Articles | Volume 17, issue 11
https://doi.org/10.5194/essd-17-6601-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-6601-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
National-scale sub-meter mapping of Spartina alterniflora in mainland China 2020
Bingfeng Zhou
Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing, 100048, China
Meng Xu
Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing, 100048, China
Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing, 100048, China
Key Laboratory of 3D Information Acquisition and Application, Ministry of Education, Capital Normal University, Beijing, 100048, China
Jing-Jin-Ji Geospatial Data Center, Capital Normal University, Beijing, 100048, China
Mingming Jia
Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
Dehua Mao
Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
Kai Cheng
Institute of Remote Sensing and Geographic Information System, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
Xiumin Zhu
Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing, 100048, China
Haoyue Jiang
Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing, 100048, China
Jie Song
Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing, 100048, China
Yinghai Ke
Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing, 100048, China
Zhenxin Zhang
Key Laboratory of 3D Information Acquisition and Application, Ministry of Education, Capital Normal University, Beijing, 100048, China
Yue Huang
Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing, 100048, China
Miaojing Wei
Graduate School of Architecture, Planning and Preservation, Columbia University, New York, 10027, USA
Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing, 100048, China
Xiaojuan Li
Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing, 100048, China
Key Laboratory of 3D Information Acquisition and Application, Ministry of Education, Capital Normal University, Beijing, 100048, China
Huili Gong
Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing, 100048, China
Key Laboratory of 3D Information Acquisition and Application, Ministry of Education, Capital Normal University, Beijing, 100048, China
Related authors
No articles found.
Yuling Chen, Haitao Yang, Zekun Yang, Qiuli Yang, Weiyan Liu, Guoran Huang, Yu Ren, Kai Cheng, Tianyu Xiang, Mengxi Chen, Danyang Lin, Zhiyong Qi, Jiachen Xu, Yixuan Zhang, Guangcai Xu, and Qinghua Guo
Earth Syst. Sci. Data, 16, 5267–5285, https://doi.org/10.5194/essd-16-5267-2024, https://doi.org/10.5194/essd-16-5267-2024, 2024
Short summary
Short summary
The national-scale continuous maps of arithmetic mean height and weighted mean height across China address the challenges of accurately estimating forest stand mean height using a tree-based approach. These maps produced in this study provide critical datasets for forest sustainable management in China, including climate change mitigation (e.g., terrestrial carbon estimation), forest ecosystem assessment, and forest inventory practices.
Wei Li, Cankun Yang, Xiaojuan Li, Lianwang Yin, and Meizhi Cheng
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-4-2024, 203–210, https://doi.org/10.5194/isprs-annals-X-4-2024-203-2024, https://doi.org/10.5194/isprs-annals-X-4-2024-203-2024, 2024
Zhihua Xu, Yunhao Lin, and Zhenxin Zhang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-2024, 777–785, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-777-2024, https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-777-2024, 2024
Kai Cheng, Yuling Chen, Tianyu Xiang, Haitao Yang, Weiyan Liu, Yu Ren, Hongcan Guan, Tianyu Hu, Qin Ma, and Qinghua Guo
Earth Syst. Sci. Data, 16, 803–819, https://doi.org/10.5194/essd-16-803-2024, https://doi.org/10.5194/essd-16-803-2024, 2024
Short summary
Short summary
To quantify forest carbon stock and its future potential accurately, we generated a 30 m resolution forest age map for China in 2020 using multisource remote sensing datasets based on machine learning and time series analysis approaches. Validation with independent field samples indicated that the mapped forest age had an R2 of 0.51--0.63. Nationally, the average forest age is 56.1 years (standard deviation of 32.7 years).
S. Xu and Z. Zhang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 195–201, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-195-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-195-2023, 2023
Yanping Li, Tao Wang, Xiwei Wang, and Xiaojuan Li
Abstr. Int. Cartogr. Assoc., 3, 179, https://doi.org/10.5194/ica-abs-3-179-2021, https://doi.org/10.5194/ica-abs-3-179-2021, 2021
Huijun Li, Lin Zhu, Gaoxuan Guo, Yan Zhang, Zhenxue Dai, Xiaojuan Li, Linzhen Chang, and Pietro Teatini
Nat. Hazards Earth Syst. Sci., 21, 823–835, https://doi.org/10.5194/nhess-21-823-2021, https://doi.org/10.5194/nhess-21-823-2021, 2021
Short summary
Short summary
We propose a method that integrates fuzzy set theory and a weighted Bayesian model to evaluate the hazard probability of land subsidence based on Interferometric Synthetic Aperture Radar technology. The proposed model can represent the uncertainty and ambiguity in the evaluation process, and results can be compared to traditional qualitative methods.
