Articles | Volume 17, issue 11
https://doi.org/10.5194/essd-17-6315-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-6315-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A 30 m resolution dataset of soil and water conservation terraces across China for 2000, 2010, and 2020
Enwei Zhang
Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China
Yueli Chen
State Key Laboratory of Severe Weather Meteorological Science and Technology, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
Shengzhao Wei
Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China
Chenli Liu
Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China
Hongna Wang
Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China
Bowen Deng
Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China
Honghong Lin
Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China
Xue Yang
Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China
Yawen Li
Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China
Xingwu Duan
CORRESPONDING AUTHOR
Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China
State Key Laboratory of Vegetation Structure, Function and Construction (VegLab), Yunnan University, Kunming, 650500, China
Related authors
No articles found.
Yueli Chen, Yun Xie, Xingwu Duan, and Minghu Ding
Earth Syst. Sci. Data, 17, 1265–1274, https://doi.org/10.5194/essd-17-1265-2025, https://doi.org/10.5194/essd-17-1265-2025, 2025
Short summary
Short summary
Rainfall erosivity maps are crucial for identifying key areas of water erosion. Due to the limited historical precipitation data, there are certain biases in rainfall erosivity estimates in China. This study develops a new rainfall erosivity map for mainland China using 1 min precipitation data from 60 129 weather stations, revealing that areas exceeding 4000 MJ mm ha−1 h−1yr−1 of annual rainfall erosivity are mainly concentrated in southern China and on the southern Tibetan Plateau.
Fanyu Zhao, Di Long, Chenqi Fang, Yiming Wang, and Xingwu Duan
EGUsphere, https://doi.org/10.5194/egusphere-2025-652, https://doi.org/10.5194/egusphere-2025-652, 2025
Short summary
Short summary
The heterogeneous surge behaviors in Karakoram reveal critical knowledge gaps in the underlying mechanism, urging detailed investigations. We integrate multisource remote sensing (satellite altimetry, DEMs, optical/SAR imagery) to holistically characterize surge phases of a Karakoram glacier, quantifying flow velocity, surface elevation, terminus position, and lake level variations. This integrated approach underscores the value of multi-sensor synergies in deciphering complex surge mechanisms.
Yueli Chen, Xingwu Duan, Minghu Ding, Wei Qi, Ting Wei, Jianduo Li, and Yun Xie
Earth Syst. Sci. Data, 14, 2681–2695, https://doi.org/10.5194/essd-14-2681-2022, https://doi.org/10.5194/essd-14-2681-2022, 2022
Short summary
Short summary
We reconstructed the first annual rainfall erosivity dataset for the Tibetan Plateau in China. The dataset covers 71 years in a 0.25° grid. The reanalysis precipitation data are employed in combination with the densely spaced in situ precipitation observations to generate the dataset. The dataset can supply fundamental data for quantifying the water erosion, and extend our knowledge of the rainfall-related hazard prediction on the Tibetan Plateau.
Cited articles
Adgo, E., Teshome, A., and Mati, B.: Impacts of long-term soil and water conservation on agricultural productivity: The case of Anjenie watershed, Ethiopia, Agric. Water Manage., 117, 55–61, https://doi.org/10.1016/j.agwat.2012.10.026, 2013.
Arnáez, J., Lana-Renault, N., Lasanta, T., Ruiz-Flaño, P., and Castroviejo, J.: Effects of farming terraces on hydrological and geomorphological processes. A review, Catena, 128, 122–134, https://doi.org/10.1016/j.catena.2015.01.021, 2015.
Cao, B., Yu, L., Naipal, V., Ciais, P., Li, W., Zhao, Y., Wei, W., Chen, D., Liu, Z., and Gong, P.: A 30 m terrace mapping in China using Landsat 8 imagery and digital elevation model based on the Google Earth Engine, Earth Syst. Sci. Data, 13, 2437–2456, https://doi.org/10.5194/essd-13-2437-2021, 2021.
