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Abstract. Current large-scale maps of Spartina alterniflora (S. alterniflora) with 10 m resolution hinder accu-
rate delineation of community boundaries, detection of internal features such as creeks, and identification of
small patches. These limitations further compromise the accuracy of spatial distribution extraction and subse-
quent analyzes. To this end, this study produced the first 2020 national-scale Sub-meter (0.9 m) S. alterniflora
Map of Mainland China (CM-SSM), using an object- and sub-meter-enhanced pixel-based phenological fea-
ture composite method. The method integrates phenological features from Sentinel-2 with spatial and texture
details from Google Earth imagery, improving the spectral separability and mitigating mixed-pixel effects. Com-
pared to the 10m S. alterniflora product of Mainland China (CMSA), CM-SSM improved overall accuracy
by 14.60 % and the F; score by 0.24. Although the total mapped areas of CM-SSM (59371 ha) and CMSA
(58006 ha) differ by only 1365 ha, their spatial distributions diverge substantially. When benchmarked against
CM-SSM, CMSA exhibited commission and omission errors totaling 34 273 ha (57.73 %). Moreover, the number
of patches identified by CM-SSM (148 072) was over 17 times greater than that of CMSA, reflecting its superior
capability in detecting fragmented distributions. In addition, Soil Organic Carbon (SOC) estimates derived from
CM-SSM were 706.69 Gg (23.09 %) higher than those reported by the corresponding national SOC product for
the same year, emphasizing the essential contribution of high-resolution mapping to accurate carbon accounting
for S. alterniflora. These advances enhance understanding of S. alterniflora invasion dynamics, support carbon
accounting, and inform evidence-based coastal wetland management and restoration. The map is available at
https://doi.org/10.5281/zenodo.16296823 (Xu et al., 2025).
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1 Introduction

Spartina alterniflora (S. alterniflora), native to the Atlantic
coast of North America and widely recognized as a clas-
sic “ecosystem engineer”’, was intentionally introduced into
China in 1979 to enhance embankment stability and miti-
gate coastal erosion (Jackson et al., 2021; Liu et al., 2020).
Due to its lack of natural predators and high reproductive
capacity, S. alterniflora has rapidly expanded along China’s
coast over the past four decades, reaching a total extent of
more than 50 000 ha (Meng et al., 2020). This rapid spread
has posed serious threats to coastal ecosystems, including
the displacement of native species, degradation of nearshore
habitats, and measurable declines in biodiversity (Li et al.,
2009; Okoye et al., 2020). In response, a range of control
strategies, including physical removal, chemical control, and
biological replacement, were employed to manage the inva-
sion of S. alterniflora in China (Zheng et al., 2023a). How-
ever, the effectiveness of these measures varied significantly
across regions, and the risk of reinvasion remained high (Li et
al., 2022a; Zhao et al., 2020). Given the rapid natural spread
of S. alterniflora and the continued influence of human ac-
tivities on its spatial distribution, there is an urgent need for
accurate, large-scale monitoring to delineate its distribution
patterns and assess the effectiveness of removal effort.
Remote sensing has been widely used for mapping S.
alterniflora due to its capability for large-area coverage
and long-term, repeatable monitoring (Chen et al., 2020;
Lourenco et al., 2021; Lv et al., 2019). Existing mapping
products can be divided into two categories based on spatial
resolution. The first category includes products derived from
High Resolution (HR) imagery (10-30 m), such as Land-
sat and Sentinel series data (Zuo et al., 2012, 2025). Liu
et al. (2018) produced the S. alterniflora map along main-
land China’s coast in 2015 at 30 m using Landsat 8. Subse-
quently, Hu et al. (2021) generated a 2019 coastal saltmarsh
map (including S. alterniflora) using Sentinel-1, with an im-
proved spatial resolution from 30 to 10 m. To analyze expan-
sion dynamics of S. alterniflora, Zhang et al. (2017) mapped
a sparse multi-temporal dataset spanning 1990 to 2014 us-
ing Landsat time-series imagery. Similarly, Mao et al. (2019)
produced S. alterniflora maps at 5- or 10-year intervals from
1990 to 2015. The mapping intervals in previous studies were
typically greater than 5 years, making it difficult to cap-
ture the ongoing spread of S. alterniflora. Therefore, Li et
al. (2024) generated annual distribution maps of S. alterni-
flora between 2017 and 2021 using Sentinel-2 imagery, en-
abling precise monitoring of interannual changes.
Nevertheless, relying solely on HR imagery (10-30m)
presents three key challenges due to inherent spatial lim-
itations. First, existing products often fail to detect small
patches of S. alterniflora, which are ecologically important
and may function as early indicators of invasion risk (Chen
et al., 2020). Second, boundaries between S. alterniflora and
co-occurring species remain poorly defined, limiting accu-
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rate delineation of its spatial extent. For instance, in man-
grove areas, boundary misclassification hinders reliable as-
sessment of invasion risk (Zheng et al., 2023b). Third, in-
ternal features within S. alferniflora communities, such as
creeks and open spaces, are difficult to capture. Creeks, in
particular, influence hydrological processes and seed disper-
sal, thereby affecting the rate and extent of spread (Sun et
al., 2020). These issues obstruct the effective application of
existing products in precise monitoring and ecological man-
agement.

The second category includes products derived from Very
High Resolution (VHR) imagery (finer than 10 m), such as
UAV (Windle et al., 2023), WorldView (Dong et al., 2024),
Gaofen (Li et al., 2021), and SPOT imagery (Liu et al.,
2017a). Compared with HR data, these sources offer im-
proved spatial detail and effectively reduce classification er-
rors caused by mixed pixels. However, their high acquisition
cost and limited spatial coverage constrain their use in large-
scale applications. The Google Earth (GE) platform provides
free access to sub-meter imagery with rich spatial detail (Li et
al., 2022b), creating new opportunities for large-area, high-
precision monitoring of S. alterniflora. Nevertheless, the lack
of multispectral information in GE imagery restricts its util-
ity for spectral-based identification (Zhou et al., 2024).

