Articles | Volume 17, issue 11
https://doi.org/10.5194/essd-17-6295-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-6295-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Monitoring abiotic and biotic parameters of forest regrowth under different management regimes on former wildfire sites in northeastern Germany – data from the PYROPHOB project
Marie-Therese Schmehl
CORRESPONDING AUTHOR
Institute of Environmental Science and Geography, University of Potsdam, Karl-Liebknecht-Straße 24–25, 14476 Potsdam, Germany
Yojana Adhikari
Centre for Econics and Ecosystem Management, Eberswalde University for Sustainable Development, Alfred-Möller-Str. 1, 16225 Eberswalde, Germany
Cathrina Balthasar
Senckenberg German Entomological Institute, Eberswalder Str. 90, 15374 Müncheberg, Germany
Anja Binder
Centre for Econics and Ecosystem Management, Eberswalde University for Sustainable Development, Alfred-Möller-Str. 1, 16225 Eberswalde, Germany
Danica Clerc
Landeskompetenzzentrum Forst Eberswalde, Landesbetrieb Forst Brandenburg, Alfred-Möller-Str. 1, 16225 Eberswalde, Germany
Sophia Dobkowitz
Institute of Environmental Science and Geography, University of Potsdam, Karl-Liebknecht-Straße 24–25, 14476 Potsdam, Germany
Werner Gerwin
Research Center Landscape Development and Mining Landscapes (FZLB), Brandenburg University of Technology Cottbus-Senftenberg, Siemens-Halske-Ring 8, 03046 Cottbus, Germany
Kristin Günther
GFZ Helmholtz Centre for Geosciences, 14473, Potsdam, Germany
Heinrich Hartong
Büro UmLand Schmid und Hartong GbR, Berkenbrücker Dorfstr. 11, 14947 Nuthe-Urstromtal, Germany
Thilo Heinken
General Botany, Institute for Biology and Biochemistry, University of Potsdam, Maulbeerallee 3, 14469 Potsdam, Germany
Carsten Hess
Naturwald Akademie gGmbH, Roeckstraße 0, 23568 Lübeck, Germany
Pierre L. Ibisch
Centre for Econics and Ecosystem Management, Eberswalde University for Sustainable Development, Alfred-Möller-Str. 1, 16225 Eberswalde, Germany
Florent Jouy
Centre for Econics and Ecosystem Management, Eberswalde University for Sustainable Development, Alfred-Möller-Str. 1, 16225 Eberswalde, Germany
Loretta Leinen
Naturwald Akademie gGmbH, Roeckstraße 0, 23568 Lübeck, Germany
Thomas Raab
Chair of Geopedology and Landscape Development, Brandenburg University of Technology Cottbus-Senftenberg, Siemens-Halske-Ring 8, 03046 Cottbus, Germany
Frank Repmann
Chair of Geopedology and Landscape Development, Brandenburg University of Technology Cottbus-Senftenberg, Siemens-Halske-Ring 8, 03046 Cottbus, Germany
Susanne Rönnefarth
Centre for Econics and Ecosystem Management, Eberswalde University for Sustainable Development, Alfred-Möller-Str. 1, 16225 Eberswalde, Germany
Lilly Rohlfs
Landeskompetenzzentrum Forst Eberswalde, Landesbetrieb Forst Brandenburg, Alfred-Möller-Str. 1, 16225 Eberswalde, Germany
Marina Schirrmacher
Landeskompetenzzentrum Forst Eberswalde, Landesbetrieb Forst Brandenburg, Alfred-Möller-Str. 1, 16225 Eberswalde, Germany
Jens Schröder
Landeskompetenzzentrum Forst Eberswalde, Landesbetrieb Forst Brandenburg, Alfred-Möller-Str. 1, 16225 Eberswalde, Germany
Maren Schüle
General Botany, Institute for Biology and Biochemistry, University of Potsdam, Maulbeerallee 3, 14469 Potsdam, Germany
Centre for Econics and Ecosystem Management, Eberswalde University for Sustainable Development, Alfred-Möller-Str. 1, 16225 Eberswalde, Germany
Andrea Vieth-Hillebrand
GFZ Helmholtz Centre for Geosciences, 14473, Potsdam, Germany
Till Francke
Institute of Environmental Science and Geography, University of Potsdam, Karl-Liebknecht-Straße 24–25, 14476 Potsdam, Germany
Related authors
No articles found.
