contrast, our building height map GBA.Height
and LoD1 model GBA.LoD1 achieve accurate estimations
in cities across North America, Europe, and Oceania, includ-
ing Portland, Bordeaux, and Launceston. While some under-
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Table 3. Per-continent evaluation results for various global building height products using the test dataset. “AS”, “EU”, “NA”, “OC”, and
“SA” represent Asia, Europe, North America, Oceania, and South America, respectively. The products are grouped based on whether they
provide vectorized building footprints. Metrics of the building volume (BV) are reported in the units of m3 per 100m2; metrics of the building
heights (BH) are reported in m. Best metrics in each group are shown in bold.

Continent Dataset Vector APpoly
50 ARpoly

50 N -ratio IoU RMSEBV MAEBV RMSEBH MAEBH Comp.

AS GHS-BUILT-H x – – – 13.3 322.6 113.5 5.7 3.8 0.95
WSF 3D x – – – 16.4 268.9 52.6 6.1 4.4 0.98
Google 2.5D x – – – – – – – – –
GBA.Height (ours) x – – – – 247.7 41.4 5.8 4.4 0.99

Microsoft X 6.5 17.8 0.53 23.4 – – – – –
3D-GloBFP X 8.7 24.0 0.76 32.0 321.7 49.7 6.0 3.2 0.67
GBA.LoD1 (ours) X 27.9 46.8 1.04 44.7 235.0 41.3 5.9 4.6 0.76

EU GHS-BUILT-H x – – – 10.2 206.4 60.4 7.1 5.0 0.74
WSF 3D x – – – 12.8 198.6 40.0 5.6 3.7 0.96
Google 2.5D x – – – – – – – – –
GBA.Height (ours) x – – – – 150.9 24.3 5.6 3.5 0.99

Microsoft X 13.9 28.1 0.65 52.6 168.4 27.4 3.9 2.8 0.55
3D-GloBFP X 5.1 12.0 0.31 25.1 257.1 47.2 6.2 4.6 0.52
GBA.LoD1 (ours) X 46.0 69.3 1.19 67.2 139.4 22.7 4.1 3.0 0.83

NA GHS-BUILT-H x – – – 10.3 185.1 44.3 8.8 4.0 0.93
WSF 3D x – – – 12.7 173.4 23.8 5.9 2.9 0.99
Google 2.5D x – – – – – – – – –
GBA.Height (ours) x – – – – 144.1 16.6 6.4 2.4 0.99

Microsoft X 37.8 58.0 0.94 58.5 149.3 16.1 6.4 2.6 0.81
3D-GloBFP X 41.3 55.5 0.77 63.2 153.9 18.3 8.2 6.7 0.90
GBA.LoD1 (ours) X 54.1 72.4 1.09 66.8 135.5 15.1 5.3 2.1 0.96

SA GHS-BUILT-H x – – – 25.1 560.2 265.4 11.3 6.5 0.98
WSF 3D x – – – 29.4 566.6 198.7 13.8 7.4 0.99
Google 2.5D x – – – 46.6 519.7 188.4 8.6 5.1 0.97
GBA.Height (ours) x – – – – 580.0 171.5 10.1 5.7 1.00

Microsoft X 0.0 0.6 0.10 42.2 – – – – –
3D-GloBFP X 0.1 1.2 0.14 43.4 1708.5 697.3 29.2 24.5 0.89
GBA.LoD1 (ours) X 0.5 4.8 0.69 37.6 586.8 180.6 8.9 5.0 0.87

OC GHS-BUILT-H x – – – 3.9 61.4 11.6 1.9 1.4 0.85
WSF 3D x – – – 8.6 42.7 3.9 2.1 1.4 0.97
Google 2.5D x – – – – – – – – –
GBA.Height (ours) x – – – – 38.0 3.6 1.5 1.0 0.99

Microsoft X 18.9 46.1 1.15 37.5 46.7 3.9 1.5 1.0 0.57
3D-GloBFP X 19.2 45.9 1.14 38.7 52.2 4.8 1.8 1.1 0.84
GBA.LoD1 (ours) X 36.7 56.0 1.16 39.8 46.8 4.2 1.5 1.0 0.87

estimation is still observed in Medellín and Wakayama, our
models strike a significantly better overall balance between
resolution, completeness, and accuracy compared to existing
solutions.