Phenology-based methods, which exploit spectral varia-
tions during vegetation growth, are widely recognized for
their effectiveness in mapping S. alterniflora (Zeng et al.,
2022; Zhang et al., 2022). Initially, single-date imagery from
the growing period of S. alterniflora was used for classifica-
tion (Ouyang et al., 2013; Wang et al., 2015a). However, re-
lying solely on the growing period is insufficient for accurate
mapping because S. alterniflora shares similar spectral fea-
tures with other saltmarsh vegetation, especially evergreen
mangroves (Ai et al., 2017; Sun et al., 2021). To address this,
time-series imagery has been used to construct phenological
trajectories, enabling improved distinction through the inte-
gration of multiple growth phases (Sun et al., 2016; Liu et al.,
2017b). For example, Sun et al. (2016) constructed monthly
NDVI time-series from the Chinese HuanJing-1 satellite im-
agery to monitor salt marsh vegetation, including S. alterni-
flora. While this method shows strong potential, two ma-
jor challenges remain. Frequent cloud cover and tidal distur-
bances in coastal regions complicate the acquisition of high-
quality, high-temporal-resolution imagery. Moreover, S. al-
terniflora exhibits spatial phenological heterogeneity, where
communities in different regions may be at different pheno-
logical stages simultaneously, introducing spectral inconsis-
tencies that reduce classification stability and accuracy.

To address the limitations mentioned above, Tian et
al. (2020a) proposed a Pixel-based Phenological Fea-
ture (PPF) composite method. This method leverages the
computational capacity and extensive data resources of the
Google Earth Engine (GEE) platform to perform image com-
positing at the pixel level, aiming to overcome the difficulty
of acquiring high-quality imagery in intertidal zones. Instead
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of relying on entirely cloud-free scenes, the method inte-
grates all cloud-free pixels across multiple images, signifi-
cantly improving the utilization of available data and allevi-
ating the scarcity of usable imagery. Two key phenological
periods (green period and senescence period) were selected
based on their spectral distinctiveness. During the green pe-
riod, S. alterniflora is spectrally distinguishable from non-
vegetated surfaces such as mudflats and water; in the senes-
cence period, it is more separable from evergreen species
like mangroves. These periods provide complementary spec-
tral features, enhancing the separability of S. alterniflora
and capturing most of its relevant phenological information,
while minimizing interference from transitional periods. Fur-
thermore, to account for the phenological variability of S. al-
terniflora across different geographic locations, the method
constructs composite imagery by extracting the greenest pix-
els during the green period and the most senescent pixels dur-
ing the senescence period. This selection of extreme pheno-
logical states effectively reduces spatial heterogeneity in the
phenology of S. alterniflora. Subsequent studies have con-
firmed the value of the dual-temporal phenological feature
composite method. It has been shown to improve S. alterni-
flora classification accuracy (Zhang et al., 2020, 2023b) and
to perform well in broader coastal wetland mapping (Chen
and Kirwan, 2022; Zhao et al., 2023), demonstrating its ef-
fectiveness and reliability. However, these studies relied on
pixel-based classification methods, which consider only the
spectral value of individual pixels and ignore spatial relation-
ships with neighboring pixels, thus limiting classification ac-
curacy (Frohn et al., 2011). Independent pixel-wise classifi-
cation often results in isolated misclassified pixels, produc-
ing the salt-and-pepper effect (Dronova, 2015). In contrast,
object-based image analysis (OBIA) integrates shape, tex-
ture, and spatial context features and takes advantage of the
spectral consistency within image objects. This method has
shown promising potential for S. alterniflora identification
(Wang et al., 2021). Nevertheless, the application of OBIA
in large-scale, sub-meter S. alterniflora mapping using VHR
imagery remains underexplored.

This study aims to establish an object-based, large-scale
mapping approach by integrating multi-source remote sens-
ing imagery to produce the first sub-meter map of S. al-
terniflora across mainland China. Our objectives are three-
fold: (1) to develop a novel Object- and Sub-meter-enhanced
PPF (OSPPF), (2) to produce a 2020 Sub-meter S. alterni-
flora Map of Mainland China (CM-SSM), and (3) to eval-
uate the significant improvements of CM-SSM over the
latest 10 m resolution map of S. alterniflora. Overall, the
OSPPF effectively mitigates the mixed-pixel problem by in-
corporating sub-meter GE imagery. Additionally, by integrat-
ing OBIA, the proposed OSPPF approach leverages multi-
dimensional features such as texture, shape, and spatial con-
text, thereby overcoming the limitations of pixel-based clas-
sification that relies solely on spectral features. This integra-
tion enhances the classification accuracy of S. alterniflora.
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CM-SSM addresses issues in existing products, such as in-
accurate boundary depiction of S. alterniflora, poor identifi-
cation of internal details, and limited ability to detect small
patches. As a high-resolution and high-accuracy map, CM-
SSM provides a robust data foundation for management as-
sessment, blue carbon stock estimation, and coastal sustain-
able development.

2 Materials and methods

2.1 Study area

S. alterniflora is distributed across nine provinces in main-
land China (2041°N, 108-122°E), with coverage areas
ranked in descending order as follows: Shanghai, Jiangsu,
Zhejiang, Fujian, Shandong, Guangxi, Guangdong, Tianjin,
and Hebei. Common co-occurring species include Phrag-
mites australis, Suaeda salsa, Tamarix chinensis, and man-
groves.

To preliminarily delineate the potential distribution of
S. alterniflora, a 10km coastal buffer zone was generated
by extending seaward from the coastline dataset. Consider-
ing the regional differences in co-occurring species and phe-
nology, the coastal buffer was subdivided into five subre-
gions: the Southern Coastal Zone (SCZ), Yangtze River Es-
tuary Coastal Zone (YRECZ), Jiangsu Coastal Zone (JSCZ),
Yellow River Delta Coastal Zone (YRDCZ), and Northern
Coastal Zone (NCZ). Subsequently, two national-scale S. al-
terniflora products from 2020 (see Sect. 2.2.2) were col-
lected to extract their union, which was then expanded with
a 100 m buffer to cover potential edge areas. Omission er-
rors were manually corrected through visual interpretation
of VHR imagery. The red-highlighted area represented an
S. alterniflora patch. The study area was divided into five
subregions, each containing multiple S. alterniflora patches.
All Sentinel-2 and GE imagery were collected within these
subregions (Fig. 1).