Cited articles
Ai, J., Gao, W., Gao, Z., Shi, R., and Zhang, C.: Phenology-based Spartina alterniflora mapping in coastal wetland of the Yangtze Estuary using time series of GaoFen satellite no. 1 wide field of view imagery, J. Appl. Remote Sens., 11, 026020–026020, https://doi.org/10.1117/1.JRS.11.026020, 2017.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Chandrasekar, K., Sesha Sai, M., Roy, P., and Dwevedi, R.: Land Surface Water Index (LSWI) response to rainfall and NDVI using the MODIS Vegetation Index product, Int. J. Remote Sens., 31, 3987–4005, https://doi.org/10.1080/01431160802575653, 2010.
Chen, M., Ke, Y., Bai, J., Li, P., Lyu, M., Gong, Z., and Zhou, D.: Monitoring early stage invasion of exotic Spartina alterniflora using deep-learning super-resolution techniques based on multisource high-resolution satellite imagery: A case study in the Yellow River Delta, China, Int. J. Appl. Earth Obs. Geoinf., 92, 102180, https://doi.org/10.1016/j.jag.2020.102180, 2020.
Chen, W. and Shi, C.: Fine-scale mapping of Spartina alterniflora-invaded mangrove forests with multi-temporal WorldView-Sentinel-2 data fusion, Remote Sens. Environ., 295, 113690, https://doi.org/10.1016/j.rse.2023.113690, 2023.
Chen, W., Tian, J., Song, J., Li, X., Ke, Y., Zhu, L., Yu, Y., Ou, Y., and Gong, H.: A noval super-resolution model for 10-m mangrove mapping with landsat-5, IEEE Trans. Geosci. Remote Sens., https://doi.org/10.1109/TGRS.2024.3407363, 2024.
Chen, Y. and Kirwan, M. L.: A phenology-and trend-based approach for accurate mapping of sea-level driven coastal forest retreat, Remote Sens. Environ., 281, 113229, https://doi.org/10.1016/j.rse.2022.113229, 2022.
Chen, Y., Tian, J., Song, J., Chen, W., Zhou, B., Qu, X., and Zhang, L.: Developing a new index with time series Sentinel-2 for accurate tidal flats mapping in China, Sci. Total Environ., 958, 178037, https://doi.org/10.1016/j.scitotenv.2024.178037, 2025.
Dong, D., Huang, H., and Gao, Q.: Tracking the Dynamics of Spartina alterniflora with WorldView-2/3 and Sentinel-1/2 Imagery in Zhangjiang Estuary, China, Water, 16, 1780, https://doi.org/10.3390/w16131780, 2024.
Drăguţ, L., Tiede, D., and Levick, S. R.: ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data, Int. J. Geogr. Inf. Sci., 24, 859–871, https://doi.org/10.1080/13658810903174803, 2010.
Dronova, I.: Object-based image analysis in wetland research: A review, Remote Sens., 7, 6380–6413, https://doi.org/10.3390/rs70506380, 2015.
Du, M. and Noguchi, N.: Monitoring of wheat growth status and mapping of wheat yield's within-field spatial variations using color images acquired from UAV-camera system, Remote Sens., 9, 289, https://doi.org/10.3390/rs9030289, 2017.
Frohn, R., Autrey, B., Lane, C., and Reif, M.: Segmentation and object-oriented classification of wetlands in a karst Florida landscape using multi-season Landsat-7 ETM+ imagery, Int. J. Remote Sens., 32, 1471–1489, https://doi.org/10.1080/01431160903559762, 2011.
Gao, B.-C.: NDWI – A normalized difference water index for remote sensing of vegetation liquid water from space, Remote Sens. Environ., 58, 257–266, https://doi.org/10.1016/S0034-4257(96)00067-3, 1996.