Chen, D., Wei, W., and Chen, L.: Effects of terracing practices on water erosion control in China: A meta-analysis, Earth Sci. Rev., 173, 109–121, https://doi.org/10.1016/j.earscirev.2017.08.007, 2017.
Chen, D., Wei, W., and Chen, L.: How can terracing impact on soil moisture variation in China? A meta-analysis, Agric. Water Manage., 227, 105849, https://doi.org/10.1016/j.agwat.2019.105849, 2020.
Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G., Peng, S., Lu, M., Zhang, W., Tong, X., and Mills, J.: Global land cover mapping at 30 m resolution: A POK-based operational approach, ISPRS J. Photogramm. Remote Sens., 103, 7–27, https://doi.org/10.1016/j.isprsjprs.2014.09.002, 2015.
Chen, P., Ren, Y., Zhang, B., and Zhao, Y.: Class Imbalance in the Automatic Interpretation of Remote Sensing Images: A Review, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 18, 9483–9508, https://doi.org/10.1109/JSTARS.2025.3555567, 2025.
Chen, R., Yin, B., Yang, W., Li, J., Li, Z., Zhang, Y., and Chen, J.: Mapping the successional stages of biological soil crusts at 3-m resolution in the Gurbantunggut Desert, China through hydration-induced spectral response, Remote Sens. Environ., 310, 114230, https://doi.org/10.1016/j.rse.2024.114230, 2024.
Chen, S.-K., Chen, Y.-R., and Peng, Y.-H.: Experimental study on soil erosion characteristics in flooded terraced paddy fields, Paddy Water Environ., 11, 433–444, https://doi.org/10.1007/s10333-012-0334-2, 2013.
de Oliveira, J. R. S., Pruski, F. F., da Silva, J. M. A., and da Silva, D. P.: Comparative analysis of the performance of mixed terraces andevel and graded terraces, Acta Sci.-Agron., 34, 351–357, https://doi.org/10.4025/actasciagron.v34i4.14755, 2012.
Deng, C., Zhang, G., Liu, Y., Nie, X., Li, Z., Liu, J., and Zhu, D.: Advantages and disadvantages of terracing: A comprehensive review, Int. Soil Water Conserv. Res., 9, 344–359, https://doi.org/10.1016/j.iswcr.2021.03.002, 2021.
Deng, Y., Chen, G., Tang, B., Duan, X., Zuo, L., and Zhao, H.: Study on Class Imbalance in Land Use Classification for Soil Erosion in Dry–Hot Valley Regions, Remote Sens., 17, 1628, https://doi.org/10.3390/rs17091628, 2025.
Diaz-Varela, R. A., Zarco-Tejada, P. J., Angileri, V., and Loudjani, P.: Automatic identification of agricultural terraces through object-oriented analysis of very high resolution DSMs and multispectral imagery obtained from an unmanned aerial vehicle, J. Environ. Manage., 134, 117–126, https://doi.org/10.1016/j.jenvman.2014.01.006, 2014.
Duan, M., Song, X., Li, Z., Zhang, X., Ding, X., and Cui, D.: Identifying soil groups and selecting a high-accuracy classification method based on multi-textural features with optimal window sizes using remote sensing images, Ecol. Inf., 81, 102563, https://doi.org/10.1016/j.ecoinf.2024.102563, 2024.
Duan, X.: The soil and water conservation terrace measures in China (2000-2020), National Tibetan Plateau Data Center [data set], https://doi.org/10.11888/Terre.tpdc.302400, 2025.
Duan, X., Bai, Z., Rong, L., Li, Y., Ding, J., Tao, Y., Li, J., Li, J., and Wang, W.: Investigation method for regional soil erosion based on the Chinese Soil Loss Equation and high-resolution spatial data: Case study on the mountainous Yunnan Province, China, Catena, 184, 104237, https://doi.org/10.1016/j.catena.2019.104237, 2020.
