Articles | Volume 17, issue 11
https://doi.org/10.5194/essd-17-6217-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-6217-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Bright: a globally distributed multimodal building damage assessment dataset with very-high-resolution for all-weather disaster response
Hongruixuan Chen
Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
RIKEN Center for Advanced Intelligence Project (AIP), RIKEN, Tokyo, Japan
Jian Song
Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
RIKEN Center for Advanced Intelligence Project (AIP), RIKEN, Tokyo, Japan
Olivier Dietrich
Department of Photogrammetry and Remote Sensing, ETH Zürich, Zürich, Switzerland
Clifford Broni-Bediako
RIKEN Center for Advanced Intelligence Project (AIP), RIKEN, Tokyo, Japan
Weihao Xuan
Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
RIKEN Center for Advanced Intelligence Project (AIP), RIKEN, Tokyo, Japan
Junjue Wang
Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
Xinlei Shao
Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
Yimin Wei
Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
Junshi Xia
RIKEN Center for Advanced Intelligence Project (AIP), RIKEN, Tokyo, Japan
Cuiling Lan
Microsoft Research Asia, Beijing, China
Konrad Schindler
Department of Photogrammetry and Remote Sensing, ETH Zürich, Zürich, Switzerland
Naoto Yokoya
CORRESPONDING AUTHOR
Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
RIKEN Center for Advanced Intelligence Project (AIP), RIKEN, Tokyo, Japan
Related authors
No articles found.
Ghjulia Sialelli, Torben Peters, Jan D. Wegner, and Konrad Schindler
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-G-2025, 829–838, https://doi.org/10.5194/isprs-annals-X-G-2025-829-2025, https://doi.org/10.5194/isprs-annals-X-G-2025-829-2025, 2025
Samantha Biegel, Konrad Schindler, and Benjamin D. Stocker
EGUsphere, https://doi.org/10.5194/egusphere-2025-1617, https://doi.org/10.5194/egusphere-2025-1617, 2025
Short summary
Short summary
Our work addresses the predictability of carbon absorption by ecosystems across the globe, particularly in dry regions. We compare 3 different models, including a deep learning model that can learn from past environmental conditions, and show that this helps improve predictions. Still, challenges remain in dry areas due to varying vulnerabilities to drought. As drought conditions intensify globally, it's crucial to understand the varying impacts on ecosystem function.
Elisabeth D. Hafner, Theodora Kontogianni, Rodrigo Caye Daudt, Lucien Oberson, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
The Cryosphere, 18, 3807–3823, https://doi.org/10.5194/tc-18-3807-2024, https://doi.org/10.5194/tc-18-3807-2024, 2024
Short summary
Short summary
For many safety-related applications such as road management, well-documented avalanches are important. To enlarge the information, webcams may be used. We propose supporting the mapping of avalanches from webcams with a machine learning model that interactively works together with the human. Relying on that model, there is a 90% saving of time compared to the "traditional" mapping. This gives a better base for safety-critical decisions and planning in avalanche-prone mountain regions.
B. Xiang, T. Peters, T. Kontogianni, F. Vetterli, S. Puliti, R. Astrup, and K. Schindler
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-1-W1-2023, 605–612, https://doi.org/10.5194/isprs-annals-X-1-W1-2023-605-2023, https://doi.org/10.5194/isprs-annals-X-1-W1-2023-605-2023, 2023
Elisabeth D. Hafner, Frank Techel, Rodrigo Caye Daudt, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 23, 2895–2914, https://doi.org/10.5194/nhess-23-2895-2023, https://doi.org/10.5194/nhess-23-2895-2023, 2023
Short summary
Short summary
Oftentimes when objective measurements are not possible, human estimates are used instead. In our study, we investigate the reproducibility of human judgement for size estimates, the mappings of avalanches from oblique photographs and remotely sensed imagery. The variability that we found in those estimates is worth considering as it may influence results and should be kept in mind for several applications.
O. Kantarcioglu, K. Schindler, and S. Kocaman
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-1-2023, 161–167, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-161-2023, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-161-2023, 2023
Elisabeth D. Hafner, Patrick Barton, Rodrigo Caye Daudt, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
The Cryosphere, 16, 3517–3530, https://doi.org/10.5194/tc-16-3517-2022, https://doi.org/10.5194/tc-16-3517-2022, 2022
Short summary
Short summary
Knowing where avalanches occur is very important information for several disciplines, for example avalanche warning, hazard zonation and risk management. Satellite imagery can provide such data systematically over large regions. In our work we propose a machine learning model to automate the time-consuming manual mapping. Additionally, we investigate expert agreement for manual avalanche mapping, showing that our network is equally as good as the experts in identifying avalanches.
