Articles | Volume 17, issue 11
https://doi.org/10.5194/essd-17-6217-2025
https://doi.org/10.5194/essd-17-6217-2025
Data description paper
 | 
18 Nov 2025
Data description paper |  | 18 Nov 2025

Bright: a globally distributed multimodal building damage assessment dataset with very-high-resolution for all-weather disaster response

Hongruixuan Chen, Jian Song, Olivier Dietrich, Clifford Broni-Bediako, Weihao Xuan, Junjue Wang, Xinlei Shao, Yimin Wei, Junshi Xia, Cuiling Lan, Konrad Schindler, and Naoto Yokoya

Related authors

AGBD: A Global-scale Biomass Dataset
Ghjulia Sialelli, Torben Peters, Jan D. Wegner, and Konrad Schindler
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-G-2025, 829–838, https://doi.org/10.5194/isprs-annals-X-G-2025-829-2025,https://doi.org/10.5194/isprs-annals-X-G-2025-829-2025, 2025
Unrecognised water limitation is a main source of uncertainty for models of terrestrial photosynthesis
Samantha Biegel, Konrad Schindler, and Benjamin D. Stocker
EGUsphere, https://doi.org/10.5194/egusphere-2025-1617,https://doi.org/10.5194/egusphere-2025-1617, 2025
Short summary
Interactive snow avalanche segmentation from webcam imagery: results, potential, and limitations
Elisabeth D. Hafner, Theodora Kontogianni, Rodrigo Caye Daudt, Lucien Oberson, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
The Cryosphere, 18, 3807–3823, https://doi.org/10.5194/tc-18-3807-2024,https://doi.org/10.5194/tc-18-3807-2024, 2024
Short summary
TOWARDS ACCURATE INSTANCE SEGMENTATION IN LARGE-SCALE LIDAR POINT CLOUDS
B. Xiang, T. Peters, T. Kontogianni, F. Vetterli, S. Puliti, R. Astrup, and K. Schindler
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-1-W1-2023, 605–612, https://doi.org/10.5194/isprs-annals-X-1-W1-2023-605-2023,https://doi.org/10.5194/isprs-annals-X-1-W1-2023-605-2023, 2023
Avalanche size estimation and avalanche outline determination by experts: reliability and implications for practice
Elisabeth D. Hafner, Frank Techel, Rodrigo Caye Daudt, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 23, 2895–2914, https://doi.org/10.5194/nhess-23-2895-2023,https://doi.org/10.5194/nhess-23-2895-2023, 2023
Short summary

Cited articles

Adriano, B., Xia, J., Baier, G., Yokoya, N., and Koshimura, S.: Multi-Source Data Fusion Based on Ensemble Learning for Rapid Building Damage Mapping during the 2018 Sulawesi Earthquake and Tsunami in Palu, Indonesia, Remote Sensing, 11, https://doi.org/10.3390/rs11070886, 2019. a, b, c
Adriano, B., Yokoya, N., Xia, J., Miura, H., Liu, W., Matsuoka, M., and Koshimura, S.: Learning from multimodal and multitemporal earth observation data for building damage mapping, ISPRS J. Photogramm., 175, 132–143, 2021. a, b, c, d, e, f, g, h, i, j, k
Andrienko, D., Goriunov, D., Grudova, V., Markuts, J., Marshalok, T., Neyter, R., Piddubnyi, I., Studennikova, I., and Topolskov, D.: Report on Damages to Infrastructure from the Destruction Caused by Russia’s Military Aggression Against Ukraine as of November 2024, Tech. rep., Kyiv School of Economics (KSE) Institute, https://kse.ua/wp-content/uploads/2025/02/KSE_Damages_Report-November-2024---ENG.pdf (last access: 7 November 2025), 2025. a
Arciniegas, G. A., Bijker, W., Kerle, N., and Tolpekin, V. A.: Coherence- and Amplitude-Based Analysis of Seismogenic Damage in Bam, Iran, Using ENVISAT ASAR Data, IEEE T. Geosci. Remote, 45, 1571–1581, 2007. a
Artés, T., Oom, D., de Rigo, D., Durrant, T. H., Maianti, P., Libertà, G., and San-Miguel-Ayanz, J.: A global wildfire dataset for the analysis of fire regimes and fire behaviour, Scientific Data, 6, 296, https://doi.org/10.1038/s41597-019-0312-2, 2019. a
Download
Short summary
Natural disasters often damage buildings and threaten lives, especially in areas with limited resources. To help improve emergency response, we created a global dataset called BRIGHT using both optical and radar images to detect building damage in any weather. We tested many artificial intelligence models and showed how well they work in real disaster scenes. This work can guide better tools for future disaster recovery and help save lives faster.
Share
Altmetrics
Final-revised paper
Preprint