Feng, W., Yang, Y., Zhao, Y., Di, B., and Ma, C.: The Implementation Effects of a Nationwide Sloping Farmland Soil Erosion Control Project in China, J. Resour. Ecol., 8, 341–351, https://doi.org/10.5814/j.issn.1674-764x.2017.04.005, 2017.
Fu, B., Wang, S., Liu, Y., Liu, J., Liang, W., and Miao, C.: Hydrogeomorphic Ecosystem Responses to Natural and Anthropogenic Changes in the Loess Plateau of China, Annu. Rev. Earth Planet. Sci., 45, 223–243, https://doi.org/10.1146/annurev-earth-063016-020552, 2017.
Gobin, A., Jones, R., Kirkby, M., Campling, P., Govers, G., Kosmas, C., and Gentile, A. R.: Indicators for pan-European assessment and monitoring of soil erosion by water, Environ. Sci. Policy, 7, 25–38, https://doi.org/10.1016/j.envsci.2003.09.004, 2004.
Gong, P., Liu, H., Zhang, M., Li, C., Wang, J., Huang, H., Clinton, N., Ji, L., Li, W., Bai, Y., Chen, B., Xu, B., Zhu, Z., Yuan, C., Ping Suen, H., Guo, J., Xu, N., Li, W., Zhao, Y., Yang, J., Yu, C., Wang, X., Fu, H., Yu, L., Dronova, I., Hui, F., Cheng, X., Shi, X., Xiao, F., Liu, Q., and Song, L.: Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017, Sci. Bull., 64, 370–373, https://doi.org/10.1016/j.scib.2019.03.002, 2019.
Gong, P., Chen, B., Li, X., Liu, H., Wang, J., Bai, Y., Chen, J., Chen, X., Fang, L., Feng, S., Feng, Y., Gong, Y., Gu, H., Huang, H., Huang, X., Jiao, H., Kang, Y., Lei, G., Li, A., Li, X., Li, X., Li, Y., Li, Z., Li, Z., Liu, C., Liu, C., Liu, M., Liu, S., Mao, W., Miao, C., Ni, H., Pan, Q., Qi, S., Ren, Z., Shan, Z., Shen, S., Shi, M., Song, Y., Su, M., Ping Suen, H., Sun, B., Sun, F., Sun, J., Sun, L., Sun, W., Tian, T., Tong, X., Tseng, Y., Tu, Y., Wang, H., Wang, L., Wang, X., Wang, Z., Wu, T., Xie, Y., Yang, J., Yang, J., Yuan, M., Yue, W., Zeng, H., Zhang, K., Zhang, N., Zhang, T., Zhang, Y., Zhao, F., Zheng, Y., Zhou, Q., Clinton, N., Zhu, Z., and Xu, B.: Mapping essential urban land use categories in China (EULUC-China): preliminary results for 2018, Sci. Bull., 65, 182–187, https://doi.org/10.1016/j.scib.2019.12.007, 2020.
Guth, P. L. and Geoffroy, T. M.: LiDAR point cloud and ICESat-2 evaluation of 1 second global digital elevation models: Copernicus wins, Trans. GIS, 25, 2245–2261, https://doi.org/10.1111/tgis.12825, 2021.
He, Y., Lee, E., and Warner, T. A.: A time series of annual land use and land cover maps of China from 1982 to 2013 generated using AVHRR GIMMS NDVI3g data, Remote Sens. Environ., 199, 201–217, https://doi.org/10.1016/j.rse.2017.07.010, 2017.
Hirayama, H., Sharma, R. C., Tomita, M., and Hara, K.: Evaluating multiple classifier system for the reduction of salt-and-pepper noise in the classification of very-high-resolution satellite images, Int. J. Remote Sens., 40, 2542–2557, https://doi.org/10.1080/01431161.2018.1528400, 2019.