C. Stucker, B. Ke, Y. Yue, S. Huang, I. Armeni, and K. Schindler
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2022, 193–201, https://doi.org/10.5194/isprs-annals-V-2-2022-193-2022, https://doi.org/10.5194/isprs-annals-V-2-2022-193-2022, 2022
Y. Xie, K. Schindler, J. Tian, and X. X. Zhu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2021, 247–254, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-247-2021, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-247-2021, 2021
Nico Lang, Andrea Irniger, Agnieszka Rozniak, Roni Hunziker, Jan Dirk Wegner, and Konrad Schindler
Hydrol. Earth Syst. Sci., 25, 2567–2597, https://doi.org/10.5194/hess-25-2567-2021, https://doi.org/10.5194/hess-25-2567-2021, 2021
Short summary
Short summary
Grain size analysis is the key to understanding the sediment dynamics of river systems and is an important indicator for mitigating flood risk and preserving biodiversity in aquatic habitats. We propose GRAINet, a data-driven approach based on deep learning, to regress grain size distributions from georeferenced UAV images. This allows for a holistic analysis of entire gravel bars, resulting in robust grading curves and high-resolution maps of spatial grain size distribution at large scale.
Lucie A. Eberhard, Pascal Sirguey, Aubrey Miller, Mauro Marty, Konrad Schindler, Andreas Stoffel, and Yves Bühler
The Cryosphere, 15, 69–94, https://doi.org/10.5194/tc-15-69-2021, https://doi.org/10.5194/tc-15-69-2021, 2021
Short summary
Short summary
In spring 2018 in the alpine Dischma valley (Switzerland), we tested different industrial photogrammetric platforms for snow depth mapping. These platforms were high-resolution satellites, an airplane, unmanned aerial systems and a terrestrial system. Therefore, this study gives a general overview of the accuracy and precision of the different photogrammetric platforms available in space and on earth and their use for snow depth mapping.
Cited articles
Adriano, B., Xia, J., Baier, G., Yokoya, N., and Koshimura, S.: Multi-Source Data Fusion Based on Ensemble Learning for Rapid Building Damage Mapping during the 2018 Sulawesi Earthquake and Tsunami in Palu, Indonesia, Remote Sensing, 11, https://doi.org/10.3390/rs11070886, 2019. a, b, c
Andrienko, D., Goriunov, D., Grudova, V., Markuts, J., Marshalok, T., Neyter, R., Piddubnyi, I., Studennikova, I., and Topolskov, D.: Report on Damages to Infrastructure from the Destruction Caused by Russia’s Military Aggression Against Ukraine as of November 2024, Tech. rep., Kyiv School of Economics (KSE) Institute, https://kse.ua/wp-content/uploads/2025/02/KSE_Damages_Report-November-2024---ENG.pdf (last access: 7 November 2025), 2025. a
Arciniegas, G. A., Bijker, W., Kerle, N., and Tolpekin, V. A.: Coherence- and Amplitude-Based Analysis of Seismogenic Damage in Bam, Iran, Using ENVISAT ASAR Data, IEEE T. Geosci. Remote, 45, 1571–1581, 2007. a
Artés, T., Oom, D., de Rigo, D., Durrant, T. H., Maianti, P., Libertà, G., and San-Miguel-Ayanz, J.: A global wildfire dataset for the analysis of fire regimes and fire behaviour, Scientific Data, 6, 296, https://doi.org/10.1038/s41597-019-0312-2, 2019. a
Bai, Y., Adriano, B., Mas, E., and Koshimura, S.: Machine Learning Based Building Damage Mapping from the ALOS-2/PALSAR-2 SAR Imagery: Case Study of 2016 Kumamoto Earthquake, Journal of Disaster Research, 12, 646–655, 2017. a
Bastos Moroz, C. and Thieken, A. H.: Urban growth and spatial segregation increase disaster risk: lessons learned from the 2023 disaster on the North Coast of São Paulo, Brazil, Nat. Hazards Earth Syst. Sci., 24, 3299–3314, https://doi.org/10.5194/nhess-24-3299-2024, 2024. a
Berman, M., Triki, A. R., and Blaschko, M. B.: The Lovász-Softmax Loss: A Tractable Surrogate for the Optimization of the Intersection-Over-Union Measure in Neural Networks, Proc. CVPR IEEE, 4413–4421, https://doi.org/10.1109/CVPR.2018.00464, 2018. a
Bonafilia, D., Tellman, B., Anderson, T., and Issenberg, E.: Sen1Floods11: A Georeferenced Dataset to Train and Test Deep Learning Flood Algorithms for Sentinel-1, IEEE Comput. Soc. Conf., 835–845, https://doi.org/10.1109/CVPRW50498.2020.00113, 2020. a
Brett, P. T. B. and Guida, R.: Earthquake Damage Detection in Urban Areas Using Curvilinear Features, IEEE T. Geosci. Remote, 51, 4877–4884, 2013. a