Gitelson, A. A., Kaufman, Y. J., Stark, R., and Rundquist, D.: Novel algorithms for remote estimation of vegetation fraction, Remote Sens. Environ., 80, 76–87, https://doi.org/10.1016/S0034-4257(01)00289-9, 2002.
Hao, S., Cui, Y., and Wang, J.: Segmentation scale effect analysis in the object-oriented method of high-spatial-resolution image classification, Sensors, 21, 7935, https://doi.org/10.3390/s21237935, 2021.
Haralick, R. M., Shanmugam, K., and Dinstein, I. H.: Textural features for image classification, IEEE T. Syst. Man Cybernet., 610–621, https://doi.org/10.1109/TSMC.1973.4309314, 2007.
Hu, Y., Tian, B., Yuan, L., Li, X., Huang, Y., Shi, R., Jiang, X., and Sun, C.: Mapping coastal salt marshes in China using time series of Sentinel-1 SAR, ISPRS J. Photogramm. Remote Sens., 173, 122–134, https://doi.org/10.1016/j.isprsjprs.2021.01.003, 2021.
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L. G.: Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sens. Environ., 83, 195–213, https://doi.org/10.1016/S0034-4257(02)00096-2, 2002.
Jackson, M. V., Fuller, R. A., Gan, X., Li, J., Mao, D., Melville, D. S., Murray, N. J., Wang, Z., and Choi, C.-Y.: Dual threat of tidal flat loss and invasive Spartina alterniflora endanger important shorebird habitat in coastal mainland China, J. Environ. Manage., 278, 111549, https://doi.org/10.1016/j.jenvman.2020.111549, 2021.
Kearney, W. S. and Fagherazzi, S.: Salt marsh vegetation promotes efficient tidal channel networks, Nat. Commun., 7, 12287, https://doi.org/10.1038/ncomms12287, 2016.
Li, B., Liao, C.-H., Zhang, X.-D., Chen, H.-l., Wang, Q., Chen, Z.-Y., Gan, X.-J., Wu, J.-H., Zhao, B., Ma, Z.-J., Cheng, X.-l., Jiang, L.-F., and Chen, J.-K.: Spartina alterniflora invasions in the Yangtze River estuary, China: an overview of current status and ecosystem effects, Ecol. Eng., 35, 511–520, https://doi.org/10.1016/j.ecoleng.2008.05.013, 2009.
Li, H., Han, Y., and Chen, J.: Combination of Google Earth imagery and Sentinel-2 data for mangrove species mapping, J. Appl. Remote Sens., 14, 010501, https://doi.org/10.1117/1.JRS.14.010501, 2020.
Li, H., Mao, D., Wang, Z., Huang, X., Li, L., and Jia, M.: Invasion of Spartina alterniflora in the coastal zone of mainland China: Control achievements from 2015 to 2020 towards the Sustainable Development Goals, J. Environ. Manage., 323, 116242, https://doi.org/10.1016/j.jenvman.2022.116242, 2022a.
Li, L., Liu, W., Tao, Y., Xu, X., Fu, W., and Dong, J.: Diffusion dynamics and driving forces of Spartina alterniflora in the Guangxi Shankou Mangrove Reserve, Acta Ecol. Sin., 41, 6814–6824, https://doi.org/10.5846/stxb202101260275, 2021.
Li, X., Tian, J., Li, X., Wang, L., Gong, H., Shi, C., Nie, S., Zhu, L., Chen, B., and Pan, Y.: Developing a sub-meter phenological spectral feature for mapping poplars and willows in urban environment, ISPRS J. Photogramm. Remote Sens., 193, 77–89, https://doi.org/10.1016/j.isprsjprs.2022.09.002, 2022b.
Li, X., Tian, J., Li, X., Yu, Y., Ou, Y., Zhu, L., Zhu, X., Zhou, B., and Gong, H.: Annual mapping of Spartina alterniflora with deep learning and spectral-phenological features from 2017 to 2021 in the mainland of China, Int. J. Remote Sens., 45, 3172–3199, https://doi.org/10.1080/01431161.2024.2343136, 2024.
Liu, C., Jiang, H., Zhang, S., Li, C., Pan, X., Lu, J., and Hou, Y.: Expansion and management implications of invasive alien Spartina alterniflora in Yancheng salt marshes, China, Open J. Ecol., 6, 113–128, https://doi.org/10.4236/oje.2016.63012, 2016.