2.2 Datasets
2.2.1 Remote sensing imagery

This study acquired approximately 6007 Sentinel-2 Surface
Reflectance (SR) images from the year 2020 through the
GEE platform. As S. alterniflora grows in intertidal zones
and is highly susceptible to cloud contamination and tidal
variation, both scene-based and pixel-based methods were
applied to ensure image quality (Chen et al., 2025). At the
scene level, images with more than 70 % cloud cover within
the study area were excluded based on metadata attributes
(Ni et al., 2021). At the pixel level, bitwise operations were
used to the Sentinel-2 Scene Classification Layer (SCL) to
mask cloud (SCL = 7-9), cirrus (SCL = 10), and cloud shad-
ows (SCL = 3). To further reduce tidal effects on classifica-
tion, water pixels (SCL =6) were also removed. Addition-
ally, 0.9 m GE imagery from 2020 with RGB bands was se-
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Figure 1. Location of the study site in the coastal zone of mainland China. The background imagery is provided by Esri (https://www.esri.
com, last access: 23 July 2025) and its data partners. The VHR imagery in the figure is from © Google Earth 2020.

lected under low-tide and cloud-free conditions. In regions
lacking high-quantity 2020 imagery, supplementary GE im-
agery from 2019 or 2021 was used.

2.2.2 Existing S. alterniflora products

Two S. alterniflora products covering coastal mainland China
in 2020 were collected for study area delineation and com-
parative analysis (Table 1). Mao et al. (2019) developed a
multi-temporal S. alterniflora dataset (1990-2015) and used
it to generate a 30 m resolution product in 2020 (hereafter re-
ferred to as SpProduct_30m). More recently, Li et al. (2024)
generated a 10 m resolution S. alterniflora map of mainland
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China for 2020 (CMSA) using Sentinel-2 imagery. Both Sp-
Product_30m and CMSA served as critical references for
delineating the study area (see Sect. 2.1). As the highest-
resolution national-scale S. alterniflora product for 2020,
CMSA was used as the benchmark. Specifically, we evalu-
ated the improvement in detection capability achieved by our
sub-meter product relative to the CMSA.

2.2.3 Reference data

The ecological complexity of intertidal zones where S. al-
terniflora grows poses challenges for large-scale field sam-
pling and limits the availability of sufficient reference data.

https://doi.org/10.5194/essd-17-6601-2025
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Table 1. Details of existing large-scale S. alterniflora products in 2020.

Product Dataset Resolution Extent References

SpProduct_30m Landsat-8 30m Mainland China  Mao et al. (2019)

CMSA Sentinel-2 10 m Mainland China  Li et al. (2024)
To address this issue, we constructed a high-quality sample Table 2. Sub-regional phenological windows.
dataset by integrating field surveys with multi-source VHR
imagery. First, field surveys were conducted in 2020 in typ- Sub-region  Dominant companion species Senescence  Green
ical S. alterniflora habitats, including the Beibu Gulf, Jiu- o o
long River Estuary, and Zhangjiang Estuary. Using differ- c " p 00290

. AN . . NCZ T. chinensis 1-1 —

entlgl GPS, we collec.ted 1396 ground validation .pomts, in- YRDCZ P australis, S. salsa, T. chinensis 175 500325
cluding 661 S. alterniflora and 735 non-S. alterniflora sam- ISCZ S. salsa, P. australis 1-125 190-325
ples. Subsequently, VHR imagery temporally aligned with YRECZ P. australis, S. mariqueter 1-105 205-315
the field survey was collected from UAVs, the Gaofen se- SCz Mangroves 1-140 160-300
ries, and GE. Based on this, experienced researchers visu-
ally interpreted and manually labeled 10570 S. alterniflora
and 20247 non-S. alterniflora points by overlaying field data ~ 2.3.1 Pixel-based phenological feature composite

with VHR imagery. The non-S. alterniflora class includes
co-occurring species (e.g., mangroves, Phragmites australis,
Suaeda salsa) and other land covers such as mudflats. All
sample points were evenly distributed across the five subre-
gions defined in Sect. 2.1. Finally, a stratified random sam-
pling method was used to divide S. alterniflora and non-S. al-
terniflora sample points within each subregion into training
and validation sets at a 7 : 3 ratio. In addition, the class ratio
of S. alterniflora to non-S. alterniflora (approximately 1 : 2)
was preserved during the splitting process. The sample points
from all subregions were then merged to form a complete
reference dataset. This method mitigated issues of spatial au-
tocorrelation and class imbalance (Wang et al., 2020). The
training set was used to select input features for the Random
Forest (RF) classifier (see Sect. 2.3.3), while the validation
set was employed to assess classification accuracy.

2.3 Development of an object- and
sub-meter-enhanced PPF

This study proposed an Object- and Sub-meter-enhanced
Pixel-based Phenological Feature (OSPPF) composite
method for mapping S. alterniflora, including four steps
(Fig. 2). First, a Pixel-based Phenological Feature (PPF) was
constructed using Sentinel-2 imagery (10 m). Second, spatial
and texture features extracted from GE imagery (0.9 m) were
integrated to enhance the PPF, resulting in the Sub-meter-
enhanced PPF (SPPF). Third, a multi-scale object-based seg-
mentation strategy was used to extract the OSPPF. Finally, a
RF classifier was applied to generate the initial result, which
was then manually refined to generate the final S. alterniflora
distribution map.

https://doi.org/10.5194/essd-17-6601-2025

method

Phenological features are critical for identifying S. alterni-
flora. Previous studies have shown that the green and senes-
cence periods are two key phenological phases that enhance
the spectral separability of S. alterniflora from background
land covers (Tian et al., 2020a). Accordingly, this study con-
structed annual NDVI time series curves based on Sentinel-2
imagery acquired between 1 January and 31 December 2020,
to determine the green and senescence periods for each sub-
region. Using JSCZ as an example, 175 pure S. alterni-
flora pixels were selected through visual interpretation of
GE imagery, ensuring an even spatial distribution. NDVI
values for these pixels were calculated from cloud-masked
Sentinel-2 imagery, extracting the median value for each Day
of Year (DoY) to construct the NDVI time series. To re-
duce noise caused by cloud cover and atmospheric effects,
the NDVI time series was smoothed using the Savitzky—
Golay (SG) filter (Savitzky and Golay, 1964). As shown
in Fig. 3, the NDVI time series of JSCZ exhibited a phe-
nological pattern consistent with that reported by Tian et
al. (2020a). To determine the two key phenological periods
of S. alterniflora in the JSCZ, the annual NDVI frequency
distribution histogram and its first derivative curve were gen-
erated based on 175 pure S. alterniflora pixels (Fig. S1 in
the Supplement). As shown in Fig. S1, the NDVI values ex-
hibited a marked decline around 0.3 and a sharp increase
around 0.5, corresponding to the transitions from the senes-
cence to the transitional period and from the transitional
to the green period, respectively. Therefore, NDVI values
below 0.3 during DoY 1-125 indicated the senescence pe-
riod, whereas values above 0.5 during DoY 190-325 corre-
sponded to the green period. Following this procedure, the
key phenological windows were identified for each subregion
(Table 2).
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Figure 3. NDVI time series analysis of the S. alterniflora in JSCZ.
Point density is represented using hexagonal binning, with color
intensity indicating the concentration of data points.