Elodie Marret, Peter M. Grosse, Lena Scheiffele, Katya Dimitrova Petrova, Till Francke, Daniel Altdorff, Maik Heistermann, Merlin Schiel, Carsten Neumann, Daniel Scheffler, Mehdi Saberioon, Matthias Kunz, Miroslav Zboril, Jonas Marach, Marcel Reginatto, Anna Balenzano, Daniel Rasche, Christine Stumpp, Benjamin Trost, and Sascha E. Oswald
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-546, https://doi.org/10.5194/essd-2025-546, 2025
Preprint under review for ESSD
Short summary
Short summary
This data paper describes a comprehensive collection of soil moisture and related data from an extensive cosmic-ray neutron sensing (CRNS) network at an agricultural research site in north-east Germany. The data set comprises not only soil moisture observations at different spatio-temporal scales, but also a wealth of accompanying data that provide the context to interpret soil moisture dynamics within a broader hydrological and environmental framework.
Till Francke and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 25, 2783–2802, https://doi.org/10.5194/nhess-25-2783-2025, https://doi.org/10.5194/nhess-25-2783-2025, 2025
Short summary
Short summary
Brandenburg is among the driest federal states in Germany. The low groundwater recharge (GWR) is fundamental to both water supply and the support of natural ecosystems. In this study, we show that the decline of observed discharge and groundwater tables since 1980 can be explained by climate change in combination with an increasing leaf area index. Still, simulated GWR rates remain highly uncertain due to the uncertainty in precipitation trends.
Nazaré Suziane Soares, Carlos Alexandre Gomes Costa, Till Francke, Christian Mohr, Wolfgang Schwanghart, and Pedro Henrique Augusto Medeiros
EGUsphere, https://doi.org/10.5194/egusphere-2025-884, https://doi.org/10.5194/egusphere-2025-884, 2025
Short summary
Short summary
We use drone surveys to map river intermittency in reaches and classify them into "Wet", "Transition", "Dry" or "Not Determined". We train Random Forest models with 40 candidate predictors, and select altitude, drainage area, distance from dams and dynamic predictors. We separate different models based on dynamic predictors: satellite indices (a) and (b); or (c) accumulated precipitation (30 days). Model (a) is the most successful in simulating intermittency both temporally and spatially.
Till Francke, Cosimo Brogi, Alby Duarte Rocha, Michael Förster, Maik Heistermann, Markus Köhli, Daniel Rasche, Marvin Reich, Paul Schattan, Lena Scheiffele, and Martin Schrön
Geosci. Model Dev., 18, 819–842, https://doi.org/10.5194/gmd-18-819-2025, https://doi.org/10.5194/gmd-18-819-2025, 2025
Short summary
Short summary
Multiple methods for measuring soil moisture beyond the point scale exist. Their validation is generally hindered by not knowing the truth. We propose a virtual framework in which this truth is fully known and the sensor observations for cosmic ray neutron sensing, remote sensing, and hydrogravimetry are simulated. This allows for the rigorous testing of these virtual sensors to understand their effectiveness and limitations.
Daniel Altdorff, Maik Heistermann, Till Francke, Martin Schrön, Sabine Attinger, Albrecht Bauriegel, Frank Beyrich, Peter Biró, Peter Dietrich, Rebekka Eichstädt, Peter Martin Grosse, Arvid Markert, Jakob Terschlüsen, Ariane Walz, Steffen Zacharias, and Sascha E. Oswald
EGUsphere, https://doi.org/10.5194/egusphere-2024-3848, https://doi.org/10.5194/egusphere-2024-3848, 2024
Short summary
Short summary
The German federal state of Brandenburg is particularly prone to soil moisture droughts. To support the management of related risks, we introduce a novel soil moisture and drought monitoring network based on cosmic-ray neutron sensing technology. This initiative is driven by a collaboration of research institutions and federal state agencies, and it is the first of its kind in Germany to have started operation. In this brief communication, we outline the network design and share first results.
Maik Heistermann, Till Francke, Martin Schrön, and Sascha E. Oswald
Hydrol. Earth Syst. Sci., 28, 989–1000, https://doi.org/10.5194/hess-28-989-2024, https://doi.org/10.5194/hess-28-989-2024, 2024
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) is a non-invasive technique used to obtain estimates of soil water content (SWC) at a horizontal footprint of around 150 m and a vertical penetration depth of up to 30 cm. However, typical CRNS applications require the local calibration of a function which converts neutron counts to SWC. As an alternative, we propose a generalized function as a way to avoid the use of local reference measurements of SWC and hence a major source of uncertainty.
Stefano Gianessi, Matteo Polo, Luca Stevanato, Marcello Lunardon, Till Francke, Sascha E. Oswald, Hami Said Ahmed, Arsenio Toloza, Georg Weltin, Gerd Dercon, Emil Fulajtar, Lee Heng, and Gabriele Baroni
Geosci. Instrum. Method. Data Syst., 13, 9–25, https://doi.org/10.5194/gi-13-9-2024, https://doi.org/10.5194/gi-13-9-2024, 2024
Short summary
Short summary
Soil moisture monitoring is important for many applications, from improving weather prediction to supporting agriculture practices. Our capability to measure this variable is still, however, limited. In this study, we show the tests conducted on a new soil moisture sensor at several locations. The results show that the new sensor is a valid and compact alternative to more conventional, non-invasive soil moisture sensors that can pave the way for a wide range of applications.