Kan, G., Gong, J., Wang, B., Li, X., Shi, J., Ma, Y., Wei, W., and Zhang, J.: A Refined Terrace Extraction Method Based on a Local Optimization Model Using GF-2 Images, Remote Sens., 17, https://doi.org/10.3390/rs17010012, 2025.
Li, H., Zhao, J., Yan, B., Yue, L., and Wang, L.: Global DEMs vary from one to another: an evaluation of newly released Copernicus, NASA and AW3D30 DEM on selected terrains of China using ICESat-2 altimetry data, Int. J. Digital Earth, 15, 1149–1168, https://doi.org/10.1080/17538947.2022.2094002, 2022a.
Li, J., He, H., Zeng, Q., Chen, L., and Sun, R.: A Chinese soil conservation dataset preventing soil water erosion from 1992 to 2019, Sci. Data, 10, 319, https://doi.org/10.1038/s41597-023-02246-4, 2023.
Li, K., Yang, J., Wang, J., Wang, Z., Zeng, Y., Borrelli, P., Hubacek, K., Hu, Y., Xu, B., Fang, N., Zeng, C., Zhou, Z., and Shi, Z.: Human-altered soil loss dominates nearly half of water erosion in China but surges in agriculture-intensive areas, One Earth, https://doi.org/10.1016/j.oneear.2024.09.001, 2024.
Li, N., Zhang, Y., Wang, T., Li, J., Yang, J., and Luo, M.: Have anthropogenic factors mitigated or intensified soil erosion over the past three decades in South China?, J. Environ. Manage., 302, 114093, https://doi.org/10.1016/j.jenvman.2021.114093, 2022b.
Li, Z., Xu, X., Yu, B., Xu, C., Liu, M., and Wang, K.: Quantifying the impacts of climate and human activities on water and sediment discharge in a karst region of southwest China, J. Hydrol., 542, 836–849, https://doi.org/10.1016/j.jhydrol.2016.09.049, 2016.
Liang, W., Bai, D., Wang, F., Fu, B., Yan, J., Wang, S., Yang, Y., Long, D., and Feng, M.: Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in China's Loess Plateau, Water Resour. Res., 51, 6500–6519, https://doi.org/10.1002/2014WR016589, 2015.
Liao, Z., Nobis, M. P., Xiong, Q., Tian, X., Wu, X., Pan, K., Zhang, A., Wang, Y., and Zhang, L.: Potential distributions of seven sympatric sclerophyllous oak species in Southwest China depend on climatic, non-climatic, and independent spatial drivers, Ann. For. Sci., 78, 5, https://doi.org/10.1007/s13595-020-01012-5, 2021.
Liu, B., Liu, Y., Zhang, K., and Xie, Y.: Classification for Soil Conservation Practices in China, J. Soil Water Conserv., 27, 80–84, https://doi.org/10.13870/j.cnki.stbcxb.2013.02.025, 2013a.
Liu, B., Xie, Y., Li, Z., Liang, Y., Zhang, W., Fu, S., Yin, S., Wei, X., Zhang, K., Wang, Z., Liu, Y., Zhao, Y., and Guo, Q.: The assessment of soil loss by water erosion in China, Int. Soil Water Conserv. Res., 8, 430–439, https://doi.org/10.1016/j.iswcr.2020.07.002, 2020.
Liu, J., Zhang, Z., Xu, X., Kuang, W., Zhou, W., Zhang, S., Li, R., Yan, C., Yu, D., Wu, S., and Jiang, N.: Spatial patterns and driving forces of land use change in China during the early 21st century, J. Geogr. Sci., 20, 483–494, https://doi.org/10.1007/s11442-010-0483-4, 2010.
Liu, M., Xu, X., Sun, A. Y., Wang, K., Liu, W., and Zhang, X.: Is southwestern China experiencing more frequent precipitation extremes?, Environ. Res. Lett., 9, 064002, https://doi.org/10.1088/1748-9326/9/6/064002, 2014.