Based on the two identified phenological periods, the PPF
was constructed by integrating vegetation indices and origi-
nal spectral bands. Specifically, five indices were selected to
characterize the phenological periods (Table 3): Normalized
Difference Vegetation Index (NDVI), Enhanced Vegetation
Index (EVI), Plant Senescence Reflectance Index (PSRI),
Normalized Difference Water Index (NDWI), and Land Sur-
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/ Pixel-based Phenological Feature

face Water Index (LSWI). NDVI, EVI, and NDWI were used
during the green period, while PSRI and LSWI characterized
the senescence period. The selection rationale is as follows:
(1) NDVl is sensitive to green vegetation but tends to saturate
under dense canopies, whereas EVI remains responsive at
high biomass levels, making them complementary during the
green period (Ni et al., 2021). (2) NDWI captures reflectance
differences between vegetation and water in the green and
near-infrared bands, effectively distinguishing S. alterniflora
from water when canopy cover is high during the green pe-
riod (Mancino et al., 2020). (3) PSRI responds to changes
in carotenoid pigments associated with senescence, making
it suitable for detecting vegetation during the senescence pe-
riod (Tian et al., 2020a). (4) As LSWI is sensitive to leaf
water content, the progressive moisture loss in S. alterniflora
during senescence leads to decreased LSWI values, improv-
ing its separability from moist backgrounds such as mudflats
and water (Wu et al., 2020). Each index was derived from
Sentinel-2 imagery of its corresponding phenological period,
with median values of valid observations computed per pixel
to generate the composite images.

In addition, five original bands of Sentinel-2 were se-
lected for both phenological periods: B2 (blue), B3 (green),
B4 (red), B8 (NIR) and B11 (SWIR 1). B2, B3, and B4 cover
the visible spectrum and are useful for distinguishing S. al-

https://doi.org/10.5194/essd-17-6601-2025
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Table 3. Vegetation indices used in this study.
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Vegetation ~ Formula Reference

index

NDVI (NIR — Red)/(NIR + Red) Rouse et al. (1974)

EVI 2.5 x (NIR —Red)/(NIR+ 6 x Red — 7.5 x Blue+ 1)  Huete et al. (2002)

PSRI (Red — Blue)/NIR Merzlyak et al. (1999)
NDWI (Green — NIR)/(Green + NIR) Gao (1996)

LSWI (NIR — SWIR1)/(NIR + SWIR1) Chandrasekar et al. (2010)

Table 4. The RGB-based spectral indices used in this study.

Vegetation  Formula Reference
index
NGBDI (Green — Blue)/(Green + Blue)  Du and Noguchi (2017)

NGRDI (Green — Red)/(Green + Red) Gitelson et al. (2002)

terniflora from water and mudflats. B8 and B11 are sensitive
to vegetation structure and moisture content, effectively cap-
turing spectral transitions of S. alterniflora from the green
to senescence period. Finally, the vegetation indices and se-
lected spectral bands for both phenological periods (a total
of 15 bands) were integrated to construct the PPF composite
images.

2.3.2 Integration of fine-scale spatial information in PPF

To address the spatial resolution limitations of PPF, this study
introduced the SPPF composite method, incorporating fine-
scale spatial information from GE imagery through three
steps: GE feature extraction, spatial-scale normalization and
geometric registration, and image compositing.

First, spectral and texture features were extracted from
GE imagery. For spectral features, the Normalized Green-
Blue Difference Index (NGBDI) and the Normalized Green-
Red Difference Index (NGRDI), derived from the RGB
bands (Table 4), have proven effective for wetland vege-
tation classification (Zheng et al., 2022). Texture features
were computed from the red band using the Grey-Level Co-
Occurrence Matrix (GLCM) method (Haralick et al., 2007),
extracting four second-order statistics commonly used in
vegetation classification: contrast, entropy, correlation, and
homogeneity (Wang et al., 2015b). Sliding window size is
critical to texture extraction, with small windows failing to
capture spatial texture and large ones blurring object bound-
aries. A 17 x 17 sliding window was applied to the grayscale
image of the red band (Li et al., 2020), generating GLCMs
and computing four texture metrics per window to produce
corresponding texture bands.

Second, enabling effective integration of multi-source data
required resampling to a common resolution and geomet-
ric registration. The Sentinel-2 spectral bands and associ-
ated vegetation index images (10-20 m) were resampled us-
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ing cubic convolution to match the 0.9 m GE imagery. Then,
GE imagery was used as the reference to selecting evenly dis-
tributed and clearly identifiable control points from both im-
age sources (e.g., tidal creek intersections, aquaculture pond
corners, and vegetation patch boundaries). These points were
used to construct a polynomial transformation model for reg-
istering the Sentinel-2 imagery. Finally, phenological fea-
tures derived from Sentinel-2 were integrated with the spec-
tral, texture, and RGB features extracted from GE imagery to
construct the SPPF composite images consisting of 24 bands.

2.3.3 Integration of object-based spatial features

in SPPF

Considering the complex boundaries and homogeneous in-
teriors of S. alterniflora patches, accurately delineating their
edges remains challenging when using pixel-based features.
Therefore, we developed an object-based feature extraction
method that incorporated a multi-scale optimized segmen-
tation strategy, enabling the effective integration of spatial
context and pixel neighborhood relationships for improved
boundary detection. The method included two key steps:
identifying the boundary regions of S. alterniflora patches
and determining the optimal multi-scale segmentation pa-
rameters.