Lena Katharina Schmidt, Till Francke, Peter Martin Grosse, and Axel Bronstert
Hydrol. Earth Syst. Sci., 28, 139–161, https://doi.org/10.5194/hess-28-139-2024, https://doi.org/10.5194/hess-28-139-2024, 2024
Short summary
Short summary
How suspended sediment export from glacierized high-alpine areas responds to future climate change is hardly assessable as many interacting processes are involved, and appropriate physical models are lacking. We present the first study, to our knowledge, exploring machine learning to project sediment export until 2100 in two high-alpine catchments. We find that uncertainties due to methodological limitations are small until 2070. Negative trends imply that peak sediment may have already passed.
Maik Heistermann, Till Francke, Lena Scheiffele, Katya Dimitrova Petrova, Christian Budach, Martin Schrön, Benjamin Trost, Daniel Rasche, Andreas Güntner, Veronika Döpper, Michael Förster, Markus Köhli, Lisa Angermann, Nikolaos Antonoglou, Manuela Zude-Sasse, and Sascha E. Oswald
Earth Syst. Sci. Data, 15, 3243–3262, https://doi.org/10.5194/essd-15-3243-2023, https://doi.org/10.5194/essd-15-3243-2023, 2023
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) allows for the non-invasive estimation of root-zone soil water content (SWC). The signal observed by a single CRNS sensor is influenced by the SWC in a radius of around 150 m (the footprint). Here, we have put together a cluster of eight CRNS sensors with overlapping footprints at an agricultural research site in north-east Germany. That way, we hope to represent spatial SWC heterogeneity instead of retrieving just one average SWC estimate from a single sensor.
Lena Katharina Schmidt, Till Francke, Peter Martin Grosse, Christoph Mayer, and Axel Bronstert
Hydrol. Earth Syst. Sci., 27, 1841–1863, https://doi.org/10.5194/hess-27-1841-2023, https://doi.org/10.5194/hess-27-1841-2023, 2023
Short summary
Short summary
We present a suitable method to reconstruct sediment export from decadal records of hydroclimatic predictors (discharge, precipitation, temperature) and shorter suspended sediment measurements. This lets us fill the knowledge gap on how sediment export from glacierized high-alpine areas has responded to climate change. We find positive trends in sediment export from the two investigated nested catchments with step-like increases around 1981 which are linked to crucial changes in glacier melt.
Florian Hirsch, Thomas Raab, Alexandra Raab, Anna Schneider, Alexander Bonhage, Marcus Schneider, and Albrecht Bauriegel
DEUQUA Spec. Pub., 4, 59–71, https://doi.org/10.5194/deuquasp-4-59-2022, https://doi.org/10.5194/deuquasp-4-59-2022, 2022
Lena Katharina Schmidt, Till Francke, Erwin Rottler, Theresa Blume, Johannes Schöber, and Axel Bronstert
Earth Surf. Dynam., 10, 653–669, https://doi.org/10.5194/esurf-10-653-2022, https://doi.org/10.5194/esurf-10-653-2022, 2022
Short summary
Short summary
Climate change fundamentally alters glaciated high-alpine areas, but it is unclear how this affects riverine sediment transport. As a first step, we aimed to identify the most important processes and source areas in three nested catchments in the Ötztal, Austria, in the past 15 years. We found that areas above 2500 m were crucial and that summer rainstorms were less influential than glacier melt. These findings provide a baseline for studies on future changes in high-alpine sediment dynamics.
Maik Heistermann, Heye Bogena, Till Francke, Andreas Güntner, Jannis Jakobi, Daniel Rasche, Martin Schrön, Veronika Döpper, Benjamin Fersch, Jannis Groh, Amol Patil, Thomas Pütz, Marvin Reich, Steffen Zacharias, Carmen Zengerle, and Sascha Oswald
Earth Syst. Sci. Data, 14, 2501–2519, https://doi.org/10.5194/essd-14-2501-2022, https://doi.org/10.5194/essd-14-2501-2022, 2022
Short summary
Short summary
This paper presents a dense network of cosmic-ray neutron sensing (CRNS) to measure spatio-temporal soil moisture patterns during a 2-month campaign in the Wüstebach headwater catchment in Germany. Stationary, mobile, and airborne CRNS technology monitored the root-zone water dynamics as well as spatial heterogeneity in the 0.4 km2 area. The 15 CRNS stations were supported by a hydrogravimeter, biomass sampling, and a wireless soil sensor network to facilitate holistic hydrological analysis.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Till Francke, Maik Heistermann, Markus Köhli, Christian Budach, Martin Schrön, and Sascha E. Oswald
Geosci. Instrum. Method. Data Syst., 11, 75–92, https://doi.org/10.5194/gi-11-75-2022, https://doi.org/10.5194/gi-11-75-2022, 2022
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) is a non-invasive tool for measuring hydrogen pools like soil moisture, snow, or vegetation. This study presents a directional shielding approach, aiming to measure in specific directions only. The results show that non-directional neutron transport blurs the signal of the targeted direction. For typical instruments, this does not allow acceptable precision at a daily time resolution. However, the mere statistical distinction of two rates is feasible.
