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Abstract. Terraces, as one of the most widely distributed and heavily invested soil and water conservation
(SWC) measures in China, currently lack a comprehensive database containing spatiotemporal distribution and
diverse classification types. This absence significantly hampers the accurate soil erosion assessment and SWC
planning in China. To address this gap, we developed a two-stage mapping framework to classify various ter-
race measures and produced a new dataset named the Soil and Water Conservation Terrace Measures Dataset
(SWCTMD). The dataset, spanning the years 2000 to 2020, was produced by integrating time-series Landsat im-
agery and digital elevation model data. The data incorporate SWC measure factors and four terrace types: level
terraces, slope terraces, zig terraces, and slope-separated terraces. On average, the SWCTMD achieved OA of
91.7 % and F1 of 83.3 % for terraces, and 89.4 % OA and 78.9 % F1 for different terrace types, underscoring its
high accuracy in terrace mapping. Comparative analysis demonstrated the superior robustness of the SWCTMD
compared to existing products. This dataset demonstrated that terraces in China are predominantly concentrated
in the Loess Plateau, Southwest and Southeast regions. From 2000 to 2020, the total terrace area increased by
41 594.1 km2, with slope terraces exhibiting the largest expansion, while decreases were primarily observed in
peri-urban areas. Notably, the modeling results indicated that terraces had reduced soil erosion of cropland by ap-
proximately 1390 million tons in 2020. The SWCTMD can be employed to enhance the accuracy of soil erosion
simulations and support long-term analysis of soil erosion trends. Furthermore, the dataset provides valuable
applications for earth system modelling and contributes to research on land resource management, food security,
biodiversity, and water cycle. The SWCTMD is freely available at https://doi.org/10.11888/Terre.tpdc.302400
(Duan, 2025).

1 Introduction

Agricultural terraces are one of the most common cultiva-
tion techniques in mountainous and hilly areas, varying in
shape and size. They consist of a flat cultivated section and
nearly vertical risers. The risers are typically protected by dry
stone, grass, scrub, or trees, and range from a few centime-
ters to several meters in height, with continuous or intermit-

tent profiles (Arnáez et al., 2015). Terraces form an important
soil and water conservation (SWC) measure (Wickama et al.,
2014; Londero et al., 2018). Based on the structures of the
field surface, terraces can be categorized into level terraces,
slope terraces, zig terraces, and slope-separated terraces (Liu
et al., 2013a). By reshaping the surface microtopography, ter-
races decrease the slope length and gradient and alter hy-
drological pathways (Deng et al., 2021). These changes re-
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duce soil erosion and runoff, improve water and soil con-
servation, and increase crop yields (Adgo et al., 2013; Chen
et al., 2017, 2020; Wei et al., 2021). Within established soil
erosion assessment frameworks, terraces have been incorpo-
rated as a support practice factor in the Universal Soil Loss
Equation (USLE) and the Revised Universal Soil Loss Equa-
tion (RUSLE) (Wischmeier and Smith, 1978; Renard et al.,
1997). In the Chinese Soil Loss Equation (CSLE), terraces
are specifically represented as an SWC engineering practice
factor (Liu et al., 2020). However, many large-scale assess-
ments of soil erosion neglect this factor due to insufficient
data on the spatial distribution of terraces (Gobin et al., 2004;
Teng et al., 2016). Therefore, the mapping of terraces is cru-
cial for soil erosion research.

Efforts have been made to map terraces in China. Three
primary methods have been employed to obtain spatial ex-
tent and location information of terraces. The first method is
a government-initiated land resource survey. Terraces were
considered in paddy field surveys during the second and third
nationwide land surveys in China. Terraces located in exten-
sive drylands, particularly on steep slopes, were often cate-
gorized simply as dryland or irrigated land, without distin-
guishing terrace types. The second method is to extract ter-
race information from land use data (Liu et al., 2021). Ex-
isting land use products in China, such as FROM-GLC, Glo-
beLand30, CLCD, CACD, and GLC_FCS30, generally clas-
sify terraces as cropland (Yu et al., 2013; Chen et al., 2015;
Yang and Huang, 2021; Zhang et al., 2021; Tu et al., 2024).
Among these, only the CNLUCC land use product further
subdivides cropland into paddy field and dryland; however,
this product also fails to distinguish terrace types on dryland
(Liu et al., 2010). This limitation makes it challenging to ex-
tract information about terraces from existing land use data.
The third method is to employ satellite images to identify
terraces. For instance, Lu et al. (2023) employed deep learn-
ing methods to map terraces in the Loess Plateau based on
high-resolution satellite images from October 2018 to Febru-
ary 2019. Li et al. (2024) produced a 30 m resolution terrace
map for China using 2017 Sentinel-2 imagery and Landsat-8
imagery on the Google Earth Engine (GEE) platform through
the random forest (RF) algorithm. Similarly, Cao et al. (2021)
produced a 30 m resolution terrace map using 2018 Landsat-
8 imagery and the RF algorithm on the GEE platform (Ta-
ble 1). Although these maps have been widely used in soil
erosion research (Li et al., 2023; Zhang et al., 2023), the lim-
ited classification of terrace types and the lack of long-term
coverage restrict broader application at regional or national
scales.