To delineate patch boundaries, each patch identified from
the CMSA was expanded outward and contracted inward by
10 m, corresponding to the spatial resolution of the CMSA.
This process resulted in a 20m annular buffer zone that
captures the complex transitional areas along the edges of
S. alterniflora patches while minimizing the inclusion of
non-target features, thereby ensuring both the accuracy and
representativeness of boundary identification. To implement
the multi-scale optimized segmentation strategy, the Estima-
tion of Scale Parameter (ESP) method was applied to iden-
tify the optimal scales for both edge-complex and interior-
homogeneous regions. ESP quantifies image region homo-
geneity by computing Local Variance (LV) and its Rate of
Change (ROC) across multiple scales, with ROC peaks typ-
ically indicating optimal segmentation (Drdgut et al., 2010).
To improve scale representativeness, one typical region was
selected from each of the five subregions (see Sect. 2.1), and
GE imagery was segmented to calculate LV and ROC. Fol-
lowing Wang et al. (2021), the scale range was set to 4—60

Earth Syst. Sci. Data, 17, 6601-6620, 2025
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Figure 4. (a) Variation of Local Variance (LV) and Rate of Change (ROC) with Scale Parameter. (b) Segmentation results with scale
parameter of 16. (¢) Segmentation results with scale parameter of 24. The VHR imagery in the figure is from © Google Earth 2020.

with a step of 1. The shape and compactness parameters were
set to 0.1 and 0.5, respectively (Wan et al., 2014). As shown
in Fig. 4a, the mean ROC curve across the five regions ex-
hibited multiple peaks, indicating several candidate optimal
scales. Based on these peaks, a series of segmentation results
were visually interpreted. Scale 16 was optimal for captur-
ing fine details in boundary-complex regions, while scale 24
was better represented the homogeneous interior, balancing
spatial coherence with processing efficiency. Segmentation
results for both scales are shown in Fig. 4b and c. Based on
the determined scale parameters, object-based segmentation
was performed on the SPPF composite imagery in eCogni-
tion, producing the OSPPF for subsequent classification.

2.3.4 Classifier selection and parameterization

Although deep learning has shown potential for sub-meter
mapping of S. alterniflora at the local scale, its reliance
on high-quality training samples and the limited general-
ization ability of models constrain its application at the na-
tional scale (Zhou et al., 2024). In contrast, the object-based
RF classifier integrates spectral, textural, and spatial con-
textual features, demonstrating higher stability and classifi-
cation accuracy in identifying S. alterniflora. Moreover, it
outperforms the pixel-based RF method in mapping S. al-
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terniflora (Tian et al., 2020b; Yan et al., 2021). Therefore,
we used the object-based RF classifier in eCognition. The
RF algorithm aggregates predictions from multiple decision
trees, with the number of trees being a key parameter influ-
encing classification performance (Breiman et al., 2001). To
determine the optimal number of trees, a sensitivity analy-
sis was conducted using the training and validation datasets
(see Sect. 2.2.3), varying the tree count from 50 to 500 at
intervals of 50. The results indicated that 200 trees yielded
the highest overall accuracy on the validation set. The multi-
source features and training samples were then input into the
object-based RF classifier to produce the Initial Sub-meter
S. alterniflora Map of Mainland China (ICM-SSM). To en-
hance accuracy, experienced researchers visually interpreted
GE imagery and corrected the ICM-SSM. Consequently, the
final Sub-meter S. alterniflora Map of Mainland China (CM-
SSM) was generated.

2.4 Accuracy assessment

To assess the mapping effectiveness of the OSPPF method
for S. alterniflora, two sets of comparative experiments were
designed in typical area to generate comparative results.
Each result was compared with the CM-SSM generated by
OSPPF, focusing on boundary delineation, small patch de-
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tection, and internal structure extraction. Classification accu-
racy of the CM-SSM was quantitatively assessed using con-
fusion matrix-based metrics. Producer accuracy (PA), user
accuracy (UA), overall accuracy (OA), and the F score were
calculated using the validation dataset, which comprised
3170 positive and 6075 negative samples (see Sect. 2.2.3). To
further evaluate the performance of CM-SSM, a comparative
analysis was conducted against the CMSA. The comparison
included both classification detail and overall statistics. At
the detail level, attention was paid to differences in edge, in-
ternal structure, and small patch. At the statistical level, we
quantified differences in total area, number of patches, and
spatial distribution of S. alterniflora.

3 Result

3.1 Performance of OSPPF

To assess the contribution of GE imagery to classifica-
tion performance, S. alterniflora mapping was conducted
using two methods in the Dandou Sea: (1) object-based
PPF (OPPF) classification using resampled Sentinel-2 im-
agery alone, and (2) OSPPF classification integrating both
Sentinel-2 and GE imagery. As shown in Fig. 6a, classifica-
tion based solely on Sentinel-2 imagery was able to capture
the general outline of S. alterniflora communities but failed
to effectively delineate open spaces within the patches. In
addition, Fig. 6b demonstrates that small, fragmented S. al-
terniflora patches were poorly detected, and the boundaries
between S. alterniflora and mangroves were inaccurately
represented. In contrast, the CM-SSM generated using fused
GE imagery exhibited superior spatial detail, successfully
identifying small patches and internal details, as well as ac-
curately delineating boundaries between S. alterniflora and
co-occurring species. Furthermore, we conducted a feature
importance analysis using the RF classifier (Zhang et al.,
2023a). As shown in Fig. 5, spectral and texture features
derived from GE imagery consistently contributed highly to
the classification of S. alterniflora. This can be primarily at-
tributed to the rich spatial texture information provided by
GE imagery, which effectively complements the phenologi-
cal features and thereby enhances classification accuracy.

To further compare pixel-based and object-based classi-
fication methods in S. alterniflora mapping, the SPPF and
OSPPF methods were applied in the Dandou Sea. As illus-
trated in Fig. 7, the CM-SSM generated using object-based
classification accurately extracted the boundaries between
S. alterniflora and surrounding land cover types such as mud-
flats and mangroves, whereas the pixel-based method showed
poor boundary delineation. Moreover, Fig. 7 indicates that
the pixel-based result suffered from salt-and-pepper noise,
particularly within and along the edges of S. alterniflora
patches. In contrast, the CM-SSM demonstrated a smoother
spatial distribution and effectively suppressed such noise.
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Table 5. Classification accuracy assessment results of CMSA,
ICM-SSM and CM-SSM.