Maik Heistermann, Till Francke, Martin Schrön, and Sascha E. Oswald
Hydrol. Earth Syst. Sci., 25, 4807–4824, https://doi.org/10.5194/hess-25-4807-2021, https://doi.org/10.5194/hess-25-4807-2021, 2021
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) is a powerful technique for retrieving representative estimates of soil moisture in footprints extending over hectometres in the horizontal and decimetres in the vertical. This study, however, demonstrates the potential of CRNS to obtain spatio-temporal patterns of soil moisture beyond isolated footprints. To that end, we analyse data from a unique observational campaign that featured a dense network of more than 20 neutron detectors in an area of just 1 km2.
Cited articles
Ayres, M. P., Hicke, J. A., Kerns, B. K., McKenzie, D., Littell, J. S., Band, L. E., Luce, C. H., Weed, A. S., and Raymond, C. L.: Disturbance Regimes and Stressors, in: Climate Change and United States Forests, vol. 57, series Title: Advances in Global Change Research, edited by: Peterson, D. L., Vose, J. M., and Patel-Weynand, T., Springer Netherlands, Dordrecht, 55–92, ISBN 978-94-007-7514-5, https://doi.org/10.1007/978-94-007-7515-2_4, 2014. a
Blumroeder, J. S., Schmidt, F., Gordon, A., Grosse, S., and Ibisch, P. L.: Ecosystemic resilience of a temperate post-fire forest under extreme weather conditions, Front. Forests Global Change, 5, https://doi.org/10.3389/ffgc.2022.1070958, 2022. a, b
Bundesministerium für Verbraucherschutz, Deutschland: Handbuch forstliche Analytik eine Loseblatt-Sammlung der Analysemethoden im Forstbereich, https://www.nw-fva.de/fileadmin/nwfva/publikationen/pdf/konig_handbuch_forstliche.pdf (last access: 16 April 2025), 2009. a
Clerc, D. and Schirrmacher, M.: Liegendes Totholz auf Schadflächen erfassen, AFZ-DerWald, 16–19, https://www.digitalmagazin.de/marken/afz-derwald/hauptheft/2023-11/waldinventuren/016_liegendes-totholz-auf-schadflaechen-erfassen (last access: 16 April 2025), 2023. a
Clerc, D., Schirrmacher, M., and Schroeder, J.: Waldbrand und wie weiter? Totholzdynamik auf den Brandflächen bei Treuenbrietzen aus Sicht des Projekts PYROPHOB, vol. 73, MLEUV – Ministerium für Land- und Ernährungswirtschaft, Umwelt und Verbraucherschutz, Brandenburg, https://www.researchgate.net/publication/371947326_Waldbrand_und_wie_weiter_Totholzdynamik_auf_den_Brandflachen_bei_Treuenbrietzen_aus_Sicht_des_Projekts_PYROPHOB (last access: 16 April 2025), 2023. a
Daughtry, C., Walthall, C., Kim, M., de Colstoun, E., Brown, and McMurtrey III, J.: Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance, Remote Sens. Environ., 74, 229–239, https://doi.org/10.1016/s0034-4257(00)00113-9, 2000. a
de Conto, T.: TreeLS: Terrestrial Point Cloud Processing of Forest Data, r package version 2.0.5, GitHub [code], https://github.com/tiagodc/TreeLS (last access: 23 March 2025), 2023. a
Dobkowitz, S., Francke, T., and Schmehl, M.-T.: 6.3.3. Bodenhydrologi, in: PYROPHOB – Strategien zur Entwicklung von widerstandsfähigen Wäldern auf Waldbrandflächen, in: vol. 77 of Eberswalder Forstliche Schriftenreihe, MLEUV – Ministerium für Land- und Ernährungswirtschaft, Umwelt und Verbraucherschutz, Brandenburg, Potsdam, https://forst.brandenburg.de/sixcms/media.php/9/efs77.pdf (last access: 23 May 2025), 2025. a
Eisenbeis, G., Lenz, R., and Heiber, T.: Organic residue decomposition: The minicontainer-system a multifunctional tool in decomposition studies, Environ. Sci. Pollut. Res., 6, 220–224, https://doi.org/10.1007/BF02987332, 1999. a
FARO Technologies Inc.: FARO Focus 3D Laser Scanner, Technische Spezifikationen, version 13.12.2021, https://www.faro.com (last access: 30 April 2025), 2021. a