5.3 Validation of the UN’s Building Count Estimation

The UN has estimated that there are approximately 4 bil-
lion buildings worldwide (United Nations Human Settlement
Program: UN Habitat, 2019), a figure that exceeds the num-
ber of building instances in any existing datasets, includ-
ing our GBA. However, by using the N -ratio evaluation

metric shown in Table 3, which reflects the completeness
of GBA.Polygon, we provide an alternative estimate of the
global building count based on our product to validate the
UN’s estimate.

Initially, N -ratios were computed continentally and glob-
ally against reference data, and ranged from 0.69 in South
America to 1.19 in Europe, with a global average of 1.03. Us-
ing these ratios, we estimated the total number of buildings
per continent by scaling the known building counts accord-
ingly. For Africa, where noN -ratio is available, we computed
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Figure 4. Overview of the continental comparison results across large-scale building height products. In the resolution dimension, the
products were first scored based on whether they provide vectorized building footprints. Raster-based products were then further scored
according to their spatial resolution.

three estimates using the minimum, maximum, and global
average N -ratios from other continents.

Aggregate projections across continents yield a global es-
timate of 2.71 billion buildings, while the estimated bounds
range from 2.64 billion to 2.97 billion buildings. This analy-
sis suggests that the UN’s estimate may exceed actual global
building counts.

5.4 Strengths and Limitations

Based on the preceding analysis of our dataset, its key
strengths and limitations can be summarized as follows.

Strengths

– GBA.Polygon represents the most comprehensive
dataset of global building polygons to date, comprising
approximately 2.75 billion buildings. This achievement
could be primarily attributed to two key factors: (1) the
development of a multi-source building polygon fusion
strategy that effectively integrates all existing large-
scale polygon datasets; and (2) the implementation of
a global building polygon generation pipeline based on
PlanetScope satellite imagery, which addresses existing
data gaps by producing previously unavailable building
footprints, albeit with limited quality in some regions
constrained by a lower spatial resolution of the input
satellite data.

– GBA.Height represents the first high-resolution build-
ing height map available at the global scale. In con-
trast to existing global building height datasets (Pe-
saresi and Politis, 2023a; Ma et al., 2024; Esch et al.,
2022), which offer coarse spatial resolutions ranging
from 90 to 150 m, our approach can achieve a resolution
of 3 m – representing at least a 30-fold improvement.
This substantial enhancement enables more detailed and
accurate representation of urban structures, facilitat-
ing a broader range of downstream geospatial applica-
tions. Furthermore, height estimation in GBA.Height is
derived exclusively from a single and affordable data
source, namely PlanetScope satellite imagery, instead of
very high-resolution aerial data. Owing to the reduced
data dependency data cost and the high temporal revisit
frequency of PlanetScope, our approach supports rapid
and scalable updates of global building height maps.

– GBA.LoD1 constitutes the most comprehensive global
LoD1 building model to date, encompassing approxi-
mately 2.68 billion buildings and filling a gap of over
1 billion previously unrepresented structures world-
wide. Compared to existing LoD1 datasets, GBA.LoD1
offers globally consistent and high-accuracy building
height estimates, with RMSEs ranging from 1.5 to 8.9 m
across different geographic regions.
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Figure 5. Visual comparison of existing building height products on the test cities Portland (North America), Medellín (South America),
Bordeaux (Europe), Launceston (Oceania) and Wakayama (Asia). Satellite images © Google Maps.
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Limitations

– Limited availability of height data in Africa for training
and validation. Due to the scarcity of accurate reference
data in Africa, our building height estimation model was
neither trained nor validated on samples from this re-
gion. Consequently, the model may be subject to do-
main shift, potentially limiting its generalizability and
accuracy when applied to urban areas in African con-
texts. The limitations in available training data could
be potentially addressed by applying weakly supervised
learning, i.e. training dedicated models by considering
all existing building height data as weak labels. How-
ever, community efforts will still be needed to curate
the validation dataset.

– Underestimation of the heights in high-rise building ar-
eas. As shown in the visual results in Fig. 5, our monoc-
ular height estimation model tends to underestimate
building heights in some South American and Asian
cities. This may be attributed to the model being trained
to minimize pixel-level height errors rather than build-
ing instance-level errors, leading to more conservative
predictions in unfamiliar high-rise urban scenarios.

6 Applications and Enrichment

In this section, we demonstrate two applications of the global
LoD1 building models. The first examines the correlation
between building volume and population, while the second
evaluates the utility of building volume information for com-
puting SDG indicators.