The effectiveness of terraces in SWC varies according to
type. Level terraces, characterized by flat cultivated surfaces,
can effectively reduce the amount, velocity, and energy of
surface runoff and increase water infiltration, thereby effec-
tively preventing the transportation of sediment (Wei et al.,
2012; Chen et al., 2013; Arnáez et al., 2015). Zig terraces in-
crease water infiltration and reduce runoff by creating micro-

catchments (Wang et al., 2004). Conversely, slope terraces,
with their uneven surfaces, are more prone to generating
runoff than level terraces or zig terraces (Wei et al., 2016).
Level terraces exhibit the most effective SWC benefits (de
Oliveira et al., 2012). Compared to slope terraces, level ter-
races can reduce runoff by 56.5 % and sediment by 53.1 %
(Chen et al., 2017). Ignoring terrace type can lead to inac-
curacies in soil erosion assessment, and the absence of long-
term terrace data hinders analyses of soil erosion trends.

Steep slope land accounts for more than one-third of the
total cropland area in China. In recent decades, the construc-
tion of agricultural terraces has been the primary engineer-
ing measure for managing steep slope cropland (Liu et al.,
2013b; Feng et al., 2017; Zhang et al., 2017). However, the
existing terrace datasets lack detailed classification of terrace
types and are limited to single-year data. These limitations
have hindered soil erosion assessment, prediction, and SWC
planning. To address this gap, we developed a two-stage
mapping framework for terrace classification on the GEE
platform. The first stage distinguishes terraces from non-
terraces, while the second stage focuses on identifying dif-
ferent terrace types. Using this mapping framework, we de-
veloped the first long-term (2000 to 2020) national Soil and
Water Conservation Terrace Measures Dataset (SWCTMD)
of China. The dataset incorporates a detailed classification
system. The accuracy of SWCTMD was evaluated using val-
idation samples and compared with existing terrace maps.
Additionally, the terrace dataset was used to identify spatial
and temporal changes in terraces across China and to assess
the SWC benefits provided by terraces.

2 Methodology

Figure 1 illustrates the framework of 30 m resolution terrace
mapping. The workflow includes sample collection, feature
calculation, classification implementation, post-classification
processing, and accuracy evaluation. Detailed information on
each stage of the terrace mapping process is provided below.

2.1 The classification system and interpretation symbols

According to the findings of China’s First National Census
for Water (FNCW) (Liu et al., 2020), we identified the four
major types of terraces: level terrace, slope terrace, zig ter-
race, and slope-separated terrace. The interpretation keys for
the different terrace types included shape, size, texture, color,
and location (Table 2).

2.2 Data and preprocessing

In this study, we primarily used Landsat surface reflectance
(SR) data, the Copernicus digital elevation model (DEM)
data, and GlobeLand30. Detailed information about these
datasets is provided in Table S1 in the Supplement.
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Table 1. Existing terrace products in China.

Method Algorithm Study area Data Reference

Deep learning Mapping terraces based on the
UNet++ deep learning network

The Loess Plateau Google Earth images Lu et al. (2023)

Machine
learning

Mapping terraces based on the RF
algorithm

China Landsat-8 imagery and
Sentinel-2 imagery

Li et al. (2024)

Machine
learning

Mapping terraces based on the RF
algorithm

China Landsat-8 imagery Cao et
al. (2021)

Figure 1. The framework for mapping terrace.

2.2.1 Landsat SR data

The study used Landsat-5/8 SR data, with a spatial reso-
lution of 30 m and a temporal resolution of 16 d. The data
were accessible through the GEE platform. The Landsat SR
data from the sensors had been atmospherically corrected by
the United States Geological Survey (USGS) utilizing the
LEDAPS algorithm (Masek et al., 2006). These data included
Quality Assessment (QA) masks that indicated the usability
of the pixel data, produced using the CFMASK algorithm
(Zhu and Woodcock, 2012). We used QA bands to identify
and remove clouds and cloud shadows in each Landsat SR
image, and missing data after cloud removal were filled us-
ing images from the previous year. Due to the inconsistency

in the wavelength of band among different Landsat sensors
(Roy et al., 2016), we used only Landsat-8 SR imagery for
the SWCTMD in 2020, and Landsat-5 SR imagery for the
SWCTMD in 2000 and 2010.

2.2.2 Copernicus DEM

Topographical features are essential characteristics that dif-
ferentiate regular cropland and terrace, playing a crucial
role in the identification of terraces. We used the Coper-
nicus DEM data to calculate these topographical features.
The Copernicus DEM is a Digital Surface Model with 30 m
resolution, derived from radar satellite data acquired from
2010 to 2015 during the TanDEM-X mission. Compared to

https://doi.org/10.5194/essd-17-6315-2025 Earth Syst. Sci. Data, 17, 6315–6330, 2025



6318 E. Zhang et al.: A 30 m resolution dataset of soil and water conservation terraces

Table 2. Image characteristics of different terrace types.