Fersch, B., Francke, T., Heistermann, M., Schrön, M., Döpper, V., Jakobi, J., Baroni, G., Blume, T., Bogena, H., Budach, C., Gränzig, T., Förster, M., Güntner, A., Hendricks Franssen, H.-J., Kasner, M., Köhli, M., Kleinschmit, B., Kunstmann, H., Patil, A., Rasche, D., Scheiffele, L., Schmidt, U., Szulc-Seyfried, S., Weimar, J., Zacharias, S., Zreda, M., Heber, B., Kiese, R., Mares, V., Mollenhauer, H., Völksch, I., and Oswald, S.: A dense network of cosmic-ray neutron sensors for soil moisture observation in a highly instrumented pre-Alpine headwater catchment in Germany, Earth Syst. Sci. Data, 12, 2289–2309, https://doi.org/10.5194/essd-12-2289-2020, 2020. a, b
Gelbrecht, J., Weidlich, M., Clemens, F., Eichstädt, D., Rämisch, F., Ratering, S., and Richert, A.: Gesamtartenliste und Rote Liste der gefährdeten Schmetterlinge Brandenburgs (Makrolepidoptera, Pyraloidea), Naturschutz und Landschaftspflege in Brandenburg, Beilage zu Heft 3, https://lfu.brandenburg.de/sixcms/media.php/9/Heft+N&L_beil_3_2001_Gesamtartenliste.pdf (last access: 7 May 2025), 2001 a
Gustafsson, L., Granath, G., Nohrstedt, H.-O., Leverkus, A. B., and Johansson, V.: Burn severity and soil chemistry are weak drivers of early vegetation succession following a boreal mega-fire in a production forest landscape, J. Veg. Sci., 32, e12966, https://doi.org/10.1111/jvs.12966, 2021. a
Haboudane, D., Miller, J., Pattey, E., Zarco-Tejada, P., and Strachan, I.: Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture, Remote Sens. Environ., 90, 337–352, https://doi.org/10.1016/j.rse.2003.12.013, 2004. a
Heinken, T., Blumröder, J. S., Adhikari, Y., Balthasar, C., Binder, A., Birkhofer, K., Bischoff, A., Brosinsky, A., Bubner, B., Clerc, D., Djoudi, E. A., Dobkowitz, S., Francke, T., Gerwin, W., Hartong, H., Hess, C., Jarling, R., Jouy, F., Leinen, L., Meißner, A., Raab, T., Repmann, F., Rönnefarth, S., Schaaf, W., Schirrmacher, M., Schmehl, M.-T., Schmitt, T., Schröder, J., Schüle, M., Sturm, K., Welle, T., and Ibisch, P. L.: PYROPHOB – A post-fire ecosystem research project to inform management for resilient forest development/PYROPHOB – Ein Ökosystemforschungsprojekt auf Waldbrandflächen als Grundlage für das Management einer resilienten Waldentwicklung, Tuexenia, 44, https://doi.org/10.14471/2024.44.004, 2024. a, b, c, d, e, f, g
Heistermann, M., Bogena, H., Francke, T., Gn̈tner, A., Jakobi, J., Rasche, D., Schrön, M., Döpper, V., Fersch, B., Groh, J., Patil, A., Pütz, T., Reich, M., Zacharias, S., Zengerle, C., and Oswald, S.: Soil moisture observation in a forested headwater catchment: combining a dense cosmic-ray neutron sensor network with roving and hydrogravimetry at the TERENO site Wüstebach, Earth Syst. Sci. Data, 14, 2501–2519, https://doi.org/10.5194/essd-14-2501-2022, 2022. a
Hodgetts, N. and Lockhart, N.: Checklist and country status of European bryophytes – update 2020, Irish Wildlife Manuals 123, National Parks and Wildlife Service, Department of Culture, Heritage and the Gaeltacht, Ireland, https://www.npws.ie/sites/default/files/publications/pdf/IWM123.pdf (last access: 23 March 2025), 2020. a, b
Jackisch, R., Putzenlechner, B., and Dietze, E.: UAV data of post fire dynamics, Quesenbank, Harz, 2022 (orthomosaics, topography, point clouds), Zenodo [data set], https://doi.org/10.5281/ZENODO.7554597, 2023. a
Jouy, F., Schüle, M., Adhikari, Y., Binder, A., Clerc, D., Gerwin, W., Heinken, T., Raab, T., Repmann, F., Rönnefarth, S., Schirrmacher, M., Schmehl, M.-T., Schröder, J., and Ibisch, P. L.: Factors impacting the variability of post-fire forest regeneration in central European pine plantations, Restor. Ecol., e70017, https://doi.org/10.1111/rec.70017, 2025. a, b, c