6.1 Correlation with the Population

6.1.1 Fine-scale Continental Analysis: Europe as a
Case Study

We investigated the relationship between population distri-
bution and building volume across a 1 km× 1 km grid over
the 27 member states of the European Union (EU). The pop-
ulation data used in this analysis were sourced from the EU’s
official population grid dataset in year 2021 (Eurostat, 2021).
As can be seen in Fig. 6, we performed a logarithmic regres-
sion between the population count and building volume for
each grid cell, both at the EU-wide level and for individual
member states. To assess the significance of the relationship,
we computed both the Pearson correlation coefficient (r) and
the Spearman rank correlation coefficient (ρ), which measure
linear and monotonic association, respectively.

In general, population exhibits a strong positive correla-
tion with building volume: areas with higher populations
tend to be associated with buildings of greater volume. While
the slope of the regression line reflects the average build-
ing volume per capita, the correlation coefficient provides

insights into the equity of the distribution. Higher correla-
tion values suggest a more uniform allocation of building
volume relative to population across spatial units, indicating
a closer alignment between the built infrastructure and pop-
ulation density.

As illustrated in Fig. 7, a considerable disparity emerges
when comparing the building volume per capita and corre-
lation coefficients across the 27 EU countries. More than
half of the member states fall below the EU-wide average
in terms of building volume per capita. Finland, which ranks
highest in this metric, possesses 6 times the per-capita build-
ing volume of Greece, which ranks lowest. The disparities
are somewhat less pronounced in the correlation coefficients,
with most countries exhibiting relatively strong correlations,
with only seven countries falling significantly below the EU-
wide correlation benchmark.

Notably, some of the countries with the highest building
volume per capita, such as Finland and Estonia, exhibit a
particularly imbalanced allocation of building volume with
respect to their population, as evidenced by their lower cor-
relation coefficients. This suggests that while they have abun-
dant building stock, its distribution is less aligned with their
population density.

6.1.2 Coarse-scale Global Analysis

Similar conclusions can be drawn from a coarse, country-
level analysis conducted at the global scale. We performed a
logarithmic regression between the total population of each
country or territory (The World Bank, 2019b) in year 2019
and the corresponding total building volume derived from
our dataset. As can be seen in Fig. 8, the regression again in-
dicates a strong positive correlation between the population
and building volume.

However, the analysis also reveals a much greater imbal-
ance in building volume per capita across countries. Coun-
tries with the largest building volumes per capita are predom-
inantly located in Europe, while those with the smallest val-
ues are primarily in Africa. As an example, Finland continues
to exhibit the highest building volume per capita, whereas in
Niger, Africa, individuals have access to only 0.36 % of that
value. This figure is also 27 times lower than the global aver-
age, highlighting significant disparities in built infrastructure
worldwide.

6.2 Potential SDG Indicator

To monitor progress toward SDG 11 – Make cities and
human settlements inclusive, safe, resilient, and sustain-
able – several indicators have been defined (United Nations,
2025). Among these, Indicator 11.3.1 – Ratio of land con-
sumption rate to population growth rate – plays a crucial
role (United Nations Human Settlements Programme (UN-
Habitat), 2021). The indicator is computed by deriving the
built-up area change and population change. Due to the ab-
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Figure 6. Regression analysis between population and building volume were conducted for the entire EU as well as for each of the
27 EU member states individually. The first graph shows the regression analysis of the EU as a whole, followed by the 27 member countries
sorted in descending order based on the harmonized metric that averages the Pearson (r) and Spearman (ρ) correlation coefficients (Year
2021).

sence of time series data, we were unable to directly com-
pute the indicator to substantiate the rationale for employ-
ing volume-based indicators, though generating time series
data using our developed pipeline is relatively straightfor-
ward. As an alternative approach, we examined the use of
volume-based indicators by considering the secondary indi-
cator defined in the indicator metadata (United Nations Hu-
man Settlements Programme (UN-Habitat), 2021) – built-up
area per capita. In this context, we substituted built-up area
with built-up volume to assess whether the revised indicator
could provide a more accurate reflection of the urban devel-
opment status.

Sustainable development is influenced not only by factors
related to the built-up environment but also by a wide range
of other social, economic, and environmental variables. Nev-
ertheless, correlation analysis between built-up environment
indicators and development-related measures can provide in-
sights into the relative effectiveness of different indicators. In
this study, we used gross domestic product (GDP) per capita
in year 2019 (The World Bank, 2019a) as a proxy for de-
velopment status and compared its correlation with both the
building area per capita and building volume per capita. The
per-capita building metrics were computed using population
data for the year 2019 (The World Bank, 2019b).