Terrace types Image characteristics Real photo

Level terrace Steep slope land transformed into a series of successively receding flat
surfaces, with bunds constructed from soil or stones, ranging in width
from 5 to 40 m, looking like the steps of a staircase in remote sensing
images. In contrast to slope terraces, level terraces are predominantly
found in low and flat areas.

Slope terrace Similar to level terraces, but with wider and more uneven surfaces, these
terraces exhibit irregular shapes in remote sensing images. They are
primarily used for dryland agriculture and are largely distributed the
areas with slopes greater than 5°.

Zig terrace Steep slope land has been transformed into step-like terraces that are
narrower than level terraces. The surfaces of these terraces exhibit
regular strip shapes in remote sensing images. These terraces are primarily
found in sloping regions and are used for planting permanent crops such
as tea.

Slope-separated terrace Each flat surface constructed on steep slope land retains a segment
of the original slope above, forming a composite structure that features
a slope between flat surfaces. These terraces are primarily used for
rubber plantations.

other DEM data (SRTM, ASTER GDEM, ALOS World 3D,
and NASADEM), Copernicus DEM has the highest accuracy
among open-source data (Guth and Geoffroy, 2021), exhibit-
ing the greatest detail of terrain (Li et al., 2022a). The GEE
platform provides access to the Copernicus DEM at 30 m res-
olution.

2.2.3 GlobeLand30

To improve the accuracy and efficiency of terrace identifica-
tion, we used the union of cropland data from GlobeLand30
from 2000 to 2020 as the range for terrace identification.
Then, we removed cropland with a slope of less than or
equal to 2° (Ministry of Natural Resources of the People’s
Republic of China, 2019). GlobeLand30 is a widely used
land use dataset with 30 m resolution that employs a pixel-
object-knowledge classification method, effectively utilizing
the advantages of various classification algorithms (Chen et
al., 2015). The accuracy of cropland area and spatial lo-
cation of GlobeLand30 is higher than the other four prod-
ucts (FROM-GLC, GlobCover, MODIS Collection 5, and
MODIS Cropland) in China (Lu et al., 2016). The cropland
from GlobeLand30 includes paddy fields, drylands, pastures,
and permanent crop lands (e.g., tea and coffee plantations).
Therefore, we adopted the cropland from GlobeLand30 as
the range of terrace classification.

2.3 Feature space construction

Feature variables play a crucial role in the classification of
remote sensing images. In this study, we constructed an in-

put dataset comprising four aspects: spectrum, spectral in-
dices, phenology, and topography. The six optical bands (red,
green, blue, near-infrared, shortwave infrared 1, and short-
wave infrared 2) from Landsat SR imagery for a specific
year, along with the corresponding spectral indices (NDVI,
MNDWI, NDBI, BSI, LSWI, and EVI), were composited
into the 25th, 50th, and 75th percentiles utilizing the metrics-
composite method. The percentiles effectively represent phe-
nological information while simplifying time series informa-
tion, thereby reducing annual time series noise and enhanc-
ing the accuracy of classification (Duan et al., 2024). In ad-
dition to the Landsat-based metrics, we incorporated seven
frequently utilized topographic features: slope, aspect, slope
of slope (SOS), relief (RF), slope shape (P ), roughness (R),
and elevation (Tang et al., 2016). The calculation method for
feature variables is shown in Table S2. To eliminate multi-
collinearity among the feature variables, we removed highly
correlated features based on two criteria: (a) a variance in-
flation factor (VIF) value for each feature less than 10, and
(b) pairwise Pearson correlation coefficients are below 0.7
(Liao et al., 2021). Detailed information about the used fea-
tures is provided in Tables S3, S4, and S5.

2.4 Collection of training samples

Samples are a critical component in supervised classifica-
tion. We used manual visual interpretation methods to ob-
tain samples from the years 2000, 2010, and 2020. To ensure
that the collected samples were evenly distributed across the
study area, we implemented a strategy of gathering samples
by subregions. The study area was divided into 1641 subre-
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gions. Utilizing high-resolution images from Google Earth
Pro software, we collected at least five samples from each
subregion (Fig. S1). Through this method, we collected a to-
tal of 103 374 samples. Specifically, 34 891 samples were ob-
tained in 2000, 34 072 samples were obtained in 2010, and
34 411 samples were obtained in 2020 (Table S6).

2.5 Ground-truth reference data

The terrace validation data were derived from the FNCW
conducted between 2010 and 2012. These data were ob-
tained through field surveys and provide detailed informa-
tion about terraces, including terrace types and GPS coordi-
nates. The survey covered croplands nationwide. A total of
14 986 survey sites were used for validation of terrace accu-
racy in 2010, comprising 3706 terrace samples and 11 280
non-terrace samples (Fig. 2). The statistics for different ter-
race types are listed in Table S7. Based on these data, the
terrace validation samples for 2000 and 2020 were obtained
by overlaying high-resolution remote sensing imagery from
Google Earth Pro for verification.