Liu, M., Li, H., Li, L., Man, W., Jia, M., Wang, Z., and Lu, C.: Monitoring the invasion of Spartina alterniflora using multi-source high-resolution imagery in the Zhangjiang Estuary, China, Remote Sens., 9, 539, https://doi.org/10.3390/rs9060539, 2017a.
Liu, M., Mao, D., Wang, Z., Li, L., Man, W., Jia, M., Ren, C., and Zhang, Y.: Rapid invasion of Spartina alterniflora in the coastal zone of mainland China: new observations from Landsat OLI images, Remote Sens., 10, 1933, https://doi.org/10.3390/rs10121933, 2018.
Liu, W., Chen, X., Strong, D. R., Pennings, S. C., Kirwan, M. L., Chen, X., and Zhang, Y.: Climate and geographic adaptation drive latitudinal clines in biomass of a widespread saltmarsh plant in its native and introduced ranges, Limnol. Oceanogr., 65, 1399–1409, https://doi.org/10.1002/lno.11395, 2020.
Liu, X., Liu, H., Gong, H., Lin, Z., and Lv, S.: Appling the one-class classification method of maxent to detect an invasive plant Spartina alterniflora with time-series analysis, Remote Sens., 9, 1120, https://doi.org/10.3390/rs9111120, 2017b.
Lourenço, P., Teodoro, A. C., Gonçalves, J. A., Honrado, J. P., Cunha, M., and Sillero, N.: Assessing the performance of different OBIA software approaches for mapping invasive alien plants along roads with remote sensing data, Int. J. Appl. Earth Obs. Geoinf., 95, 102263, https://doi.org/10.1016/j.jag.2020.102263, 2021.
Lv, J., Jiang, W., Wang, W., Wu, Z., Liu, Y., Wang, X., and Li, Z.: Wetland loss identification and evaluation based on landscape and remote sensing indices in Xiong'an new area, Remote Sens., 11, 2834, https://doi.org/10.3390/rs11232834, 2019.
Mancino, G., Ferrara, A., Padula, A., and Nolè, A.: Cross-comparison between Landsat 8 (OLI) and Landsat 7 (ETM+) derived vegetation indices in a Mediterranean environment, Remote Sens., 12, 291, https://doi.org/10.3390/rs12020291, 2020.
Mao, D., Liu, M., Wang, Z., Li, L., Man, W., Jia, M., and Zhang, Y.: Rapid invasion of Spartina alterniflora in the coastal zone of mainland China: Spatiotemporal patterns and human prevention, Sensors, 19, 2308, https://doi.org/10.3390/s19102308, 2019.
McNemar, Q.: Note on the sampling error of the difference between correlated proportions or percentages, Psychometrika, 12, 153–157, https://doi.org/10.1007/BF02295996, 1947.
Meng, W., Feagin, R. A., Innocenti, R. A., Hu, B., He, M., and Li, H.: Invasion and ecological effects of exotic smooth cordgrass Spartina alterniflora in China, Ecol. Eng., 143, 105670, https://doi.org/10.1016/j.ecoleng.2019.105670, 2020.
Merzlyak, M. N., Gitelson, A. A., Chivkunova, O. B., and Rakitin, V. Y.: Non-optical detection of pigment changes during leaf senescence and fruit ripening, Physiol. Plant., 106, 135–141, https://doi.org/10.1034/j.1399-3054.1999.106119.x, 1999.
Ni, R., Tian, J., Li, X., Yin, D., Li, J., Gong, H., Zhang, J., Zhu, L., and Wu, D.: An enhanced pixel-based phenological feature for accurate paddy rice mapping with Sentinel-2 imagery in Google Earth Engine, ISPRS J. Photogramm. Remote Sens., 178, 282–296, https://doi.org/10.1016/j.isprsjprs.2021.06.018, 2021.
Okoye, O. K., Li, H., and Gong, Z.: Retraction of invasive Spartina alterniflora and its effect on the habitat loss of endangered migratory bird species and their decline in YNNR using remote sensing technology, Ecol. Evol., 10, 13810–13824, https://doi.org/10.1002/ece3.6971, 2020.