Product Class PA UA A OA

%) (%) (%)
CMSA NS atomipora s200 9225
o I, W
v S W

3.2 Comparison with the latest 10 m product

3.2.1 Accuracy assessment

Table 5 presents the accuracy assessment of three prod-
ucts (CMSA, ICM-SSM, and CM-SSM) based on validation
samples (see Sect. 2.2.3). Among them, CM-SSM achieved
the best classification performance, with OA and Fj scores
0of 96.76 % and 0.95, respectively. ICM-SSM also performed
well, with an OA of 93.36 % and an F) score of 0.90, al-
though slightly lower than those of CM-SSM. This differ-
ence is mainly attributed to the manual refinement, which im-
proved boundary delineation and the identification of small
patches. In contrast, CMSA exhibited the lowest accuracy,
with OA and F; scores 14.60 % and 0.24 lower than those
of CM-SSM, respectively. Given the wide latitudinal span
of the study area, the spatial variability in classification per-
formance was further examined by evaluating CMSA and
CM-SSM across five subregions using validation samples.
The results show that CM-SSM consistently achieved supe-
rior performance, with OA exceeding 95.00 % and F; scores
above 0.90 in all subregions (Tables S1-S5 in the Supple-
ment). To further assess whether the accuracy improvement
of CM-SSM over CMSA is statistically significant, we ap-
plied McNemar’s test based on validation samples. The re-
sults indicated a statistically significant difference (x> =
820.22, p < 0.05), confirming the robustness of the improve-
ments in OA and F; scores (McNemar, 1947). The superior
performance of CM-SSM is mainly due to its reduction in
both omission and commission errors, which contributed to
the higher OA and Fj scores, as shown in Table 6.

3.2.2 Spatial details

To reveal the difference between CM-SSM and CMSA, a
comparative analysis focusing on small patches, boundaries,
and internal structural features of S. alterniflora commu-
nities was conducted (Fig. 8). First, given the fragmented
distribution of S. alterniflora, numerous small patches are
typically present. CM-SSM effectively detected nearly all
of them, whereas CMSA missed most. Second, S. alterni-
flora often encroaches upon mangrove habitats due to its ag-

Earth Syst. Sci. Data, 17, 6601-6620, 2025
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Figure 5. The importance of multi-sourced features derived from the RF classifier.

GE imagery

OSPPF method

Figure 6. Comparison of classification results using OPPF and OSPPF methods in Dandou Sea. The result generated by the OSPPF method
is the final, manually refined CM-SSM product. The VHR imagery in the figure is from © Google Earth 2020.

gressive spread, increasing boundary complexity. CM-SSM
showed superior delineation of the interface between the two
species, clearly depicting invasion fronts that CMSA did not
capture effectively. Finally, intertidal S. alterniflora commu-
nities often include internal features like creeks and open
spaces. CM-SSM successfully resolved open spaces and nar-
row creeks, while CMSA lacked the spatial detail to do so.

Earth Syst. Sci. Data, 17, 6601-6620, 2025

3.2.3 Spatial distribution statistics

A total of 148 072 patches were identified in CM-SSM, ap-
proximately 17 times more than CMSA. The total mapped
area of CM-SSM reached 59371ha, exceeding that of
CMSA by 1365 ha. To further compare patch size and area
differences between the two products, statistics were sum-
marized across six area classes defined by the minimum map-
ping unit of CMSA (i.e., one 10 m pixel). These intervals in-
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Figure 7. Comparison of classification results using SPPF and OSPPF methods in Dandou Sea. The result generated by the OSPPF method
is the final, manually refined CM-SSM product. The VHR imagery in the figure is from © Google Earth 2020.

Table 6. Confusion matrices of CM-SSM and CMSA based on validation samples.

Product Reference class Predicted class Total
S. alterniflora  Non-S. alterniflora

S. alterniflora 1993 1177 3170

CMSA Non-S. alterniflora 472 5603 6075

S. alterniflora 2943 227 3170

CM-SSM \on-s. alterniflora 73 6002 6075

cluded: 0.01 ha (1 pixel), 0.1ha (10 pixels), 1 ha (100 pix-
els), 100ha (10000 pixels), 1000ha (100000 pixels), and
greater than 1000 ha (Fig. 9). In addition, to assess spatial
distribution differences, an overlay analysis was conducted
using CM-SSM as the reference (Figs. 10 and 11).

As shown in Fig. 9, when patch area was no greater
than 0.1 ha, CM-SSM detected 44 times more patches than
CMSA, with a total area 14 times larger. This notable dif-
ference underscores CM-SSM’s superior ability to capture
small and fragmented S. alterniflora communities. In CM-
SSM, such small patches accounted for 90.48 % of the to-
tal patch count but only 2.25 % of the total area. CMSA re-
ported 35.15 % and 0.16 % for the same class. These results
are consistent with the highly fragmented spatial distribu-
tion of S. alterniflora. In terms of large patches exceeding
100 ha, both products demonstrated similar performance. In
CM-SSM, these patches represented just 0.05 % of the to-
tal number but contributed 52.99 % of the total area, while
in CMSA the corresponding proportions were 0.87 % and
62.96 %.

https://doi.org/10.5194/essd-17-6601-2025

When benchmarked against CM-SSM, CMSA exhibited
16 454 ha of commission and 17 819 ha of omission, result-
ing in a total spatial mismatch of 34273 ha (Fig. 10). No-
tably, the overall area difference between the two products
was small because the commission and omission nearly off-
set each other. To further explore spatial discrepancies, a
province-level analysis was conducted. As shown in Fig. 11,
both the pattern and magnitude of these differences varied
across provinces. For example, in Shanghai, omission was
the primary contributor to spatial disagreement, whereas in
Jiangsu, commission and omission were more balanced, to-
gether accounting for 7760 ha difference.

3.3 Mapping results of mainland China

Figure 12a illustrates the 2020 distribution of S. alterniflora
across mainland China based on CM-SSM. The results in-
dicate that S. alterniflora was densely distributed along the
coasts of Fujian, Zhejiang, Shanghai, and Jiangsu, where
nearly all large-scale communities were located. These four

Earth Syst. Sci. Data, 17, 6601-6620, 2025
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Figure 9. Zonal statistics of the number and area of S. alterniflora patches identified by CM-SSM and CMSA.

provinces also reported the largest total areas, together ac-
counting for 94.08 % of the total in mainland China (Fig. 13).
In Guangxi, large patches were primarily distributed around
the Beibu Gulf, while in Guangdong, S. alterniflora appeared
more scattered and patchier. In northern provinces such as
Shandong, Hebei, and Tianjin, S. alterniflora communities
were generally small in size and spatially fragmented. To bet-
ter illustrate spatial patterns across ecosystems, three repre-
sentative regions were selected. As shown in Fig. 12b and d,
Dandou Sea and the Zhangjiang Estuary reflect zones of
S. alterniflora-mangrove coexistence, where S. alterniflora

Earth Syst. Sci. Data, 17, 6601-6620, 2025

is gradually encroaching into mangrove habitats. In contrast,
Fig. 12c highlights northern Jiangsu’s mudflats, where S. al-
terniflora has colonized unvegetated mudflats and formed ex-
pansive stands, demonstrating strong invasiveness and eco-
logical adaptability.