2.6 Terrace classification on the GEE platform

The GEE platform offers a variety of classification algo-
rithms. We selected the widely used RF model for terrace
classification, as the algorithm offers the advantages of re-
markable performance, high efficiency, and interpretability
(Rodriguez-Galiano et al., 2012; Gong et al., 2019). Two es-
sential parameters must be set for the RF model. In this study,
we set the number of trees to 500 and determined the number
of variables per split as the rounded square root of the feature
number. Other parameters were maintained at the default set-
tings specified by the GEE platform (He et al., 2017; Gong
et al., 2020). To alleviate the impact of crop spectral vari-
ability on classification accuracy, the study area was divided
into six subregions (Fig. 3) (Li et al., 2024). The different
terrace types within each region were classified separately.
Given the sensitivity of the RF model to the ratio of samples
across different classes (Chen et al., 2024), we implemented
a two-stage mapping approach for classifying terraces within
each region. In the first stage, RF was utilized to differenti-
ate between terrace and non-terrace classes. In the second
stage, RF was utilized to classify various terrace types, in-
cluding level terraces, slope terraces, zig terraces, and slope-
separated terraces. In Stage I of the mapping process, sam-
ples from both terrace and non-terrace samples were used,
whereas only terrace samples were utilized in Stage II.

2.7 Post-classification processing

Both supervised and unsupervised classification methods in
remote sensing rely on the spectral characteristics of image
pixels. A critical issue is the presence of isolated pixels in the
classification results, which exhibit high local spatial hetero-

geneity between neighboring pixels (Hirayama et al., 2019).
This phenomenon, commonly known as the salt-and-pepper
effect, is regarded as noise affecting accuracy. Terraces, be-
ing primarily constructed in hilly or mountainous regions,
often exhibit a scattered and irregular distribution, which
leads to an obvious salt-and-pepper effect in classified im-
ages. Given the small areas of terraces, we applied a mode
filter with 3× 3 px for spatial filtering processing to mitigate
the salt-and-pepper effect from the classification results. To
improve the overall quality of the mapping results, we con-
ducted spatial-temporal consistency checks to suppress illog-
ical land use conversions. Specifically, for areas that were
cropland in both the previous year and the current year (ex-
cluding grain-for-green areas), we modified those areas that
were previously terraces but were identified as non-terraces
in the current year to terraces.

2.8 Accuracy assessment

It is an essential step to assess the accuracy of the products
prior to utilizing data in related applications. The classifica-
tion maps were evaluated using a confusion matrix calculated
from validation samples. The confusion matrix is widely re-
garded as the standard method for evaluating the accuracy
of classified images. This method offers quantitative assess-
ment metrics, including the kappa coefficient (KA), overall
accuracy (OA), the producer’s accuracy (PA), and the user’s
accuracy (UA), which collectively assess the performance of
the products. OA and KA measure the total map accuracy.
PA and UA measure the omission and commission errors for
each class. In addition, we calculated the F1 score, which re-
flects the balance between UA and PA. The KA, OA, PA, UA,
and F1 metrics range from 0 to 1, where 1 indicates optimal
performance and 0 represents the poorest performance. The
formula for the F1 metric is shown in Eq. (1):

F1= 2
PA×UA

(PA+UA)
(1)

In this study, we constructed two confusion matrices: one to
evaluate the accuracy of terraces and non-terraces, and the
other to assess the accuracy of various terrace types.

3 Results

3.1 Overall accuracy assessment

Two confusion matrices corresponding to different terrace
classification levels were generated using the validation sam-
ples. For the classification of terrace and non-terrace, the OA
ranged from 91.7 % to 91.8%, with KA ranging from 77.7 %
to 78.2%, and F1-scores ranging from 83.1 % to 94.6 % (Ta-
ble 3). For terrace class, the UA ranged from 77.6 % to
84.6%, and the PA ranged from 81.7 % to 90.7%, and the F1
above 80%, indicating that the overall classification performs
well.
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Figure 2. The Spatial distribution of validation samples.

Table 3. The accuracy matrix for the terrace and non-terrace.

Year Types UA (%) PA (%) F1 score (%) OA (%) KA (%)

2000 Non-terrace 97 92.1 94.5 91.7 78.2
Terrace 77.6 90.7 83.6

2010 Non-terrace 94.1 95.1 94.6 91.8 77.7
Terrace 84.6 81.7 83.1

2020 Non-terrace 96.8 92.2 94.5 91.7 77.8
Terrace 77.7 89.8 83.3

For different terrace types, the OA ranged from 88.8 %
to 89.8%, KA ranged from 65.1 % to 69.5%, and F1 scores
ranged from 68.9 % to 93.9 % (Table 4). Level terraces ex-
hibited the highest classification accuracy, followed by slope-
separated terraces, slope terraces, and zig terraces. From the
UA and PA, the commission errors were lower than the omis-
sion errors for different types of terraces. Level terraces had
the lowest misclassification error among the terrace types.