Ouyang, Z.-T., Gao, Y., Xie, X., Guo, H.-Q., Zhang, T.-T., and Zhao, B.: Spectral discrimination of the invasive plant Spartina alterniflora at multiple phenological stages in a saltmarsh wetland, PLoS One, 8, e67315, https://doi.org/10.1371/journal.pone.0067315, 2013.
Rouse, J., Haas, R., Schell, J., and Deering, D.: Monitoring vegetation systems in the Great Plains with ERTS. 1974, in: Proceeding Of Erts-Symposium, https://ntrs.nasa.gov/citations/19740022614 (last access: 25 November 2025), 1974.
Sanderson, E. W., Ustin, S. L., and Foin, T. C.: The influence of tidal channels on the distribution of salt marsh plant species in Petaluma Marsh, CA, USA, Plant Ecol., 146, 29–41, https://doi.org/10.1023/A:1009882110988, 2000.
Savitzky, A. and Golay, M. J.: Smoothing and differentiation of data by simplified least squares procedures, Anal. Chem., 36, 1627–1639, https://doi.org/10.1021/ac60214a047, 1964.
Sun, C., Liu, Y., Zhao, S., Zhou, M., Yang, Y., and Li, F.: Classification mapping and species identification of salt marshes based on a short-time interval NDVI time-series from HJ-1 optical imagery, Int. J. Appl. Earth Obs. Geoinf., 45, 27–41, https://doi.org/10.1016/j.jag.2015.10.008, 2016.
Sun, C., Li, J., Liu, Y., Liu, Y., and Liu, R.: Plant species classification in salt marshes using phenological parameters derived from Sentinel-2 pixel-differential time-series, Remote Sens. Environ., 256, 112320, https://doi.org/10.1016/j.rse.2021.112320, 2021.
Sun, L., Shao, D., Xie, T., Gao, W., Ma, X., Ning, Z., and Cui, B.: How does spartina alterniflora invade in salt marsh in relation to Tidal Channel networks? Patterns and processes, Remote Sens., 12, 2983, https://doi.org/10.3390/rs12182983, 2020.
Tian, J., Wang, L., Yin, D., Li, X., Diao, C., Gong, H., Shi, C., Menenti, M., Ge, Y., Nie, S., Ou, Y., Song, X., and Liu, X.: Development of spectral-phenological features for deep learning to understand Spartina alterniflora invasion, Remote Sens. Environ., 242, 111745, https://doi.org/10.1016/j.rse.2020.111745, 2020a.
Tian, J., Wang, L., Diao, C., Zhang, Y., Jia, M., Zhu, L., Xu, M., Li, X., and Gong, H.: National scale sub-meter mangrove mapping using an augmented border training sample method, ISPRS J. Photogramm. Remote Sens., 220, 156–171, https://doi.org/10.1016/j.isprsjprs.2024.12.009, 2025.
Tian, Y., Jia, M., Wang, Z., Mao, D., Du, B., and Wang, C.: Monitoring invasion process of Spartina alterniflora by seasonal Sentinel-2 imagery and an object-based random forest classification, Remote Sens., 12, 1383, https://doi.org/10.3390/rs12091383, 2020b.
Wan, H., Wang, Q., Jiang, D., Fu, J., Yang, Y., and Liu, X.: Monitoring the invasion of Spartina alterniflora using very high resolution unmanned aerial vehicle imagery in Beihai, Guangxi (China), Scient. World J., 2014, 638296, https://doi.org/10.1155/2014/638296, 2014.
Wang, A., Chen, J., Jing, C., Ye, G., Wu, J., Huang, Z., and Zhou, C.: Monitoring the invasion of Spartina alterniflora from 1993 to 2014 with Landsat TM and SPOT 6 satellite data in Yueqing Bay, China, PLoS One, 10, e0135538, https://doi.org/10.1371/journal.pone.0135538, 2015a.
Wang, T., Zhang, H., Lin, H., and Fang, C.: Textural–spectral feature-based species classification of mangroves in Mai Po Nature Reserve from Worldview-3 imagery, Remote Sens., 8, 24, https://doi.org/10.3390/rs8010024, 2015b.