Chen, H., Wu, C., Du, B., Zhang, L., and Wang, L.: Change Detection in Multisource VHR Images via Deep Siamese Convolutional Multiple-Layers Recurrent Neural Network, IEEE T. Geosci. Remote, 58, 2848–2864, 2020. a
Chen, H., Nemni, E., Vallecorsa, S., Li, X., Wu, C., and Bromley, L.: Dual-Tasks Siamese Transformer Framework for Building Damage Assessment, IGARSS 2022 – 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022, 1600–1603, https://doi.org/10.1109/IGARSS46834.2022.9883139, 2022a. a, b, c, d, e
Chen, H., Yokoya, N., Wu, C., and Du, B.: Unsupervised Multimodal Change Detection Based on Structural Relationship Graph Representation Learning, IEEE T. Geosci. Remote, 60, 5635318, https://doi.org/10.1109/TGRS.2022.3229027, 2022b. a, b, c
Chen, H., Song, J., Dietrich, O., Broni-Bediako, C., Xuan, W., Wang, J., Shao, X., Yimin, W., Xia, J., Lan, C., Schindler, K., and Yokoya, N.: BRIGHT: A globally distributed multimodal building damage assessment dataset with very-high-resolution for all-weather disaster response, Zenodo [data set], https://doi.org/10.5281/zenodo.14619797, 2025a. a, b
Chen, H., Song, J., Dietrich, O., Broni-Bediako, C., Xuan, W., Wang, J., Shao, X., Yimin, W., Xia, J., Lan, C., Schindler, K., and Yokoya, N.: BRIGHT: A globally distributed multimodal building damage assessment dataset with very-high-resolution for all-weather disaster response, Zenodo [code], https://doi.org/10.5281/zenodo.15349461, 2025b. a
Chen, H., Song, J., Dietrich, O., Broni-Bediako, C., Xuan, W., Wang, J., Shao, X., Wei, Y., Xia, J., Lan, C., Schindler, K., and Yokoya, N.: BRIGHT: A globally distributed multimodal building damage assessment dataset with very-high-resolution for all-weather disaster response (v1.0-essd), Zenodo [data set], https://doi.org/10.5281/zenodo.17569363, 2025c. a
Chen, H., Song, J., Dietrich, O., Broni-Bediako, C., Xuan, W., Wang, J., Shao, X., Wei, Y., Xia, J., Lan, C., Schindler, K., and Yokoya, N.: BRIGHT (Revision 734ac25), Zenodo, Hugging Face, https://doi.org/10.57967/hf/6963, 2025d.
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., and Adam, H.: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation, in: Computer Vision – ECCV 2018, 833–851, https://kse.ua/wp-content/uploads/2025/02/KSE_Damages_Report-November-2024---ENG.pdf (last access: 7 November 2025), 2018. a, b, c
Chen, S.-W. and Sato, M.: Tsunami Damage Investigation of Built-Up Areas Using Multitemporal Spaceborne Full Polarimetric SAR Images, IEEE T. Geosci. Remote, 51, 1985–1997, 2013. a
Chen, X., Yuan, Y., Zeng, G., and Wang, J.: Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision, Proc. CVPR IEEE, 2613–2622, https://doi.org/10.1007/978-3-030-01234-2_49, 2021. a, b
Chini, M., Pierdicca, N., and Emery, W. J.: Exploiting SAR and VHR Optical Images to Quantify Damage Caused by the 2003 Bam Earthquake, IEEE T. Geosci. Remote, 47, 145–152, 2009. a
Chini, M., Anniballe, R., Bignami, C., Pierdicca, N., Mori, S., and Stramondo, S.: Identification of building double-bounces feature in very high resoultion SAR data for earthquake damage mapping, Int. Geosci. Remote S., 2723–2726, https://doi.org/10.1109/IGARSS.2015.7326376, 2015. a
Dietrich, O., Peters, T., Garnot, V. S. F., Sticher, V., Whelan, T. T.-T., Schindler, K., and Wegner, J. D.: An Open-Source Tool for Mapping War Destruction at Scale in Ukraine Using Sentinel-1 Time Series, Communications Earth & Environment, 6, 215, https://doi.org/10.1038/s43247-025-02183-7, 2025. a
Fakih, L. and Majzoub, A.: “They Killed Us from the Inside”: An Investigation Into the August 4 Beirut Blast, Human Rights Watch, https://www.hrw.org/report/2021/08/03/they-killed-us-inside/investigation-august-4-beirut-blast (last access: 7 November 2025), 2021. a
Fan, X., Nie, G., Deng, Y., An, J., Zhou, J., Xia, C., and Pang, X.: Estimating earthquake-damage areas using Landsat-8 OLI surface reflectance data, International Journal of Disaster Risk Reduction, 33, 275–283, 2019. a
Fire and Disaster Management Agency: Damage Caused by the 2024 Noto Peninsula Earthquake and Response Status of Fire Departments, etc. (117th Report), Situation Report 117, Fire and Disaster Management Agency, Tokyo, Japan, https://www.fdma.go.jp/disaster/info/items/20240101notohanntoujishinn117.pdf (last access: 7 November 2025), 2025. a