Figure 4 illustrates the spatial consistency between the
SWCTMD and two existing datasets: the 2018 China Ter-
race Map (CTM2018) (Cao et al., 2021) and the 2017 China
Terrace Map (CTM2017) (Li et al., 2024). SWCTMD ex-

hibited the highest accuracy. Compared to SWCTMD and
CTM2018, CTM2017 exhibited relatively lower accuracy
for both typical terrace and non-terraces areas (regions B,
C, D, F and G in Fig. 4b). For typical terraces, SWCTMD
and CTM2018 show similar identification performance (re-
gions A, B, C, D and F in Fig. 4b). However, for atypical
terraces, such as zig terraces located in Yunnan Province,
SWCTM successfully identified these as terraces, whereas
CTM2018 failed to identify them as terraces (regions E in
Fig. 4b). Conversely, for non-terrace areas situated in the
Middle-Lower Yangtze River, SWCTMD accurately classi-
fied these as non-terraces, while CTM2018 erroneously clas-
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Figure 3. Geographical regionalization in China. SW represents Southwest China. NW represents Northwest China. NENC represents
Northeast and North China. SC represents South China. CC represents Central China. EC represents East China.

Table 4. The accuracy matrix for the different types of terraces.

Year types UA (%) PA (%) F1 score (%) OA (%) KA (%)

2000 Level terrace 93.7 94.1 93.9 89.7 66
Slope terrace 70.1 70.6 70.3
Zig terrace 74.6 64.1 68.9
Slope-separated terrace 85.7 70.6 77.4

2010 Level terrace 93.8 94 93.9 89.8 69.5
Slope terrace 73.1 73.2 73.2
Zig terrace 77.6 68.6 72.8
Slope-separated terrace 83.3 88.2 85.7

2020 Level terrace 93.7 92.9 93.3 88.8 65.1
Slope terrace 67.8 71.3 69.5
Zig terrace 70 68.8 69.4
Slope-separated terrace 86.7 72.2 78.8

sified them as terrace areas (regions G in Fig. 4b). At the
provincial scale, the majority of provinces exhibit larger ter-
race areas in SWCTMD compared to both CTM2018 and
CTM2017 (Tables S8 and S9).

3.2 Accuracy assessment in different regions

The classification of terraces across different regions per-
formed well, but there were significant differences in ac-
curacy among the regions. The Southwest and Northwest
had the highest concentrations of terraces. Southwest China
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Figure 4. Regional comparisons of the three terraces datasets. (a) The distribution of cropland in China in 2020. (b) The spatial distributions
of the three terraces datasets. All Google imagery was generated using ©Google Earth.

achieved superior classification performance due to its pro-
nounced terrace morphology and spectral characteristics.
Southwest China demonstrated the highest classification pre-
cision, with average values of UA, PA, F1, OA, and KA
at 89.8 %, 95.8 %, 92.7 %, 90.2 %, and 77.9 %, respectively
(Table S10). Northwest China followed closely, with corre-
sponding average values of 75.2 %, 91.6 %, 82.3 %, 89.6 %,
and 75.1 %. In contrast, Northeast and North China, South
China, Central China, and East China have relatively flat
terrain, with terraces being similar to the surrounding crop-
land, resulting in relatively lower classification accuracy. The
mean F1 scores were 70.6 %, 77.5 %, 81 %, and 73.8 %,
respectively. The mean OA scores were 94.5 %, 91.3 %,
87.8 %, and 91.7 %, respectively, and the KA were around
70 % (Table S10).

The overall classification accuracy for different terrace
types across all regions was well. Northwest China, North-
east and North China, Central China, and South China had
the highest classification accuracy, followed by Southwest
China and East China. The average UA, PA, F1, OA, and KA
values of Northwest China, Northeast and North China, Cen-
tral China, and South China were 82.3 %, 81.1 %, 81.5 %,
90.4 %, 67.9 %. The average UA, PA, F1, OA, and KA values
for Southwest China and East China were 76.5 %, 77.9 %,
77.1 %, 90 %, 64.4 % (Table S11). Among all terrace types,

level terraces had the highest classification accuracy across
all regions, followed by slope-separated terraces, slope ter-
races, and zig terraces.

3.3 Spatiotemporal variation of terraces in China

Terraces are primarily distributed across the hills, basins, and
plateaus of China (Figs. 5a and S2). The Sichuan Basin ex-
hibited the highest concentration of terraces, followed by
the Yunnan-Guizhou Plateau and the Loess Plateau. Ter-
races are also extensively found in the hilly regions of cen-
tral and southeastern China. Level terraces are distributed in
the gentler slopes of hilly regions in China. Sloped terraces
are most densely distributed across Yunnan and the Loess
Plateau, with lesser occurrence in the hilly regions of central
and southeastern China. Zig terraces are mostly distributed
in Southwest China and Northwest China, while slope-
separated terraces are mostly located in Southwest China and
Central China (Fig. 5a and b). In terms of spatial changes,
the increasing terraces are mainly distributed in the Yunnan-
Guizhou Plateau, the Loess Plateau, the Sichuan Basin, and
South China from 2000 to 2020 (Fig. 6a). These areas are
severely affected by soil erosion. Yunnan and Guangxi are
the provinces with the largest increase in terraces (Fig. 6b).
The decreasing terraces are mainly distributed around urban
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areas from 2000 to 2020, where urban expansion has occu-
pied some terrace areas.