https://doi.org/10.5194/essd-17-6601-2025
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4 Discussion

4.1 The advantages of the OSPPF

This study proposed a novel OSPPF composite method that
enhanced the PPF by integrating GE imagery and object-
based classification. Previous studies have demonstrated that
PPF improves the spectral separability of S. alterniflora
by utilizing dual-phase phenological information (Tian et
al., 2020a; Li et al., 2024). However, PPF based solely on
Sentinel-2 imagery is limited in capturing spatial detail due
to its 10 m resolution, despite providing rich phenological
information. To overcome this limitation, GE imagery was
integrated to enhance spatial detail (Fig. 6), offering two

https://doi.org/10.5194/essd-17-6601-2025

key advantages. First, GE imagery mitigates the mixed-pixel
problem. Patch-level statistics show that 100455 patches are
smaller than 100 m?, accounting for 67.84 % of all patches
(Fig. 9). These patches are often overlooked in Sentinel-2
classifications due to mixed-pixel problem, yet they are crit-
ical indicators of early-stage invasion. In contrast, the sub-
meter resolution of GE imagery allows clear visualization
of S. alterniflora texture and structure, facilitating the accu-
rate delineation of boundaries, internal structure, and small
patches. Second, GE imagery provides a more robust founda-
tion for object-based classification. The object-based classifi-
cation method used in this study relies on OBIA for effective
image segmentation, and the quality of segmentation directly

Earth Syst. Sci. Data, 17, 6601-6620, 2025
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Figure 12. (a) Spatial distribution of S. alterniflora in mainland China for 2020, derived from the CM-SSM, with each grid cell representing
the total S. alterniflora area within a 10km x 10km unit; (b—d) CM-SSM distribution map in typical areas, including (b) Dandou Sea,
(¢) mudflats of northern Jiangsu, and (d) Zhangjiang Estuary. The background imagery is provided by Esri (https://www.esri.com, last
access: 23 July 2025) and its data partners. The VHR imagery in the figure is from © Google Earth 2020.

affects classification accuracy (Hao et al., 2021). Compared
with Sentinel-2, GE imagery more accurately delineates ob-
ject boundaries and internal structure, enabling the construc-
tion of clearly defined and spatially consistent segments that
provide a superior basis for classification.

Moreover, the object-based classification applied in this
study outperformed the pixel-based method in both accuracy

Earth Syst. Sci. Data, 17, 6601-6620, 2025

and boundary delineation (Fig. 7). On the one hand, object-
based classification reduces uncertainty in identifying S. al-
terniflora. The GE imagery contains complex spectral and
texture information, which increases salt-and-pepper noise
and reduces the reliability of pixel-level classification. By ag-
gregating spectrally, texturally, and spatially consistent pix-
els, object-based classification reduces intra-class noise, im-
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Figure 13. Provincial statistics of S. alterniflora area identified by CM-SSM.

proving both robustness and accuracy. On the other hand, the
multi-scale optimized segmentation enhanced boundary de-
lineation. The coexistence of S. alterniflora with native veg-
etation such as mangroves and Phragmites australis causes
spectral mixing at patch edges, which pixel-based methods
struggle to resolve. Although object-based methods improve
boundary delineation, segmentation quality remains critical
to classification accuracy. Therefore, we proposed a multi-
scale optimized segmentation strategy designed to address
the spectral heterogeneity at patch boundaries and spectral
homogeneity within interiors, aiming to enhance the preci-
sion of boundary extraction. Specifically, a coarse scale was
applied to homogeneous interiors, while a finer scale was
used for complex boundaries. This strategy improves bound-
ary delineation and avoids over-segmentation in uniform ar-
eas, enhancing both classification efficiency and accuracy.

4.2 The advantages of CM-SSM

This study produced the first Sub-meter S. alterniflora Map
for Mainland China in 2020 (CM-SSM). Compared with the
latest 10 m product (CMSA), CM-SSM demonstrated supe-
rior performance in classification accuracy, spatial detail rep-
resentation, and spatial distribution statistics. Specifically,
CM-SSM achieved higher classification accuracy, with OA
and Fj-score improved by 14.60 % and 0.24, respectively
(Table 5). These advancements are primarily attributed to
the development of sub-meter phenological features for S. al-
terniflora and the adoption of an object-based classification
strategy (see Sect. 4.1).

CM-SSM also exhibited significant advantages in spatial
detail extraction. Previous studies have indicated that S. al-
terniflora tends to exhibit a fragmented distribution pattern,
where numerous small patches are often overlooked due
to the limitations of 10 m resolution imagery (Zhou et al.,
2024). Additionally, the species is often associated with di-
verse companion species and interspersed with narrow tidal
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creeks, which are difficult to distinguish using 10m res-
olution due to the mixed pixel problem (Li et al., 2024).
By increasing the mapping resolution to 0.9 m, CM-SSM
effectively alleviated the impact of mixed pixels, enabling
the accurate identification of small S. alterniflora patches,
as well as their boundaries and internal structures (Fig. 8).
This capability provides critical support for developing in-
vasive species management strategies. For example, areas
with dense small patches typically present higher risks of
spread, and prioritizing these regions for control measures
may help suppress expansion trends (Liu et al., 2016). Fur-
thermore, CM-SSM’s ability to delineate growth boundaries
between S. alterniflora and companion species offers valu-
able insights into its invasion processes and potential threats
to native species, such as mangroves (Chen and Shi, 2023).
In addition, the accurate recognition of tidal creeks within
S. alterniflora communities provides a data foundation for
analyzing the relationship between creek morphology and
spatial expansion (Kearney and Fagherazzi, 2016; Sanderson
et al., 2000).

In terms of spatial distribution statistics, CM-SSM demon-
strated higher accuracy. As shown in Sect. 3.2.3, although
CM-SSM identified a significantly greater number of small
S. alterniflora patches than CMSA, both products exhibited
high consistency in detecting large S. alterniflora communi-
ties, resulting in a relatively small difference of only 1365 ha
in total area (Fig. 9). However, spatial overlay analysis re-
vealed a substantial spatial discrepancy of up to 34273 ha
between the two products, accounting for 57.73 % of the
total CM-SSM area (Figs. 10 and 11). This discrepancy is
primarily due to the limited spatial resolution of CMSA,
which introduces classification errors. On the one hand,
mixed pixels result in misclassification of other land types
(e.g., creeks and open spaces) as S. alterniflora, leading to
area overestimation. On the other hand, the failure to detect
highly fragmented small patches leads to area underestima-
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Figure 14. Estimated SOC stock in the 0—1 m soil layer of S. alterniflora across coastal provinces of mainland China in 2020 based on

SpProduct_30m and CM-SSM.

tion. These findings underscore the critical role of spatial res-
olution in accurately capturing the distribution of S. alterni-
flora and highlight the limitations of relying solely on total
area statistics, which may obscure substantial differences be-
tween products.