Liu, S. L., Dong, Y. H., Li, D., Liu, Q., Wang, J., and Zhang, X. L.: Effects of different terrace protection measures in a sloping land consolidation project targeting soil erosion at the slope scale, Ecol. Eng., 53, 46–53, https://doi.org/10.1016/j.ecoleng.2012.12.001, 2013b.
Liu, X., Xin, L., and Lu, Y.: National scale assessment of the soil erosion and conservation function of terraces in China, Ecol. Indic., 129, 107940, https://doi.org/10.1016/j.ecolind.2021.107940, 2021.
Londero, A. L., Minella, J. P. G., Deuschle, D., Schneider, F. J. A., Boeni, M., and Merten, G. H.: Impact of broad-based terraces on water and sediment losses in no-till (paired zero-order) catchments in southern Brazil, J. Soils Sediments, 18, 1159–1175, https://doi.org/10.1007/s11368-017-1894-y, 2018.
Lu, M., Wu, W., Zhang, L., Liao, A., Peng, S., and Tang, H.: A comparative analysis of five global cropland datasets in China, Sci. China Earth Sci., 59, 2307–2317, https://doi.org/10.1007/s11430-016-5327-3, 2016.
Lu, Y., Li, X., Xin, L., Song, H., and Wang, X.: Mapping the terraces on the Loess Plateau based on a deep learning-based model at 1.89 m resolution, Sci. Data, 10, 115, https://doi.org/10.1038/s41597-023-02005-5, 2023.
Masek, J. G., Vermote, E. F., Saleous, N. E., Wolfe, R., Hall, F. G., Huemmrich, K. F., Feng, G., Kutler, J., and Teng-Kui, L.: A Landsat surface reflectance dataset for North America, 1990–2000, IEEE Geosci. Remote Sens. Lett., 3, 68–72, https://doi.org/10.1109/LGRS.2005.857030, 2006.
Ministry of Natural Resources of the People's Republic of China: Technical regulation of the third nationwide land survey, TD/T 1055-2019, https://www.ndls.org.cn/standard/detail/3cc17fba5de2a1c2b934cb38fac7c88b (last access: 18 September 2025), 2019.
Renard, K. G., Foster, G. A., Weesies, D. K. M., and Yoder, D. C.: Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE), Agricultural Research Service, United States Department of Agriculture, Washington D. C., ISBN 9780160489389, 1997.
Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., and Rigol-Sanchez, J. P.: An assessment of the effectiveness of a random forest classifier for land-cover classification, ISPRS J. Photogramm. Remote Sens., 67, 93–104, https://doi.org/10.1016/j.isprsjprs.2011.11.002, 2012.
Roy, D. P., Kovalskyy, V., Zhang, H. K., Vermote, E. F., Yan, L., Kumar, S. S., and Egorov, A.: Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity, Remote Sens. Environ., 185, 57–70, https://doi.org/10.1016/j.rse.2015.12.024, 2016.
Salhi, A., Benabdelouahab, S., and Heggy, E.: Soil erosion susceptibility maps and raster dataset for the hydrological basins of North Africa, Sci. Data, 12, 65, https://doi.org/10.1038/s41597-025-04406-0, 2025.
Tang, G., Li, F., and Liu, X.: Extraction of slope terrain factors, in: Course of digital elevation model, 3rd edn., Science Press, Beijing, China, 134–156, ISBN 9787030473981, 2016.
Tang, H., Yun, W., Liu, W., and Sang, L.: Structural changes in the development of China's farmland consolidation in 1998–2017: Changing ideas and future framework, Land Use Policy, 89, 104212, https://doi.org/10.1016/j.landusepol.2019.104212, 2019.