The provinces with the largest terrace areas were Sichuan,
Yunnan, Guizhou, Gansu, Shanxi, Hunan, Shaanxi, and
Chongqing, while other provinces had relatively smaller ter-
race areas (Fig. 7a). Among these, Chongqing, Sichuan,
Guizhou, and Yunnan exhibited the highest percentage of
terraces, with over 80 % of cropland converted to terraces
(Fig. 7b). From 2000 to 2020, Yunnan, Guangxi, Shanxi, and
Shaanxi experienced the most significant increases in ter-
race areas, increasing by 11 372.4 km2 (13.1 %), 5192.4 km2

(32.9 %), 2395 km2 (6.1 %), and 2295 km2 (6.2 %), respec-
tively (Fig. 7a). In terms of terrace types, the areas of
level terraces, slope terraces, zig terraces and slope-separated
terraces increased by 5701.4 km2 (1.3 %), 29 876.3 km2

(18.9 %), 5886.5 km2 (31.4 %), and 129.9 km2 (24.9 %), re-
spectively, with the slope terrace having the largest increase
(Fig. 7c, d, e and f). Overall, China’s total terrace area ex-
panded from 612 885.4 km2 in 2000 to 654 479.5 km2 in
2020, an increase of 6.8 % (Fig. 7g).

3.4 SWC measure factor and responses of soil erosion
to terraces

The SWC measure factor (E) value for each terrace mea-
sure was given according to the FNCW and published litera-
ture (Table S12) (Duan et al., 2020; Liu et al., 2020). Using
these parameters, we generated spatial distribution maps of
E for the years 2000, 2010, and 2020 (Fig. S3). With these
data, we utilized the CSLE to assess cropland soil erosion
across China in 2020 (Notes S1, S2 and S3). Figure 8 il-
lustrates the soil erosion modulus under the terrace scenario
in 2020. The average soil erosion modulus for cropland was
8 t ha−1 yr−1, with a total eroded area of 842 685 km2. Com-
pared to the scenario without terrace measures, the average
soil erosion modulus of cropland decreased by 7 t ha−1 yr−1

(46.5 %), and the erosion area was reduced by 223 134.8 km2

(20.9 %) (Fig. S4a and b). Collectively, terrace measures re-
duced approximately 1390 million tons of cropland soil ero-
sion, accounting for 46.5 % of the total erosion on crop-
lands. Spatially, the reduction in erosion was primarily con-
centrated in the Loess Plateau, Sichuan Basin, and Yunnan-
Guizhou Plateau. Ningxia, Gansu, Sichuan, Chongqing,
Qinghai, Guizhou, Shanxi, and Yunnan exhibited the largest
decreases, with reductions of about 65 %–75 %.

4 Discussion

4.1 Comprehensive and Reliability of SWCTMD

We compared the 2020 terrace area estimated by SWCTMD
with those from CTM2018 and CTM2017. SWCTMD ex-
hibited the largest terrace area compared to CTM2018 and
CTM2017. The areal discrepancies can be attributed to the
following reasons. First, CTM2017 and CTM2018 predom-

inantly focused on the most typical level terraces, whereas
our research encompasses a broader range of terrace types,
including non-typical terraces such as slope terraces, zig ter-
races, and slope-separated terrace. Second, each dataset em-
ployed distinct cropland for terrace classification. SWCTMD
utilized the union of cropland with slopes exceeding 2°
from the 2000, 2010, and 2020 GlobeLand30 cropland data,
whereas CTM2018 employed only the 2010 GlobeLand30
cropland data, and CTM2017 adopted FROM-GLC cropland
data. Third, CTM2018 excluded isolated patches smaller
than 9000 m2 from its classification scheme. However, since
SWCTMD constrains its classification to cropland with
slopes exceeding 2°, the identified terrace areas in Anhui, Fu-
jian, Jiangxi, and Zhejiang provinces were smaller than those
from CTM2018. In these provinces, CTM2018 included ter-
races with slopes below 2°, which is classified as non-
terraces according to the technical regulations of the third
nationwide land survey. Overall, our dataset provides more
comprehensive coverage for terraces and exhibits higher ac-
curacy and robustness.