Forrister, A., Kuligowski, E. D., Sun, Y., Yan, X., Lovreglio, R., Cova, T. J., and Zhao, X.: Analyzing Risk Perception, Evacuation Decision and Delay Time: A Case Study of the 2021 Marshall Fire in Colorado, Travel Behaviour and Society, 35, 100729, https://doi.org/10.1016/j.tbs.2023.100729, 2024. a, b
Fujita, A., Sakurada, K., Imaizumi, T., Ito, R., Hikosaka, S., and Nakamura, R.: Damage detection from aerial images via convolutional neural networks, in: 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA), 5–8, https://doi.org/10.23919/MVA.2017.7986759, 2017. a, b
Ge, P., Gokon, H., Meguro, K., and Koshimura, S.: Study on the Intensity and Coherence Information of High-Resolution ALOS-2 SAR Images for Rapid Massive Landslide Mapping at a Pixel Level, Remote Sensing, 11, https://doi.org/10.3390/rs11232808, 2019. a
Ge, P., Gokon, H., and Meguro, K.: A review on synthetic aperture radar-based building damage assessment in disasters, Remote Sens. Environ., 240, 111693, https://doi.org/10.1016/j.rse.2020.111693, 2020. a
Gerard, S., Borne-Pons, P., and Sullivan, J.: A simple, strong baseline for building damage detection on the xBD dataset, arXiv [preprint], https://doi.org/10.48550/arXiv.2401.17271, 2024. a
GFDRR and World Bank: Extremely Severe Cyclonic Storm Mocha, May 2023, Myanmar: Global Rapid Post-Disaster Damage Estimation (GRADE) Report, Tech. rep., Global Facility for Disaster Reduction and Recovery (GFDRR) and World Bank, https://www.worldbank.org/en/country/myanmar/publication/global-rapid-post-disaster-damage-estimation-grade-report (last access: 7 November 2025), 2023. a, b
Ghorbanzadeh, O., Xu, Y., Ghamisi, P., Kopp, M., and Kreil, D.: Landslide4Sense: Reference Benchmark Data and Deep Learning Models for Landslide Detection, IEEE T. Geosci. Remote, 60, 1–17, 2022. a
Government of Türkiye: Türkiye Earthquakes Recovery and Reconstruction Assessment, Tech. rep., Government of Türkiye, https://reliefweb.int/report/turkiye/turkiye-earthquakes-recovery-and-reconstruction-assessment (last access: 7 November 2025), 2023. a
Gupta, R. and Shah, M.: RescueNet: Joint Building Segmentation and Damage Assessment from Satellite Imagery, 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 2021, 4405–4411, https://doi.org/10.1109/ICPR48806.2021.9412295, 2021. a, b
Han, T., Tang, Y., Zou, B., and Feng, H.: Unsupervised multimodal change detection based on adaptive optimization of structured graph, Int. J. Appl. Earth Obs., 126, 103630, https://doi.org/10.1016/j.jag.2023.103630, 2024. a, b, c
He, K., Zhang, X., Ren, S., and Sun, J.: Deep residual learning for image recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, 770–778, https://doi.org/10.1109/CVPR.2016.90, 2016. a
He, K., Shen, X., and Anagnostou, E. N.: A global forest burn severity dataset from Landsat imagery (2003–2016), Earth Syst. Sci. Data, 16, 3061–3081, https://doi.org/10.5194/essd-16-3061-2024, 2024. a
Hedayati, F., Monroy, X., Sluder, E., Fallahian, H., and Shabanian, M.: The 2023 Lahaina Conflagration, https://ibhs.org/wp-content/uploads/FINAL-Lahaina-Conflagration.pdf (last access: 7 November 2025), 2024. a
Hong, D., Zhang, B., Li, X., Li, Y., Li, C., Yao, J., Yokoya, N., Li, H., Ghamisi, P., Jia, X., Plaza, A., Gamba, P., Benediktsson, J. A., and Chanussot, J.: SpectralGPT: Spectral Remote Sensing Foundation Model, IEEE T. Pattern Anal., 46, 5227–5244, 2024. a
Huot, F., Hu, R. L., Goyal, N., Sankar, T., Ihme, M., and Chen, Y.-F.: Next Day Wildfire Spread: A Machine Learning Dataset to Predict Wildfire Spreading From Remote-Sensing Data, IEEE T. Geosci. Remote, 60, 1–13, 2022. a
IFRC: Emergency Appeal: Democratic Republic of Congo and Rwanda, Report, International Federation of Red Cross and Red Crescent Societies (IFRC), https://reliefweb.int/report/democratic-republic-congo/emergency-appeal-democratic-republic-congo-and-rwanda-mount (last access: 7 November 2025), 2021. a