Wang, X., Xiao, X., Zou, Z., Hou, L., Qin, Y., Dong, J., Doughty, R. B., Chen, B., Zhang, X., Chen, Y., Ma, J., Zhao, B., and Li, B.: Mapping coastal wetlands of China using time series Landsat images in 2018 and Google Earth Engine, ISPRS J. Photogramm. Remote Sens., 163, 312–326, https://doi.org/10.1016/j.isprsjprs.2020.03.014, 2020.
Wang, X., Wang, L., Tian, J., and Shi, C.: Object-based spectral-phenological features for mapping invasive Spartina alterniflora, Int. J. Appl. Earth Obs. Geoinf., 101, 102349, https://doi.org/10.1016/j.jag.2021.102349, 2021.
Windle, A. E., Staver, L. W., Elmore, A. J., Scherer, S., Keller, S., Malmgren, B., and Silsbe, G. M.: Multi-temporal high-resolution marsh vegetation mapping using unoccupied aircraft system remote sensing and machine learning, Front. Remote Sens., 4, 1140999, https://doi.org/10.3389/frsen.2023.1140999, 2023.
Wu, Y., Xiao, X., Chen, B., Ma, J., Wang, X., Zhang, Y., Zhao, B., and Li, B.: Tracking the phenology and expansion of Spartina alterniflora coastal wetland by time series MODIS and Landsat images, Multimed. Tools Appl., 79, 5175–5195, https://doi.org/10.1007/s11042-018-6314-9, 2020.
Xia, S., Wang, W., Song, Z., Kuzyakov, Y., Guo, L., Van Zwieten, L., Li, Q., Hartley, I. P., Yang, Y., Wang, Y., Quine, T. A., Liu, C., and Wang, H.: Spartina alterniflora invasion controls organic carbon stocks in coastal marsh and mangrove soils across tropics and subtropics, Global Change Biol., 27, 1627–1644, https://doi.org/10.1111/gcb.15516, 2021.
Xu, M., Tian, J., and Zhou, B.: National-Scale Sub-meter Mapping of Spartina alterniflora in Mainland China 2020, Zenodo [data set], https://doi.org/10.5281/zenodo.16296823, 2025.
Xu, X., Wei, S., Chen, H., Li, B., and Nie, M.: Effects of Spartina invasion on the soil organic carbon content in salt marsh and mangrove ecosystems in China, J. Appl. Ecol., 59, 1937–1946, https://doi.org/10.1111/1365-2664.14202, 2022.
Yan, D., Li, J., Yao, X., and Luan, Z.: Quantifying the long-term expansion and dieback of Spartina alterniflora using google earth engine and object-based hierarchical random forest classification, IEEE J. Select. Top. Appl. Earth Obs. Remote Sens., 14, 9781–9793, https://doi.org/10.1109/JSTARS.2021.3114116, 2021.
Zeng, J., Sun, Y., Cao, P., and Wang, H.: A phenology-based vegetation index classification (PVC) algorithm for coastal salt marshes using Landsat 8 images, Int. J. Appl. Earth Obs. Geoinf., 110, 102776, https://doi.org/10.1016/j.jag.2022.102776, 2022.
Zhang, D., Hu, Y., Liu, M., Chang, Y., Yan, X., Bu, R., Zhao, D., and Li, Z.: Introduction and spread of an exotic plant, Spartina alterniflora, along coastal marshes of China, Wetlands, 37, 1181–1193, https://doi.org/10.1007/s13157-017-0950-0, 2017.
Zhang, J., Mao, D., Liu, J., Chen, Y., Kirwan, M., Sanders, C., Zhou, J., Lu, Z., Qin, G., Huang, X., Li, H., Yan, H., Jiao, N., Su, J., and Wang, F.: Spartina alterniflora invasion benefits blue carbon sequestration in China, Sci. Bull., 69, 1991–2000, https://doi.org/10.1016/j.scib.2024.04.049, 2024.
Zhang, X., Xiao, X., Wang, X., Xu, X., Chen, B., Wang, J., Ma, J., Zhao, B., and Li, B.: Quantifying expansion and removal of Spartina alterniflora on Chongming island, China, using time series Landsat images during 1995–2018, Remote Sens. Environ., 247, 111916, https://doi.org/10.1016/j.rse.2020.111916, 2020.