4.2 Spatial pattern of terraces

The Sichuan Basin, Loess Plateau, and the Yunnan-Guizhou
Plateau are the three regions with the highest concentra-
tion of terraces in China. Other areas, characterized by rel-
atively gentle slopes, have fewer terraces. In the hilly ar-
eas of the Sichuan Basin and the Yunnan-Guizhou Plateau,
humans have constructed terraces through a long-term pro-
cess of adapting to nature by reshaping mountainous land-
scapes (Zhang et al., 2008; Duan et al., 2020). This process
has also fostered unique cultural and social practices associ-
ated with terraces (Zhan and Jin, 2015; Zhang et al., 2024).
These regions face challenges such as limited cultivated land
resources, steep slopes, and intense precipitation (Liu et al.,
2014; Li et al., 2016; Wang and Dai, 2020). The construc-
tion of terraces not only produces additional cultivable land
but also optimizes water resource utilization and reduces soil
erosion (Wei et al., 2017).

In recent years, the Chinese Land Consolidation projects
and the Well-Facilitated Farmland projects have prioritized
slope-to-terrace conversion as the primary land consolidation
strategy in mountainous regions (Tang et al., 2019). This ini-
tiative has significantly increased the terrace area in south-
western China. In the Loess Plateau, terraces are primarily
constructed for SWC and ecological restoration. Natural fac-
tors such as fragmented mountainous terrain, loose soil, and
intense rainfall, combined with human activities of deforesta-
tion, overgrazing, and cultivation on steep slope, have made
the Loess Plateau one of China’s most severely eroded re-
gions (Wang et al., 2010; Liang et al., 2015). Over the past
few decades, large-scale programs such as Grain-for-Green
and terrace construction initiatives have been implemented
to combat soil and water loss (Fu et al., 2017). Most terraces
in the Loess Plateau are dryland terraces, predominantly lo-
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Figure 5. The spatial patterns of different terrace types at the pixel and provincial. (a) The spatial distribution of different terraces in China
in 2020. (b) The different terrace areas in provinces in 2020.

Figure 6. The spatial changes of the terrace at the pixel and provincial. (a) The spatial changes in terraces from 2000 to 2020. (b) Changes
in the terrace areas across different provinces from 2000 to 2020.

cated in Gansu, Ningxia, Shanxi, and Shaanxi Provinces. In
northeast China, cropland have long slope lengths, and gen-
tle slope degrees (Liu et al., 2020), resulting in fewer terraces
being built. In contrast, in the hilly regions of central and
southeastern China, terraces have also been constructed de-

spite gentler slopes. Unlike the Sichuan Basin, Loess Plateau,
and Yunnan-Guizhou Plateau, where terraces serve as a ne-
cessity for managing steep terrain, the primary motivation in
these areas is to expand the amount of land for the cultiva-
tion of economic crops such as tea and fruit trees (Li et al.,
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Figure 7. The changes of terrace areas at provincial and types from 2000 to 2020. (a) The changes of terrace area in different provinces. (b)
The proportion of terraces to cropland in different provinces. (c–f) The areas of level terrace, slope terrace, zig terrace, and slope-separated
terrace. (g) The total terrace areas of China.

2022b). However, in mountainous and hilly regions, urban
expansion has occupied some formerly terraced areas.

4.3 Soil conservation of terraces

Due to the lack of large-scale terrace distribution data,
many previous continental-scale soil erosion assessments
have generally not considered the influence of terraces, such
as Europe, Australia, and Africa (Gobin et al., 2004; Teng
et al., 2016; Salhi et al., 2025). This has led to overestima-
tion of cropland soil erosion. Wang et al. (2021b) estimated
cropland erosion at 1939.7× 106 t in 2015 without account-
ing for terraces. Conversely, our study indicated cropland
erosion at 1599.4× 106 t in 2020, closely aligning with the
2011 FNCW result of 1640.0× 106 t. Regarding the erosion
reduction effects of terraces, Li et al. (2024) mapped terrace
in 2017 and found that terraces reduced cropland erosion by
950 million tons. In contrast, our study estimates that terraces
reduced cropland erosion by 1390 million tons in 2020. The
discrepancy between the two results from Li et al. (2024)
failure to distinguish between terrace types, resulting in an
underestimation of terrace benefits.

According to our estimate, soil erosion of the Loess
Plateau accounted for only 12.6 % of the total cropland ero-
sion. Terraces in this region contributed to 17.4 % of the total
reduction of cropland soil erosion, demonstrating the benefits

of terraces to SWC. In Northeast China, terraces are sparse,
and cropland is characterized by long slope lengths and gen-
tle slope degrees, with erosion accounting for 27.6 % of the
total cropland erosion. In Southwest China, erosion amount
accounted for 23.4 % of total cropland erosion. Northeast
and Southwest China should be the key areas for future soil
erosion protection efforts. In Hebei, Henan, and Shandong
Provinces, extensive cultivation and high crop planting inten-
sity contributed 16.3 % of the total cropland erosion, which
warrants attention. In this study, each terrace type was as-
signed a fixed E value to facilitate the estimation of large-
scale soil erosion. However, this approach overlooks spa-
tial heterogeneity in terrace structure, maintenance status,
field management, climate, and topography. Future research
should incorporate regional characteristics and adjust the E-
value accordingly.