As Fig. 9 shows, GDP per capita exhibits a strong posi-
tive correlation with both building area per capita and build-
ing volume per capita, with correlation coefficients of 0.76

and 0.85, respectively. The significantly higher correlation
coefficient between building volume per capita and GDP per
capita suggests building volume per capita might be a more
suitable measure.

To further validate this observation, we assessed the align-
ment between GDP per capita and building-based indica-
tors – namely, building volume per capita and building area
per capita – by randomly selecting pairs of countries and
comparing their respective rankings. For each pair, we exam-
ined whether the ranking based on the indicator agreed with
the ranking based on GDP per capita. As shown in Table 4,
among 20 301 country or territory pairs sampled from a total
of 202 countries and territories, using building volume per
capita instead of building area per capita resulted in 788 ad-
ditional ranking agreements. This substitution increased the
agreement rate from 79.6 % (area-based) to 83.5 % (volume-
based), demonstrating the superior discriminative power of
building volume per capita in capturing differences in eco-
nomic development.

In conclusion, volume-based indicators demonstrate
greater potential than area-based metrics for assessing
progress toward the SDGs related to sustainable urban de-
velopment.
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Figure 7. Building volume per capita and the harmonized correlation coefficients for the 27 EU member states and the EU as a whole. The
harmonized correlation coefficients were computed as an average of the Pearson (r) and Spearman (ρ) correlation coefficients (Year 2021).

Table 4. Comparison of the ranking accuracy for GDP per capita estimation using building volume per capita and building area per capita
(Year 2019). Best metrics are shown in bold.

Indicator Agreement Between Indicators Only One Indicator Correct Total Correct Rankings Ranking Accuracy [%]

Volume per Capita 15 724 1229 16 953 83.5
Area per Capita 15 724 441 16 165 79.6

7 Data availability

The GBA dataset described in this manuscript
can be accessed on mediaTUM under
https://doi.org/10.14459/2025mp1782307 (Zhu et al.,
2025b). The dataset comprises building footprints from
OSM and Microsoft, both provided under the Open
Database License (ODbL). This portion of the dataset can
be accessed at https://doi.org/10.57967/hf/6771 (Zhu et al.,
2025a).

8 Code availability

All code is available on GitHub under an MIT li-
cense with the Commons Clause: https://github.com/
zhu-xlab/GlobalBuildingAtlas (last access: 31 May 2025;
https://doi.org/10.5281/zenodo.17543406, Zhang et al.,
2025b). The Commons Clause restricts the use of this
software for commercial purposes. The repository includes
the full development code for the GBA product, as well
as scripts for reproducing the figures in this manuscript. A
portal for interactive preview of the dataset is available at the
same URL.
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Figure 8. Regression analysis of population and building volume across all countries and territories globally with Pearson (r) and Spear-
man (ρ) correlation coefficients. Top 10 and bottom 10 countries or territories are displayed by building volume per capita (Year 2019).

Figure 9. Correlations between GDP per capita and two built environment indicators: building volume per capita and building area per
capita. Pearson (r) and Spearman (ρ) correlation coefficients are reported (Year 2019).

9 Conclusions

In this study, we introduce GlobalBuildingAtlas, an open
global dataset comprising building polygons, heights, and
LoD1 3D building models. Our motivation stems from want-
ing to fill the significant gaps in existing datasets, particu-
larly regarding the lack of comprehensive 3D information at

an individual building level, which limits applications in both
large-scale urban environments and detailed assessments.

We developed a streamlined pipeline that utilizes only op-
tical satellite imagery for LoD1 3D building modeling. This
approach facilitates rapid updates for time-series monitoring
and enables a wide range of applications. The pipeline con-
sists of two main components: building polygon generation
and building height estimation. The building polygon gen-
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eration process addresses gaps in current building footprint
datasets by supplementing missing building instances. Build-
ing height estimation produces pixel-wise height maps at a
resolution of 3 m, extending applications beyond the built
environment alone. The resulting LoD1 3D building model
constitutes the most comprehensive and accurate dataset to
date, encompassing 2.75 billion buildings, with 97.7 % of
them having height estimates. Our height estimation achieves
high accuracy, with RMSEs ranging from 1.5 to 8.9 m. Addi-
tionally, the resulting building volumes demonstrates signifi-
cant advantages over existing products, with RMSEs ranging
from 46.8 to 586.8 m3 per 100m2.