International Federation of Red Cross and Red Crescent Societies: Morocco Earthquake 2023: Operation Update #4 (12 months) (MDRMA010), Situation Report MDRMA010OU5, International Federation of Red Cross and Red Crescent Societies, Geneva, https://reliefweb.int/report/morocco/morocco-earthquake-2023-operation-update-4-12-months-mdrma010 (last access: 18 April 2025), 2024. a
Japanese Red Cross Society: Operation Update No. 30: 2024 Noto Peninsula Earthquake – The Japanese Red Cross Society's Response, https://www.jrc.or.jp/english/relief/2024NotoPeninsulaEarthquake.html (last access: 7 November 2025), 2024. a
Jones, M. W., Kelley, D. I., Burton, C. A., Di Giuseppe, F., Barbosa, M. L. F., Brambleby, E., Hartley, A. J., Lombardi, A., Mataveli, G., McNorton, J. R., Spuler, F. R., Wessel, J. B., Abatzoglou, J. T., Anderson, L. O., Andela, N., Archibald, S., Armenteras, D., Burke, E., Carmenta, R., Chuvieco, E., Clarke, H., Doerr, S. H., Fernandes, P. M., Giglio, L., Hamilton, D. S., Hantson, S., Harris, S., Jain, P., Kolden, C. A., Kurvits, T., Lampe, S., Meier, S., New, S., Parrington, M., Perron, M. M. G., Qu, Y., Ribeiro, N. S., Saharjo, B. H., San-Miguel-Ayanz, J., Shuman, J. K., Tanpipat, V., van der Werf, G. R., Veraverbeke, S., and Xanthopoulos, G.: State of Wildfires 2023–2024, Earth Syst. Sci. Data, 16, 3601–3685, https://doi.org/10.5194/essd-16-3601-2024, 2024. a
Kaneko, Y.: Prioritizing Recovery: Expected Roles of Public Support during the Noto Peninsula Earthquake, Research Report of the Research Center for Urban Safety and Security, Kobe University, 28, 31–39, http://www.rcuss.kobe-u.ac.jp/publication/Year2024/pdfEach28/28_05.pdf (last access: 7 November 2025), 2024. a
Karimzadeh, S. and Mastuoka, M.: Building Damage Assessment Using Multisensor Dual-Polarized Synthetic Aperture Radar Data for the 2016 M 6.2 Amatrice Earthquake, Italy, Remote Sensing, 9, https://doi.org/10.3390/rs9040330, 2017. a
Ke, Z., Qiu, D., Li, K., Yan, Q., and Lau, R. W. H.: Guided Collaborative Training for Pixel-Wise Semi-Supervised Learning, European Conference Computer Vision, 429–445, https://doi.org/10.1007/978-3-030-58601-0_26 2020. a, b
Li, C., Hong, D., Zhang, B., Liao, T., Yokoya, N., Ghamisi, P., Chen, M., Wang, L., Benediktsson, J. A., and Chanussot, J.: Interpretable foundation models as decryptors peering into the Earth system, The Innovation, 5, 100682, https://doi.org/10.1016/j.xinn.2024.100682, 2024. a
Li, T., Wang, C., Zhang, H., Wu, F., and Zheng, X.: DDFormer: A Dual-Domain Transformer for Building Damage Detection Using High-Resolution SAR Imagery, IEEE Geosci. Remote S., 20, 1–5, 2023b. a
Lian, Q., Duan, L., Lv, F., and Gong, B.: Constructing Self-Motivated Pyramid Curriculums for Cross-Domain Semantic Segmentation: A Non-Adversarial Approach, IEEE I. Conc. Comp. Vis., 6757–6766, https://doi.org/10.1109/ICCV.2019.00686, 2019. a, b
Liu, W. and Yamazaki, F.: Extraction of Collapsed Buildings in the 2016 Kumamoto Earthquake Using Multi-Temporal PALSAR-2 Data, Journal of Disaster Research, 12, 241–250, https://doi.org/10.20965/jdr.2017.p0241, 2017. a
Liu, W., Yamazaki, F., Gokon, H., and ichi Koshimura, S.: Extraction of Tsunami-Flooded Areas and Damaged Buildings in the 2011 Tohoku-Oki Earthquake from TerraSAR-X Intensity Images, Earthquake Spectra, 29, 183–200, 2013. a
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, IEEE I. Conc. Comp. Vis., 9992–10002, https://doi.org/10.1109/ICCV48922.2021.00986, 2021. a
Loshchilov, I. and Hutter, F.: Decoupled weight decay regularization, arXiv [preprint], https://doi.org/10.48550/arXiv.1711.05101, 2017. a
Lu, W., Wei, L., and Nguyen, M.: Bitemporal Attention Transformer for Building Change Detection and Building Damage Assessment, IEEE J.-STARS, 17, 4917–4935, 2024. a
Luo, Y., Zheng, L., Guan, T., Yu, J., and Yang, Y.: Taking a Closer Look at Domain Shift: Category-Level Adversaries for Semantics Consistent Domain Adaptation, Proc. CVPR IEEE, 2502–2511, https://doi.org/10.1109/CVPR.2019.00261, 2019. a, b
Lv, Z., Huang, H., Li, X., Zhao, M., Benediktsson, J. A., Sun, W., and Falco, N.: Land Cover Change Detection With Heterogeneous Remote Sensing Images: Review, Progress, and Perspective, P. IEEE, 110, 1976–1991, 2022. a
Manzini, T., Perali, P., Karnik, R., and Murphy, R.: Crasar-u-droids: A large scale benchmark dataset for building alignment and damage assessment in georectified suas imagery, arXiv [preprint], https://doi.org/10.48550/arXiv.2407.17673, 2024. a