4.4 Limitations and prospects

The spatial heterogeneity of land types frequently leads
to class imbalance in remote sensing classification, con-
sequently diminishing classification accuracy for minority
classes that occupy a smaller area (Xiao et al., 2024). The
models tend to favor majority classes during training, re-
ducing their ability to accurately identify minority classes
(Chen et al., 2025). When the ratio of samples across dif-
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Figure 8. The effects of terraces on soil erosion in different provinces. (a) The soil erosion alleviated by terraces. (b) The percentage
represents the amount of soil erosion alleviated by terraces as a proportion of the total soil erosion without terraces.

ferent classes remains balanced, classification performance
typically falls short of optimal accuracy thresholds (Deng et
al., 2025). A common strategy to alleviate this negative effect
is to divide the study area into multiple sub-regions for local-
ized classification, thereby reducing the impact of sample im-
balance on model accuracy (Zhang et al., 2020). In this study,
we employed a partitioned two-stage RF approach to reduce
the effects of sample imbalance on classification accuracy.
The results demonstrated that classification for terrace and
different terrace types achieved satisfactory accuracy in both
the entire study area and individual subregions. However, the
accuracy metrics of the majority class were still higher than
those of the minority class. In future studies, sample opti-
mization techniques and more advanced classification meth-
ods could be combined to further improve the accuracy of
minority class classification.

The complex and diversity diverse landform types have
resulted in differences in the spectral information and topo-
graphic features of terraces in different regions. In Southwest
and Northwest China, terraces exhibit concentrated distribu-
tions with clearly defined characteristics, making them eas-
ily identifiable. However, South China, Central China, and
East China have relatively low topographic relief. Some ter-
races have spectral and topographic features similar to those

of sloping farmland and flatland. This similarity, combined
with the presence of mixed pixels in medium-resolution im-
agery (Wang et al., 2021a), makes it challenging to detect the
terrace patches. Although the classification used 30 m Land-
sat imagery in this study was generally robust, some frag-
mented and narrow terraces were omitted. Future research
could employ high-resolution remote sensing images to ef-
fectively identify fragmented and narrow terraces. Previous
small-scale studies have demonstrated that the use of high-
resolution remote sensing imagery, combined with object-
based classification methods and deep learning approaches,
can significantly enhance classification accuracy and reduce
the impact of spectral confusion and mixed pixels on terrace
identification (Diaz-Varela et al., 2014; Wang et al., 2023;
Kan et al., 2025). To improve classification accuracy and
efficiency, cropland data were used as the basis for terrace
identification. Inevitably, the accuracy of cropland data im-
pacts the terrace mapping process, as errors in cropland data
propagate into the terrace maps. In summary, future stud-
ies could utilize high-resolution remote sensing imagery and
more accurate cropland datasets, and adopt sample optimiza-
tion techniques and more advanced classification algorithms
to improve the detection of subpixel terrace distributions.
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5 Data availability

The Landsat imagery and Copernicus DEM data were ac-
quired from the Google Earth Engine. The GlobeLand30
data can be downloaded from the National Geomatics Cen-
ter of China. The 1 km spatial resolution SWCTMD (cal-
culated from the 30 m resolution SWCTMD) can be ac-
cessed at https://doi.org/10.11888/Terre.tpdc.302400 (Duan,
2025). The 30 m resolution SWCTMD is also available from
https://doi.org/10.11888/Terre.tpdc.302400.

6 Conclusions

This study developed the first SWC terrace measures dataset
for China with a fine classification system at a spatial resolu-
tion of 30 m. The dataset includes data for each decade from
2000 to 2020. The dataset was generated by combining the
full archive of Landsat imagery, DEM, and nationally scaled
samples obtained by manual visualization, using a two-stage
random forest classification on the GEE platform. The av-
erage OA and average F1 scores for identifying terraces and
non-terraces were 91.7 % and 88.9%, respectively. For differ-
ent terrace types, the average OA and F1 scores were 89.4 %
and 78.9 %, respectively.

Compared to existing terrace datasets, the newly devel-
oped dataset provides more comprehensive coverage, espe-
cially in identifying zig terraces in southwest China. The
analysis revealed that terraces were primarily distributed in
the Loess Plateau, Southwest China, and Southeast China.
From 2000 to 2020, the total terrace areas expanded by
41 594.1 km2, with level terraces increasing by 5701.4 km2,
slope terraces by 29 876.3 km2, slope-separated terraces by
129.9 km2, and zig terraces by 5886.5 km2. Terrace expan-
sion was mainly concentrated in the Loess Plateau and the
Southwest and Southeast regions of China, while the de-
creases in terraced area primarily occurred around urban ar-
eas.

Terraces in China are estimated to have reduced soil
erosion on cropland by approximately 1390 million tons.
Further analysis highlighted the benefits of SWC in the
Yunnan-Guizhou Plateau and Loess Plateau areas. The ter-
race dataset, with its detailed classification system is ex-
pected to provide a cornerstone for national and regional soil
erosion assessment and prediction, SWC planning, and eval-
uations of various ecosystem services related to terraces.
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