Teng, H., Viscarra Rossel, R. A., Shi, Z., Behrens, T., Chappell, A., and Bui, E.: Assimilating satellite imagery and visible–near infrared spectroscopy to model and map soil loss by water erosion in Australia, Environmental Modelling & Software, 77, 156–167, https://doi.org/10.1016/j.envsoft.2015.11.024, 2016.
Tu, Y., Wu, S., Chen, B., Weng, Q., Bai, Y., Yang, J., Yu, L., and Xu, B.: A 30 m annual cropland dataset of China from 1986 to 2021, Earth Syst. Sci. Data, 16, 2297–2316, https://doi.org/10.5194/essd-16-2297-2024, 2024.
Wang, J., Huang, B., and Luo, W.: Influence mechanism of reverse-slope terrace site preparation for afforestation on runoff formation of slope, Transactions of the Chinese Society of Agricultural Engineering, 20, 292–296, https://doi.org/10.3321/j.issn:1002-6819.2004.05.066, 2004.
Wang, Q., Ding, X., Tong, X., and Atkinson, P. M.: Spatio-temporal spectral unmixing of time-series images, Remote Sens. Environ., 259, 112407, https://doi.org/10.1016/j.rse.2021.112407, 2021a.
Wang, T., Wu, J., Kou, X., Oliver, C., Mou, P., and Ge, J.: Ecologically asynchronous agricultural practice erodes sustainability of the Loess Plateau of China, Ecol. Appl., 20, 1126–1135, https://doi.org/10.1890/09-0229.1, 2010.
Wang, Y. and Dai, E.: Spatial-temporal changes in ecosystem services and the trade-off relationship in mountain regions: A case study of Hengduan Mountain region in Southwest China, J. Cleaner Prod., 264, 121573, https://doi.org/10.1016/j.jclepro.2020.121573, 2020.
Wang, Y., Kong, X., Guo, K., Zhao, C., and Zhao, J.: Intelligent Extraction of Terracing Using the ASPP ArrU-Net Deep Learning Model for Soil and Water Conservation on the Loess Plateau, Agriculture, 13, https://doi.org/10.3390/agriculture13071283, 2023.
Wang, Z., Zeng, Y., Li, C., Yan, H., Yu, S., Wang, L., and Shi, Z.: Telecoupling cropland soil erosion with distant drivers within China, J. Environ. Manage., 288, 112395, https://doi.org/10.1016/j.jenvman.2021.112395, 2021b.
Wei, W., Chen, L., Yang, L., Samadani, F. F., and Sun, G.: Microtopography Recreation Benefits Ecosystem Restoration, Environ. Sci. Technol., 46, 10875–10876, https://doi.org/10.1021/es303294n, 2012.
Wei, W., Chen, D., Wang, L., Daryanto, S., Chen, L., Yu, Y., Lu, Y., Sun, G., and Feng, T.: Global synthesis of the classifications, distributions, benefits and issues of terracing, Earth Sci. Rev., 159, 388–403, https://doi.org/10.1016/j.earscirev.2016.06.010, 2016.
Wei, W., Pan, D., and Yang, Y.: Effects of terracing measures on water retention of pinus Tabulaeformis forest in the dryland loess hilly region of China, Agric. For. Meteorol., 308–309, 108544, https://doi.org/10.1016/j.agrformet.2021.108544, 2021.
Wei, Z., Han, Y., Li, M., Yang, K., Yang, Y., Luo, Y., and Ong, S.-H.: A Small UAV Based Multi-Temporal Image Registration for Dynamic Agricultural Terrace Monitoring, Remote Sens., 9, https://doi.org/10.3390/rs9090904, 2017.
Wickama, J., Okoba, B., and Sterk, G.: Effectiveness of sustainable land management measures in West Usambara highlands, Tanzania, Catena, 118, 91–102, https://doi.org/10.1016/j.catena.2014.01.013, 2014.
Wischmeier, W. H. and Smith, D. D.: Predicting rainfall erosion losses: a guide to conservation planning, Science and Education Administration, Washington D. C., https://books.google.com/books?id=rRAUAAAAYAAJ (last access: 7 November 2025), 1978.