Matsuoka, M. and Yamazaki, F.: Building Damage Mapping of the 2003 Bam, Iran, Earthquake Using Envisat/ASAR Intensity Imagery, Earthquake Spectra, 21, 285–294, 2005. a
Matsuoka, M. and Yamazaki, F.: Comparative analysis for detecting areas with building damage from several destructive earthquakes using satellite synthetic aperture radar images, Journal of Applied Remote Sensing, 4, 041867, https://doi.org/10.1117/1.3525581, 2010. a
Matsuoka, M., Koshimura, S., and Nojima, N.: Estimation of building damage ratio due to earthquakes and tsunamis using satellite SAR imagery, Int. Geosci. Remote Se., 3347–3349, https://doi.org/10.1109/IGARSS.2010.5650550, 2010. a
Meena, S. R., Nava, L., Bhuyan, K., Puliero, S., Soares, L. P., Dias, H. C., Floris, M., and Catani, F.: HR-GLDD: a globally distributed dataset using generalized deep learning (DL) for rapid landslide mapping on high-resolution (HR) satellite imagery, Earth Syst. Sci. Data, 15, 3283–3298, https://doi.org/10.5194/essd-15-3283-2023, 2023. a
National Geophysical Data Center/World Data Service: NCEI/WDS Global Significant Earthquake Database [data set], https://doi.org/10.7289/V5TD9V7K, 2025. a
NCEI: U.S. Billion-Dollar Weather and Climate Disasters, Tech. rep., NOAA National Centers for Environmental Information (NCEI), https://www.ncei.noaa.gov/access/billions/ (last access: 7 November 2025), 2025. a
Normand, J. C. and Heggy, E.: Assessing flash flood erosion following storm Daniel in Libya, Nature Communications, 15, 6493, 2024. a
OCHA: Equatorial Guinea: Bata Explosions – Flash Update No. 3 (As of 11 March 2021), Report, United Nations Office for the Coordination of Humanitarian Affairs (OCHA), https://reliefweb.int/report/equatorial-guinea/equatorial-guinea-bata-explosions-flash-update-no3-11-march-2021 (last access: 7 November 2025), 2021a. a
OCHA: Haiti: Earthquake Situation Report No. 4, Report, United Nations Office for the Coordination of Humanitarian Affairs (OCHA), https://reliefweb.int/report/haiti/haiti-earthquake-situation-report-no-4-7-september-2021 (last access: 7 November 2025), 2021b. a
OCHA: Morocco Earthquake: Situation Report #5, Tech. rep., United Nations Office for the Coordination of Humanitarian Affairs (OCHA), https://reliefweb.int/report/morocco/morocco-earthquake-situation-report-5-november-14-2023 (last access: 7 November 2025), 2023. a
Oquab, M., Darcet, T., Moutakanni, T., Vo, H. V., Szafraniec, M., Khalidov, V., Fernandez, P., HAZIZA, D., Massa, F., El-Nouby, A., Assran, M., Ballas, N., Galuba, W., Howes, R., Huang, P.-Y., Li, S.-W., Misra, I., Rabbat, M., Sharma, V., Synnaeve, G., Xu, H., Jegou, H., Mairal, J., Labatut, P., Joulin, A., and Bojanowski, P.: DINOv2: Learning Robust Visual Features without Supervision, Transactions on Machine Learning Research, ISSN 2835-8856, 2024. a
Ouali, Y., Hudelot, C., and Tami, M.: Semi-Supervised Semantic Segmentation With Cross-Consistency Training, Proc. CVPR IEEE, 12671–12681, https://doi.org/10.1109/CVPR42600.2020.01269, 2020. a, b
Prendes, J., Chabert, M., Pascal, F., Giros, A., and Tourneret, J.-Y.: Change detection for optical and radar images using a Bayesian nonparametric model coupled with a Markov random field, in: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1513–1517, https://doi.org/10.1109/ICASSP.2015.7178223, 2015. a
Rahnemoonfar, M., Chowdhury, T., and Murphy, R.: RescueNet: A High Resolution UAV Semantic Segmentation Dataset for Natural Disaster Damage Assessment, Scientific Data, 10, 913, https://doi.org/10.1038/s41597-023-02799-4, 2023. a
Reinhart, B. J. and Reinhart, A.: Hurricane Otis (EP182023): Tropical Cyclone Report, Tropical Cyclone Report EP182023, National Hurricane Center, National Oceanic and Atmospheric Administration, Miami, FL, https://www.nhc.noaa.gov/data/tcr/EP182023_Otis.pdf (last access: 7 November 2025), 2024. a
Ronneberger, O., Fischer, P., and Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation, in: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, 234–241, https://doi.org/10.1007/978-3-319-24574-4_28, 2015. a