Key, C. and Benson, N.: Landscape Assessment: Remote sensing of severity, the Normalized Burn Ratio; and ground measure of severity, the Composite Burn Index, RMRS-GTR-164-CD; LA-1-55, USDA Forest Service, Rocky Mountain Research Station, Ogden, https://www.frames.gov/documents/projects/firemon/FIREMON_LandscapeAssessment.pdf (last access: 5 July 2023), 2005. a
Klose, S. and Makeschin, F.: Soil properties in coniferous forest stands along a fly ash deposition gradient in eastern Germany, Pedosphere, 15, 681–694, 2005. a
Klotz, S., Kühn, I., Durka, W., and Briemle, G.: BIOLFLOR: Eine Datenbank mit biologisch-ökologischen Merkmalen zur Flora von Deutschland, Bundesamt für Naturschutz, Bonn, Germany, ISBN 9783784335087, 2002. a
Kwak, J., Chang, S., Naeth, M., and Schaaf, W.: Nitrogen transformation rates are affected by cover soil type but not coarse woody debris application in reclaimed oil sands soils, Restor. Ecol., 24, 506–516, https://doi.org/10.1111/rec.12344, 2016. a
Lemmon, P. E.: A Spherical Densiometer For Estimating Forest Overstory Density, Forest Sci., 2, 314–320, https://doi.org/10.1093/forestscience/2.4.314, 1956. a
Li, X., Jin, H., Feng, Q., Wu, Q., Wang, H., He, R., Luo, D., Chang, X., Şerban, R.-D., and Zhan, T.: An integrated dataset of ground hydrothermal regimes and soil nutrients monitored in some previously burned areas in hemiboreal forests in Northeast China during 2016–2022, Earth Syst. Sci. Data, 16, 5009–5026, https://doi.org/10.5194/essd-16-5009-2024, 2024. a
Lindgren, B. S.: A Multiple Funnel Trap for Scolytid Beetles (Coleoptera), Can. Entomolog., 115, 299–302, 1983. a
Lüer, B. and Böhmer, A.: Vergleich zwischen Perkolation und Extraktion mit 1 M NH4 Cl‐Lösung zur Bestimmung der effektiven Kationenaustauschkapazität (KAKeff) von Böden, Z. Pflanzenernähr. Bodenk., 163, 555–557, https://doi.org/10.1002/1522-2624(200010)163:5<555::AID-JPLN555>3.0.CO;2-#, 2000. a
Michel, A. K.: Forest Condition in Europe: The 2022 Assessment; ICP Forests Technical Report under the UNECE Convention on Long-range Transboundary Air Pollution (Air Convention), Johann Heinrich von Thünen-Institut, Germany, ISBN 978-3-86576-240-5, https://doi.org/10.3220/ICPTR1656330928000, 2022. a
Monnet, J.-M.: lidaRtRee: Forest Analysis with Airborne Laser Scanning (LiDAR) Data, r package version 4.0.5, CRAN, https://CRAN.R-project.org/package=lidaRtRee (last access: 23 March 2025), 2023. a
Mosig, C., Vajna-Jehle, J., Mahecha, M. D., Cheng, Y., Hartmann, H., Montero, D., Junttila, S., Horion, S., Schwenke, M. B., Adu-Bredu, S., Al-Halbouni, D., Allen, M., Altman, J., Angiolini, C., Astrup, R., Barrasso, C., Bartholomeus, H., Brede, B., Buras, A., Carrieri, E., Chirici, G., Cloutier, M., Cushman, K., Dalling, J. W., Dempewolf, J., Denter, M., Ecke, S., Eichel, J., Eltner, A., Fabi, M., Fassnacht, F., Feirreira, M. P., Frey, J., Frick, A., Ganz, S., Garbarino, M., García, M., Gassilloud, M., Ghasemi, M., Giannetti, F., Gonzalez, R., Gosper, C., Greinwald, K., Grieve, S., Gutierrez, J. A., Göritz, A., Hajek, P., Hedding, D., Hempel, J., Hernández, M., Heurich, M., Honkavaara, E., Jucker, T., Kalwij, J. M., Khatri-Chhetri, P., Klemmt, H.-J., Koivumäki, N., Korznikov, K., Kruse, S., Krüger, R., Laliberté, E., Langan, L., Latifi, H., Lehmann, J., Li, L., Lines, E., Lopatin, J., Lucieer, A., Ludwig, M., Ludwig, A., Lyytikäinen-Saarenmaa, P., Ma, Q., Marino, G., Maroschek, M., Meloni, F., Menzel, A., Meyer, H., Miraki, M., Moreno-Fernández, D., Muller-Landau, H. C., Mälicke, M., Möhring, J., Müllerova, J., Neumeier, P., Näsi, R., Oppgenoorth, L., Palmer, M., Paul, T., Potts, A., Prober, S., Puliti, S., Pérez-Priego, O., Reudenbach, C., Rossi, C., Ruehr, N. K., Ruiz-Benito, P., Runge, C. M., Scherer-Lorenzen, M., Schiefer, F., Schladebach, J., Schmehl, M.-T., Schwarz, S., Seidl, R., Shafeian, E., de Simone, L., Sohrabi, H., Sotomayor, L., Sparrow, B., Steer, B. S., Stenson, M., Stöckigt, B., Su, Y., Suomalainen, J., Torresani, M., Umlauft, J., Vargas-Ramírez, N., Volpi, M., Vásquez, V., Weinstein, B., Ximena, T. C., Zdunic, K., Zielewska-Büttner, K., de Oliveira, R. A., van Wagtendonk, L., von Dosky, V., and Kattenborn, T.: deadtrees.earth – An Open-Access and Interactive Database for Centimeter-Scale Aerial Imagery to Uncover Global Tree Mortality Dynamics, bioRxiv [preprint], https://doi.org/10.1101/2024.10.18.619094, 2024. a