We further explored the relationship between population
and building volume, revealing a strong correlation. Our
analysis highlighted the substantial disparities in building
volume per capita on both continental and global scales.
Moreover, we propose using building volume-based indica-
tors to assess progress toward the SDGs, as these indica-
tors better reflected development status compared to building
area-based metrics in our analysis.

Appendix A: Additional Information of the
3D Training Set

The 3D training set introduced in Sect. 3.3 comprises a to-
tal of 168 cities (Table A1). The majority of samples orig-
inate from Europe (109 cities), followed by North America
(39) and Oceania (17). In contrast, Asia and South Amer-
ica contribute only two and one cities, respectively, while
no publicly available LiDAR data were identified for Africa
that could be used to supervise monocular height estima-
tion models. In total, the training set contains 187 239 paired
samples of PSR imagery and corresponding nDSM patches,
each with a spatial size of 256 pixel× 256 pixel at 3 m reso-
lution, corresponding to a ground coverage of approximately
110 438 km2.

Appendix B: Building Volume Distribution by
Country or Territory

Figure B1 illustrates the distribution of building volumes by
country or territory. The results reveal that China holds the
largest global share, accounting for 24.8 % of total building
volume, followed by the USA at 15.4 %. These findings are
consistent with the prior study (Che et al., 2024). Notably,
due to improved building data completeness, higher propor-
tions of building volumes for Russia, India, and Brazil are
uncovered. Considering the high population count and land
area in these countries and territories, the finding seems to
be reasonable. Conversely, building volumes for other coun-
tries and territories are estimated to constitute a smaller per-
centage compared to the earlier research, which aligns more
closely with the expected patterns.

Table A1. List of Countries with Numbers of City-scale Regions in
the 3D Training Set

Europe 109
Austria 5
Belgium 8
Denmark 5
Estonia 2
France 3
Germany 25
Ireland 1
Latvia 2
Luxembourg 1
Netherlands 7
Norway 8
Poland 1
Slovakia 1
Slovenia 2
Spain 18
Switzerland 3
United Kingdom 17

North America 39
Canada 19
Mexico 1
United States 19

Asia 2
China 1
Philippines 1

Oceania 17
Australia 11
New Zealand 6

South America 1
Brazil 1

Africa 0

TOTAL 168

Figure B1. Building volume distribution by country or territory.
Top: spatial distribution of building volumes; Bottom: Top 20 coun-
tries or territories with most building volumes. The colorbars are
consistent.
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Appendix C: Contribution of Different Data Sources
in Quality-guided Building Polygon Fusion

Figure C1 illustrates the contributions of various building
data sources to GBA.Polygon. In terms of building count,
Open Buildings (Google Research, 2023) is the largest con-
tributor in Asia, Africa, and South America, with a total
of 1.62 billion buildings. OpenStreetMap (OSM) provides
0.49 billion buildings, showing more complete coverage in
Europe and North America, but relatively sparse representa-
tion in Africa and South America. Microsoft’s building foot-
prints account for 0.43 billion buildings across multiple con-
tinents, and serve as a key supplement to OSM in Europe.
CLSM (Shi et al., 2024) and our own generated building
polygons primarily address the gaps in Asia, contributing
0.07 and 0.14 billion buildings, respectively.

Figure C1. Contribution of various building polygon sources by continent in the quality-guided polygon fusion process. The number of
buildings and total building area are attributed to each source. “PSR-derived (ours)” refers to the building footprint polygons generated from
PSR as described in Sect. 4.3.

Figure C2. Examples of fused building polygons derived from multiple footprint sources. “PSR-derived (ours)” refers to the building
footprint polygons generated from PSR as described in Sect. 4.3. OSM data come from © OpenStreetMap and are distributed under the Open
Data Commons Open Database License (ODbL) v1.0. Satellite images © Google Maps.

When comparing building area contributions, the propor-
tion from Open Buildings decreases across continents, sug-
gesting that its average building size is smaller. In contrast,
our generated building polygons contribute more area rel-
ative to their building count, likely due to their derivation
from lower-resolution satellite imagery, which can lead to the
merging of adjacent buildings into single polygon instances.
Despite this limitation, our building polygons significantly
complement existing datasets, enabling a more complete and
globally consistent coverage of building footprints.

Figure C2 presents example polygons generated through
the quality-guided polygon fusion process described in
Sect. 4.5.1. By integrating additional building footprint
datasets, the fusion process substantially enhances the overall
completeness and coverage of the final building polygons.
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