Sandhini Putri, A. F., Widyatmanti, W., and Umarhadi, D. A.: Sentinel-1 and Sentinel-2 data fusion to distinguish building damage level of the 2018 Lombok Earthquake, Remote Sensing Applications: Society and Environment, 26, 100724, https://doi.org/10.1016/j.rsase.2022.100724, 2022. a
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D.: Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization, 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017, 618–626, https://doi.org/10.1109/ICCV.2017.74, 2017. a, b
Shaban, A., Bansal, S., Liu, Z., Essa, I., and Boots, B.: One-Shot Learning for Semantic Segmentation, in: Proceedings of the British Machine Vision Conference (BMVC), 167.1–167.13, https://doi.org/10.5244/C.31.167, 2017. a
Shen, Y., Zhu, S., Yang, T., Chen, C., Pan, D., Chen, J., Xiao, L., and Du, Q.: BDANet: Multiscale Convolutional Neural Network With Cross-Directional Attention for Building Damage Assessment From Satellite Images, IEEE T. Geosci. Remote, 60, 1–14, 2022. a
Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-k., and Woo, W.-c.: Convolutional LSTM Network: a machine learning approach for precipitation nowcasting, Adv. Neur. In., 1, 802–810, 2015. a
STL: Turkey Earthquake: Emergency Situation Report (05.02.2024), Tech. rep., Support to Life (STL), https://reliefweb.int/report/turkiye/turkey-earthquake-emergency-situation-report-05022024 (last access: 7 November 2025), 2024. a
Stramondo, S., Bignami, C., Chini, M., Pierdicca, N., and Tertulliani, A.: Satellite radar and optical remote sensing for earthquake damage detection: results from different case studies, Int. J. Remote Sens., 27, 4433–4447, 2006. a
Tarvainen, A. and Valpola, H.: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results, edited by Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., Adv. Neur. In., 30, 1195–1204, 2017. a, b
Troll, V. R., Aulinas, M., Carracedo, J. C., Geiger, H., Perez-Torrado, F. J., Soler, V., Deegan, F. M., Bloszies, C., Weis, F., Albert, H., Gisbert, G., Day, J. M. D., Rodríguez-Gonzalez, A., Gazel, E., and Dayton, K.: The 2021 La Palma eruption: social dilemmas resulting from life close to an active volcano, Geology Today, 40, 96–111, 2024. a
Tsai, Y.-H., Hung, W.-C., Schulter, S., Sohn, K., Yang, M.-H., and Chandraker, M.: Learning to Adapt Structured Output Space for Semantic Segmentation, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 7472–7481, https://doi.org/10.1109/CVPR.2018.00780, 2018. a, b
UNDRR: Words into Action guideline: Man-made/technological hazards, Report, United Nations Office for Disaster Risk Reduction (UNDRR), https://www.undrr.org/publication/words-action-guideline-man-made/technological-hazards (last access: 7 November 2025), 2018b. a
USAID Bureau for Humanitarian Assistance: Libya Assistance Overview, Fact sheet, U.S. Agency for International Development, Washington, DC, https://reliefweb.int/report/libya/libya-assistance-overview-april-2024 (last access: 7 November 2025), 2024. a
Valsamos, G., Larcher, M., and Casadei, F.: Beirut explosion 2020: A case study for a large-scale urban blast simulation, Safety Science, 137, 105190, https://doi.org/10.1016/j.ssci.2021.105190, 2021. a
van der Maaten, L. and Hinton, G.: Visualizing Data using t-SNE, J. Mach. Learn. Res., 9, 2579–2605, 2008. a
Vescovo, R., Adriano, B., Wiguna, S., Ho, C. Y., Morales, J., Dong, X., Ishii, S., Wako, K., Ezaki, Y., Mizutani, A., Mas, E., Tanaka, S., and Koshimura, S.: The 2024 Noto Peninsula earthquake building damage dataset: multi-source visual assessment, Earth Syst. Sci. Data, 17, 5259–5276, https://doi.org/10.5194/essd-17-5259-2025, 2025. a
Vu, T.-H., Jain, H., Bucher, M., Cord, M., and Pérez, P.: ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, 2512–2521, https://doi.org/10.1109/CVPR.2019.00262, 2019. a, b
Wang, D., Zhang, Q., Xu, Y., Zhang, J., Du, B., Tao, D., and Zhang, L.: Advancing Plain Vision Transformer Toward Remote Sensing Foundation Model, IEEE T. Geosci. Remote, 61, 1–15, 2023. a
Wang, J., Guo, H., Su, X., Zheng, L., and Yuan, Q.: PCDASNet: Position-Constrained Differential Attention Siamese Network for Building Damage Assessment, IEEE T. Geosci. Remote, 62, 1–18, 2024. a
Wang, T.-L. and Jin, Y.-Q.: Postearthquake Building Damage Assessment Using Multi-Mutual Information From Pre-Event Optical Image and Postevent SAR Image, IEEE Geosci. Remote S., 9, 452–456, 2012. a