Naethe, K., Levia, D. F., Tischer, A., and Michalzik, B.: Low-intensity surface fire effects on carbon and nitrogen cycling in soil and soil solution of a Scots pine forest in central Germany, Catena, 162, 360–375, https://doi.org/10.1016/j.catena.2017.10.026, 2018. a
Schauermann, J.: Development Of Insect Populations On Burned Pine Plantation Areas In The Northwest German Lowland, Entomolog. General., 6, 193–199, 1980. a
Schirrmacher, M. and Clerc, D.: Liegendes Totholz auf Schadflächen erfassen, AFZ – Der Wald, https://www.waldwissen.net/assets/technik/inventur/lfe_Inventur_liegendes_Totholz/Engel_Schirrmacher_Clerc_liegendes_totholz_ste.pdf (last access: 15 May 2025), 2023. a
Schmehl, M.-T.: 6.4.4. Vegetationsstrukturen, in: PYROPHOB – Strategien zur Entwicklung von widerstandsfähigen Wäldern auf Waldbrandflächen, in: vol. 77 of Eberswalder Forstliche Schriftenreihe, MLEUV – Ministerium für Land- und Ernährungswirtschaft, Umwelt und Verbraucherschutz, Brandenburg, Potsdam, https://forst.brandenburg.de/sixcms/media.php/9/efs77.pdf (last access: 23 May 2025), 2025. a
Schmehl, M.-T., Adhikari, Y., Balthasar, C., Binder, A., Clerc, D., Dobkowitz, S., Gerwin, W., Günther, K., Hartong, H., Heinken, T., Hess, C., Ibisch, P. L., Jouy, F., Leinen, L., Raab, T., Repmann, F., Rönnefarth, S., Rohlfs, L., Schirrmacher, M., Schröder, J., Schüle, M., Vieth-Hillebrand, A., and Francke, T.: Forest regrowth after wildfire in northeastern Germany – data from the PYROPHOB project – Part 1, B2SHARE [data set], https://doi.org/10.23728/b2share.08a6a8b56f774a08a984871e7e, 2025a. a, b, c
Schmehl, M.-T., Adhikari, Y., Balthasar, C., Binder, A., Clerc, D., Dobkowitz, S., Gerwin, W., Günther, K., Hartong, H., Heinken, T., Hess, C., Ibisch, P. L., Jouy, F., Leinen, L., Raab, T., Repmann, F., Rönnefarth, S., Rohlfs, L., Schirrmacher, M., Schröder, J., Schüle, M., Vieth-Hillebrand, A., and Francke, T.: Forest regrowth after wildfire in northeastern Germany – data from the PYROPHOB project – Part 2 (access after 31. Mar. 2026), B2SHARE [data set], https://doi.org/10.23728/b2share.515d0a8145a64db8b3069466d, 2025b. a, b, c
Schmehl, M.-T., Adhikari, Y., Balthasar, C., Binder, A., Clerc, D., Dobkowitz, S., Gerwin, W., Günther, K., Hartong, H., Heinken, T., Hess, C., Ibisch, P. L., Jouy, F., Leinen, L., Raab, T., Repmann, F., Rönnefarth, S., Rohlfs, L., Schirrmacher, M., Schröder, J., Schüle, M., Vieth-Hillebrand, A., and Francke, T.: Forest regrowth after wildfire in northeastern Germany – data from the PYROPHOB project – Part 3.1 (Remote Sensing Data), B2SHARE [data set], https://doi.org/10.23728/b2share.de1661761da5481f938caf460e, 2025c. a, b, c
Schmehl, M.-T., Adhikari, Y., Balthasar, C., Binder, A., Clerc, D., Dobkowitz, S., Gerwin, W., Günther, K., Hartong, H., Heinken, T., Hess, C., Ibisch, P. L., Jouy, F., Leinen, L., Raab, T., Repmann, F., Rönnefarth, S., Rohlfs, L., Schirrmacher, M., Schröder, J., Schüle, M., Vieth-Hillebrand, A., and Francke, T.: Forest regrowth after wildfire in northeastern Germany – data from the PYROPHOB project – Part 3.2 (Remote Sensing Data), B2SHARE [data set], https://doi.org/10.23728/b2share.51bdf4b6dc854873b6ff44fddd, 2025d. a, b, c