Accurate spatial distribution data of S. alterniflora are es-
sential for the reliable quantification of its carbon storage
(Xia et al., 2021; Xu et al., 2022). In this study, Soil Or-
ganic Carbon (SOC) storage was estimated using both CM-
SSM and a multi-temporal 30 m dataset developed by Mao
et al. (2019), based on the unified provincial-level SOC unit
storage coefficient for S. alterniflora in 2020, as established
by Zhang et al. (2024) through the integration of field mea-
surements and spatial interpolation (Table S6). The results
indicated that the total SOC storage estimated from CM-
SSM reached 3767.69 Gg, which is 706.69 Gg higher than
the estimate derived from the 30 m product, with particu-
larly notable differences observed in Shanghai, Zhejiang, and
Shandong (Fig. 14). The primary reason for this discrepancy
lies in the resolution limitations of the 30 m product, which
resulted in omission of small patches and misclassification at
the edges, thereby reducing mapping accuracy. In contrast,
CM-SSM provided a more accurate representation of the in-
vasion pattern of S. alterniflora, leading to more reliable SOC
estimates. This result highlights the value of fine-scale map-
ping in improving the accuracy of SOC storage estimation.

4.3 Limitations and prospects

Although this study proposed the OSPPF method and suc-
cessfully produced the first Sub-meter S. alterniflora Map in
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Mainland China for the year 2020 (CM-SSM), several lim-
itations remain. The OSPPF method has three main limita-
tions. First, the automation of sample points generation re-
quires further improvement. In this study, sample points were
generated through visual interpretation based on field surveys
and VHR imagery. However, this process is highly dependent
on the expertise of researchers and is time-consuming, par-
ticularly for large-scale mapping. Although the ASC-CKM
method proposed by Tian et al. (2025) leveraged the Cas-
cadeKMeans algorithm and the Mangrove Vegetation In-
dex (MVI) for automated sample generation and achieved
success in sub-meter mangrove mapping across China, an ef-
ficient and widely accepted classification index specific to
S. alterniflora is currently lacking, which limits the direct
transferability of this approach. Future research could focus
on developing a highly discriminative spectral index tailored
for S. alterniflora, with potential to support automated sam-
ple generation.

Additionally, the reliance on high-quality GE imagery
constrains the broader applicability of the method. The
frequent cloud cover of intertidal zones poses significant
challenges to acquiring high-quality GE imagery at global
scales or over long time series for sub-meter mapping of
S. alterniflora. To address this issue, super-resolution tech-
niques, which reconstruct high-resolution details from low-
resolution imagery, have shown promising potential (Chen et
al., 2024).

Third, the object-based classification incorporating multi-
scale optimized segmentation still relies on existing large-
scale S. alterniflora products during implementation. When
applied to global-scale or long-term mapping, the reliance
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on global reference products presents a key limitation. To
improve the transferability of the OSPPF method in regions
lacking prior S. alterniflora products, alternative approaches
can be adopted, such as generating an initial S. alterniflora
mask using vegetation indices (e.g., NDVI, EVI), or automat-
ically identifying potential distribution areas based on tidal
zones, topography, and other environmental variables. In ad-
dition, future research may explore the application of deep
learning models to S. alterniflora mapping, potentially re-
placing the object-based approach (Li et al., 2024). It is worth
noting that the CM-SSM product developed in this study has
the potential to serve as a valuable benchmark dataset for the
training and evaluation of deep learning models.

The CM-SSM product has two limitations. First, tempo-
ral inconsistency among imagery sources may lead to clas-
sification errors. Although a comparison with imagery from
adjacent years confirmed that the spatiotemporal dynamics
of S. alterniflora were minor in most areas, and regions with
temporal discrepancies accounted for only 2.20 % of the to-
tal area, temporal inconsistencies in imagery may still intro-
duce slight errors. To address this issue, the integration of
multi-source remote sensing data could be explored in fu-
ture studies to mitigate the impact of temporal mismatches
and further reduce classification errors. Second, manual vi-
sual interpretation introduces subjectivity, which may result
in minor inaccuracies. Although this study utilized VHR im-
agery for visual interpretation to optimize the mapping prod-
uct, differences in S. alterniflora texture, morphology, and
spectral appearance across climate zones posed challenges
for consistent manual interpretation. Future research could
explore semi-automated methods or interpretation strategies
supported by deep learning to reduce uncertainties arising
from human intervention.

5 Data availability

The 2020 Sub-meter S. alternifiora Map of Mainland
China (CM-SSM) generated by this study is openly avail-
able at https://doi.org/10.5281/zenodo.16296823 (Xu et al.,
2025).

6 Conclusion

This study proposed a novel Object- and Sub-meter-
enhanced Pixel-based Phenological Feature (OSPPF) com-
posite method to generate the first 2020 Sub-meter S. al-
terniflora Map of Mainland China (CM-SSM). The OSPPF
method integrates multi-source remote sensing imagery and
employs an object-based classification method with a multi-
scale optimized segmentation strategy, effectively addressing
limitations of existing methods in delineating small patches,
boundaries, and internal details of S. alterniflora. Compared
with the latest 10 m resolution S. alterniflora map (CMSA),
the CM-SSM shows significant improvements in classifica-
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tion accuracy, spatial detail, and spatial distribution statis-
tics. Specifically, OA and F; score of CM-SSM are 14.60 %
and 0.24 higher than those of CMSA, respectively. While
the total area difference between the two products is only
2.30 %, spatial distribution discrepancies reach 57.73 %, and
the number of detected patches in CM-SSM is 17 times
greater than in CMSA. The CM-SSM product and its un-
derlying OSPPF method provide high-precision baseline data
for monitoring S. alterniflora, and offer a scalable framework
for future sub-meter mapping at broader spatial and tempo-
ral scales. These advancements hold substantial potential for
supporting S. alterniflora management effectiveness assess-
ments and blue carbon stock estimations.

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/essd-17-6601-2025-supplement.
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