Wang, Y., Yao, Q., Kwok, J. T., and Ni, L. M.: Generalizing from a Few Examples: A Survey on Few-shot Learning, ACM Comput. Surv., 53, https://doi.org/10.1145/3386252, 2020. a
Watanabe, M., Thapa, R. B., Ohsumi, T., Fujiwara, H., Yonezawa, C., Tomii, N., and Suzuki, S.: Detection of damaged urban areas using interferometric SAR coherence change with PALSAR-2, Earth, Planets and Space, 68, 131, https://doi.org/10.1186/s40623-016-0513-2, 2016. a, b
Xia, H., Wu, J., Yao, J., Zhu, H., Gong, A., Yang, J., Hu, L., and Mo, F.: A Deep Learning Application for Building Damage Assessment Using Ultra-High-Resolution Remote Sensing Imagery in Turkey Earthquake, Int. J. Disast. Risk Sc., 14, 947–962, 2023. a
Xia, J., Chen, H., Broni-Bediako, C., Wei, Y., Song, J., and Yokoya, N.: OpenEarthMap-SAR: A Benchmark Synthetic Aperture Radar Dataset for Global High-Resolution Land Cover Mapping, arXiv [preprint], https://doi.org/10.48550/arXiv.2501.10891, 2025. a
Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J. M., and Luo, P.: SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers, Adv. Neur. In., 34, 12077–12090, 2021. a
Xie, S., Duan, J., Liu, S., Dai, Q., Liu, W., Ma, Y., Guo, R., and Ma, C.: Crowdsourcing Rapid Assessment of Collapsed Buildings Early after the Earthquake Based on Aerial Remote Sensing Image: A Case Study of Yushu Earthquake, Remote Sensing, 8, https://doi.org/10.3390/rs8090759, 2016. a, b, c
Xue, Z., Zhang, X., Prevatt, D. O., Bridge, J., Xu, S., and Zhao, X.: Post-hurricane building damage assessment using street-view imagery and structured data: A multi-modal deep learning approach, arXiv [preprint], arXiv:2404.07399, https://doi.org/10.48550/arXiv.2404.07399, 2024. a, b
Yamaguchi, Y.: Disaster Monitoring by Fully Polarimetric SAR Data Acquired With ALOS-PALSAR, P. IEEE, 100, 2851–2860, 2012. a
Yamazaki, F. and Matsuoka, M.: Remote Sensing Technologies in Post-Disaster Damage Assessment, Journal of Earthquake and Tsunami, 1, 193–210, 2007. a
Yang, J., Qian, H., Xu, Y., Wang, K., and Xie, L.: Can We Evaluate Domain Adaptation Models Without Target-Domain Labels?, arXiv [preprint], https://doi.org/10.48550/arXiv.2305.18712, 2023. a
Yang, Y. and Soatto, S.: FDA: Fourier Domain Adaptation for Semantic Segmentation, Proc. CVPR IEEE, https://doi.org/10.1109/CVPR42600.2020.00414, 4084–4094, 2020. a, b
Ye, S., Zhu, Z., and Suh, J. W.: Leveraging past information and machine learning to accelerate land disturbance monitoring, Remote Sens. Environ., 305, 114071, https://doi.org/10.1016/j.rse.2024.114071, 2024. a
Yonezawa, C. and Takeuchi, S.: Decorrelation of SAR data by urban damages caused by the 1995 Hyogoken-nanbu earthquake, Int. J. Remote Sens., 22, 1585–1600, 2001. a
Yusuf, Y., Matsuoka, M., and Yamazaki, F.: Damage assessment after 2001 Gujarat earthquake using Landsat-7 satellite images, Journal of the Indian Society of Remote Sensing, 29, 17–22, 2001. a
Zhang, J., Liu, K., and Wang, M.: Flood detection using Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage and extreme precipitation data, Earth Syst. Sci. Data, 15, 521–540, https://doi.org/10.5194/essd-15-521-2023, 2023. a
Zhang, P., Gong, M., Su, L., Liu, J., and Li, Z.: Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images, ISPRS J. Photogramm., 116, 24–41, 2016. a
Zheng, Z., Zhong, Y., Wang, J., Ma, A., and Zhang, L.: Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework: From natural disasters to man-made disasters, Remote Sens. Environ., 265, 112636, https://doi.org/10.1016/j.rse.2021.112636, 2021. a, b, c, d, e, f, g, h, i, j, k
Short summary
Natural disasters often damage buildings and threaten lives, especially in areas with limited resources. To help improve emergency response, we created a global dataset called BRIGHT using both optical and radar images to detect building damage in any weather. We tested many artificial intelligence models and showed how well they work in real disaster scenes. This work can guide better tools for future disaster recovery and help save lives faster.
Natural disasters often damage buildings and threaten lives, especially in areas with limited...
Altmetrics
Final-revised paper
Preprint