Schüle, M., Domes, G., Schwanitz, C., and Heinken, T.: Early natural tree regeneration after wildfire in a Central European Scots pine forest: Forest management, fire severity and distance matters, Forest Ecol. Manage., 539, 120999, https://doi.org/10.1016/j.foreco.2023.120999, 2023. a, b
Steiner, A.: Die Nachtfalter Deutschlands: ein Feldführer: sämtliche nachtaktiven Großschmetterlinge in Lebendfotos und auf Farbtafeln, Bugbook Publishing, Østermarie, ISBN 9783000438622, 2014. a
Stevens-Rumann, C. S., Kemp, K. B., Higuera, P. E., Harvey, B. J., Rother, M. T., Donato, D. C., Morgan, P., and Veblen, T. T.: Evidence for declining forest resilience to wildfires under climate change, Ecol. Lett., 21, 243–252, https://doi.org/10.1111/ele.12889, 2018. a
Tesha, D. L., Madundo, S. D., and Mauya, E. W.: Post-fire assessment of recovery of montane forest composition and stand parameters using in situ measurements and remote sensing data, Trees Forests People, 15, 100464, https://doi.org/10.1016/j.tfp.2023.100464, 2024. a
United States Geological Survey: Unmanned Aircraft Systems Data Post Processing: Structure-from-Motion Photogrammetry. Section 2 – MicaSense 5-band MultiSpectral Imagery, USGS National UAS Project Office, https://uas.usgs.gov/nupo/pdf/PhotoScanProcessingMicaSenseMar2017.pdf (last access: 22 September 2020), 2017. a
Waddel, K. L.: Sampling Coarse Woody Debris for Multiple Attributes in Extensive Resource Inventories, Ecol. Indic., 1, https://doi.org/10.1016/S1470-160X(01)00012-7, 2002. a
Wirth, V., Hauck, M., von Brackel, W., Cezanne, R., de Bruyn, U., Dürhammer, O., Eichler, M., Gnüchtel, A., John, V., Litterski, B., Otte, V., Schiefelbein, U., Scholz, P., Schultz, M., Stordeur, R., Feuerer, T., and Heinrich, D.: Rote Liste und Artenverzeichnis der Flechten und flechtenbewohnenden Pilze Deutschlands, in: Rote Liste der gefährdeten Tiere, Pflanzen und Pilze Deutschlands, vol. 6 of Naturschutz und Biologische Vielfalt, edited by: Ludwig, G. and Matzke-Hajek, G., Bundesamt für Naturschutz, Bonn, 7–122, https://www.researchgate.net/publication/236119237_Rote_Liste_und_Artenverzeichnis_der_Flechten_und_flechtenbewohnenden_Pilze_Deutschlands (last access: 24 April 2025), 2011. a
Wolf, K. D., Higuera, P. E., Davis, K. T., and Dobrowski, S. Z.: Wildfire impacts on forest microclimate vary with biophysical context, Ecosphere, 12, e03467, https://doi.org/10.1002/ecs2.3467, 2021. a
Woodall, C. W., Monleon, V. C., Fraver, S., Russel, M. B., Hatfield, M. H., Campbell, J. L., and Domke, G. M.: Data Descriptor: The downed and dead wood inventory of forests in the United States, Sci. Data, 6, https://doi.org/10.1038/sdata.2018.303, 2019. a
Yang, M., Luo, X., Cai, Y., Mwangi, B. N., Khan, M. S., Haider, F. U., Huang, W., Cheng, X., Yang, Z., Zhou, H., Liu, S., Zhang, Q., Luo, M., Ou, J., Xiong, S., and Li, Y.: Effect of fire and post-fire management on soil microbial communities in a lower subtropical forest ecosystem after a mountain fire, J. Environ. Manage., 351, 119885, https://doi.org/10.1016/j.jenvman.2023.119885, 2024. a
Zang, J., Qiu, F., and Zhang, Y.: A global dataset of forest regrowth following wildfires, Sci. Data, 11, 1052, https://doi.org/10.1038/s41597-024-03896-8, 2024. a, b
Short summary
We present data recorded by eight institutions within the PYROPHOB project, running from 2020 to 2024 at two forest research sites in northeastern Germany. The aim of the project was to monitor abiotic and biotic parameters of forest regrowth under different management regimes on former wildfire sites. The multitude of collected data allows for detailed analyses of the observables separately, as well as their interaction for a more multidisciplinary view on forest recovery after a wildfire.
We present data recorded by eight institutions within the PYROPHOB project, running from 2020 to...
Altmetrics
Final-revised paper
Preprint