Xiao, Y., Huang, J., Weng, W., Huang, R., Shao, Q., Zhou, C., and Li, S.: Class imbalance: A crucial factor affecting the performance of tea plantations mapping by machine learning, Int. J. Appl. Earth Obs. Geoinf., 129, 103849, https://doi.org/10.1016/j.jag.2024.103849, 2024.
Yang, J. and Huang, X.: The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019, Earth Syst. Sci. Data, 13, 3907–3925, https://doi.org/10.5194/essd-13-3907-2021, 2021.
Yu, L., Wang, J., and Gong, P.: Improving 30 m global land-cover map FROM-GLC with time series MODIS and auxiliary data sets: a segmentation-based approach, Int. J. Remote Sens., 34, 5851–5867, https://doi.org/10.1080/01431161.2013.798055, 2013.
Zhan, G. and Jin, Z.: Hani Rice Terraces of Honghe – The Harmonious Landscape of Nature and Humans, Landscape Res., 40, 655–667, https://doi.org/10.1080/01426397.2015.1060299, 2015.
Zhang, J. H., Su, Z. A., and Liu, G. C.: Effects of terracing and agroforestry on soil and water loss in hilly areas of the Sichuan Basin, China, J. Mountain Sci., 5, 241–248, https://doi.org/10.1007/s11629-008-0189-6, 2008.
Zhang, M., Huang, H., Li, Z., Hackman, K. O., Liu, C., Andriamiarisoa, R. L., Ny Aina Nomenjanahary Raherivelo, T., Li, Y., and Gong, P.: Automatic High-Resolution Land Cover Production in Madagascar Using Sentinel-2 Time Series, Tile-Based Image Classification and Google Earth Engine, Remote Sens., 12, https://doi.org/10.3390/rs12213663, 2020.
Zhang, X., Liu, L., Chen, X., Gao, Y., Xie, S., and Mi, J.: GLC_FCS30: global land-cover product with fine classification system at 30 m using time-series Landsat imagery, Earth Syst. Sci. Data, 13, 2753–2776, https://doi.org/10.5194/essd-13-2753-2021, 2021.
Zhang, Y., Shi, M., Zhao, X., Wang, X., Luo, Z., and Zhao, y.: Methods for automatic identification and extraction of terraces from high spatial resolution satellite data (China-GF-1), Int. Soil Water Conserv. Res., 5, 17–25, https://doi.org/10.1016/j.iswcr.2017.02.002, 2017.
Zhang, Y., Tian, P., Yang, L., Zhao, G., Mu, X., Wang, B., Du, P., Gao, P., and Sun, W.: Relationship between sediment load and climate extremes in the major Chinese rivers, J. Hydrol., 617, 128962, https://doi.org/10.1016/j.jhydrol.2022.128962, 2023.
Zhang, Y., Zhang, A., and Ma, Y.: An integrated mechanism and challenges of mountainous sustainable development: A review of Hani Terraces, China, Sustainable Dev., 32, 101–118, https://doi.org/10.1002/sd.2651, 2024.
Zhu, Z. and Woodcock, C. E.: Object-based cloud and cloud shadow detection in Landsat imagery, Remote Sens. Environ., 118, 83–94, https://doi.org/10.1016/j.rse.2011.10.028, 2012.
Short summary
We produced the first soil and water conservation terrace measures dataset with a fine classification system on Google Earth Engine platform. This dataset included terrace data and soil and water conservation measure factor values, covering the period from 2000 to 2020. The terraces are categorized into level terrace, slope terrace, zig terrace, and slope-separated terrace. The results showed that the average overall accuracy of the terrace was 91.7 % and the average F1 score was 83.3 %.
We produced the first soil and water conservation terrace measures dataset with a fine...
Altmetrics
Final-revised paper
Preprint