Zhang, X., Xiao, X., Qiu, S., Xu, X., Wang, X., Chang, Q., Wu, J., and Li, B.: Quantifying latitudinal variation in land surface phenology of Spartina alterniflora saltmarshes across coastal wetlands in China by Landsat 7/8 and Sentinel-2 images, Remote Sens. Environ., 269, 112810, https://doi.org/10.1016/j.rse.2021.112810, 2022.
Zhang, X., Liu, L., Zhao, T., Chen, X., Lin, S., Wang, J., Mi, J., and Liu, W.: GWL_FCS30: a global 30 m wetland map with a fine classification system using multi-sourced and time-series remote sensing imagery in 2020, Earth Syst. Sci. Data, 15, 265–293, https://doi.org/10.5194/essd-15-265-2023, 2023a.
Zhang, X., Xiao, X., Wang, X., Xu, X., Qiu, S., Pan, L., Ma, J., Ju, R., Wu, J., and Li, B.: Continual expansion of Spartina alterniflora in the temperate and subtropical coastal zones of China during 1985–2020, Int. J. Appl. Earth Obs. Geoinf., 117, 103192, https://doi.org/10.1016/j.jag.2023.103192, 2023b.
Zhao, C., Jia, M., Wang, Z., Mao, D., and Wang, Y.: Toward a better understanding of coastal salt marsh mapping: A case from China using dual-temporal images, Remote Sens. Environ., 295, 113664, https://doi.org/10.1016/j.rse.2023.113664, 2023.
Zhao, Z., Yuan, L., Li, W., Tian, B., and Zhang, L.: Re-invasion of Spartina alterniflora in restored saltmarshes: Seed arrival, retention, germination, and establishment, J. Environ. Manage., 266, 110631, https://doi.org/10.1016/j.jenvman.2020.110631, 2020.
Zheng, J., Wei, H., Chen, R., Liu, J., Wang, L., and Gu, W.: Invasive trends of Spartina Alterniflora in the southeastern Coast of China and potential distributional impacts on mangrove forests, Plants, 12, 1923, https://doi.org/10.3390/plants12101923, 2023b.
Zheng, J.-Y., Hao, Y.-Y., Wang, Y.-C., Zhou, S.-Q., Wu, W.-B., Yuan, Q., Gao, Y., Guo, H.-Q., Cai, X.-X., and Zhao, B.: Coastal wetland vegetation classification using pixel-based, object-based and deep learning methods based on RGB-UAV, Land, 11, 2039, https://doi.org/10.3390/land11112039, 2022.
Zheng, X., Javed, Z., Liu, B., Zhong, S., Cheng, Z., Rehman, A., Du, D., and Li, J.: Impact of Spartina alterniflora invasion in coastal wetlands of China: boon or bane?, Biology, 12, 1057, https://doi.org/10.3390/biology12081057, 2023a.
Zhou, B., Xu, M., Tian, J., Huang, Y., Song, J., Zhu, L., Zhu, X., Qu, X., Zhang, L., Li, X., and Gong, H.: Mapping the invasive Spartina alterniflora in sub-meter level with improved phenological spectral features and deep learning method, Int. J. Digit. Earth, 17, 2434634, https://doi.org/10.1080/17538947.2024.2434634, 2024.
Zuo, P., Zhao, S., Liu, C. a., Wang, C., and Liang, Y.: Distribution of Spartina spp. along China's coast, Ecol. Eng., 40, 160–166, https://doi.org/10.1016/j.ecoleng.2011.12.014, 2012.
Zuo, Y., Yang, G., Sun, W., Huang, K., Yang, S., Chen, B., Wang, L., Meng, X., Wang, Y., Li, J., and Zhan, Y.: SAI: A Spartina alterniflora index based on Sentinel-2 multispectral imagery for Spartina alterniflora mapping, J. Remote Sens., https://doi.org/10.34133/remotesensing.0510, 2025.
Short summary
This study produced the first sub-meter map of Spartina alterniflora in mainland China for 2020. Compared to the 10 m product, the sub-meter map achieved a 14.60% increase in overall accuracy, revealed a 57.73% discrepancy in spatial distribution, and detected 17 times more individual patches. The improved sensitivity to small patches significantly enhances early detection of Spartina alterniflora invasion. This finer mapping further refines soil carbon estimates and informs wetland management.
This study produced the first sub-meter map of Spartina alterniflora in mainland China for 2020....
Altmetrics
Final-revised paper
Preprint