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Abstract. Disaster events occur around the world and cause significant damage to human life and property.
Earth observation (EO) data enables rapid and comprehensive building damage assessment, an essential capa-
bility crucial in the aftermath of a disaster to reduce human casualties and inform disaster relief efforts. Recent
research focuses on developing artificial intelligence (AI) models to accurately map unseen disaster events,
mostly using optical EO data. These solutions based on optical data are limited to clear skies and daylight
hours, preventing a prompt response to disasters. Integrating multimodal EO data, particularly combining opti-
cal and synthetic aperture radar (SAR) imagery, makes it possible to provide all-weather, day-and-night disaster
responses. Despite this potential, the lack of suitable benchmark datasets has constrained the development of
robust multimodal AI models. In this paper, we present a Building damage assessment dataset using veRy-
hIGH-resoluTion optical and SAR imagery (BRIGHT) to support AI-based all-weather disaster response. To the
best of our knowledge, BRIGHT is the first open-access, globally distributed, event-diverse multimodal dataset
specifically curated to support AI-based disaster response. It covers five types of natural disasters and two types
of human-made disasters across 14 regions worldwide, focusing on developing countries where external as-
sistance is most needed. The dataset’s optical and SAR images with spatial resolutions between 0.3 and 1 m
provide detailed representations of individual buildings, making it ideal for precise damage assessment. We train
seven advanced AI models on BRIGHT to validate transferability and robustness. Beyond that, it also serves as
a challenging benchmark for a variety of tasks in real-world disaster scenarios, including unsupervised domain
adaptation, semi-supervised learning, unsupervised multimodal change detection, and unsupervised multimodal
image matching. The experimental results serve as baselines to inspire future research and model development.
The dataset (https://doi.org/10.5281/zenodo.14619797, Chen et al., 2025a), along with the code and pretrained
models, is available at https://github.com/ChenHongruixuan/BRIGHT (last access: 7 November 2025) and will
be updated as and when a new disaster data is available. BRIGHT also serves as the official dataset for the 2025
IEEE GRSS Data Fusion Contest Track II. We hope that this effort will promote the development of AI-driven
methods in support of people in disaster-affected areas.
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1 Introduction

A disaster is defined as a severe disruption in the function-
ing of a community or society due to the interaction between
a hazard event and the conditions of exposure, vulnerabil-
ity and capacity resulting in human, material, economic or
environmental losses and impacts (Ge et al., 2020). Accord-
ing to the United Nations Office for Disaster Risk Reduction
(UNDRR), between 1998 and 2017, natural disasters such as
earthquakes, storms, and floods affected approximately 4.4
billion people and caused 1.3 million deaths. These disasters
have also resulted in economic losses of 2647 billion United
States dollars (USD) in disaster-affected countries (UNDRR,
2018a). The threat of disasters is likely to increase due to
global urbanization (Kreibich et al., 2022; Bastos Moroz and
Thieken, 2024). Rapid and comprehensive damage assess-
ment is crucial in the aftermath of a disaster to make in-
formed and effective rescue decisions that minimize losses
and impacts. Building damage assessment aims to provide
information, including the area and amount of damage, the
rate of collapsed buildings, and the type of damage each
building has incurred. This information is critical in the early
stages of a disaster, as the distribution of damaged buildings
is closely related to life-saving efforts in an emergency re-
sponse (Xie et al., 2016; Adriano et al., 2021). Conducting
field surveys after a disaster can be difficult and dangerous,
especially when transportation and communication systems
are disrupted, making efficient on-site assessments challeng-
ing. Earth observation (EO) provides a safe and efficient way
to obtain information on building damage in disaster areas
due to its wide field of view and contactless operation.

The EO technologies commonly used for assessing build-
ing damage after disasters are optical and synthetic aperture
radar (SAR). Optical imagery is a primary source for build-
ing damage assessment because of its intuitive and easy-
to-interpret nature. For example, moderate-resolution optical
data from the Landsat series and Sentinel-2 have been used
to assess building damage (Yusuf et al., 2001; Fan et al.,
2019; Sandhini Putri et al., 2022). Landsat and Sentinel-2
data are limited in spatial resolution and only provide broad
approximations of affected areas, which lack precision for
specific buildings, crucial for timely rescue. The new gener-
ation of very high-resolution (VHR) optical sensors, such as
IKONOS and WorldView, provides EO data with spatial res-
olutions of a meter or less, enabling finer assessments at the
level of individual buildings (Freire et al., 2014). These data
have been used successfully in building damage assessment
(Yamazaki and Matsuoka, 2007; Tong et al., 2012; Freire
et al., 2014).

While accurate building damage maps can be obtained by
visual interpretation of optical images by human experts, this
process is time-consuming and labor-intensive for large-scale
rapid assessments. In addition, it requires trained profession-
als. Therefore, recent studies have focused on developing au-
tomated methods for rapid building damage mapping (Tong

et al., 2012; Xie et al., 2016; Gupta et al., 2019; Zheng et al.,
2021). Among these, machine learning (ML) and deep learn-
ing (DL) techniques have significantly improved efficiency
and accuracy in building damage assessment. Earlier work
focused on a single disaster event with labels annotated for a
specific disaster area to train a model. This model is then used
to generate building damage maps for the same event (Xie
et al., 2016; Xia et al., 2023). However, since training data
were limited to a few building types, damage patterns, and
background land cover distributions, the resulting models
mostly lack generalizability and struggle to produce accurate
building damage maps for new disaster events, which limits
their practical use. Recent large-scale benchmark datasets,
for example, the xBD dataset (Gupta et al., 2019) contain-
ing different types of disaster scenarios and damages, have
made it possible to adopt DL models to quickly and accu-
rately map building damages after a newly occurred, previ-
ously unseen disaster (Zheng et al., 2021; Chen et al., 2022a;
Shen et al., 2022; Kaur et al., 2023; Guo et al., 2024; Wang
et al., 2024; Chen et al., 2024). For example, Zheng et al.
(2021) trained DL models on the xBD dataset and applied
them to map the damage to buildings in two unseen human-
made disaster events. These studies have demonstrated the
effectiveness of DL models for building damage mapping.

The optical EO technology uses a passive sensing tech-
nique, which requires solar illumination and cloud-free
weather conditions. This severely limits the application of
optical images in an emergency tool for all-weather disas-
ter response (Adriano et al., 2021). In contrast, SAR sen-
sors employ active illumination with longer microwaves and
can acquire images in adverse weather conditions, offering
great potential for all-weather disaster response. Most dis-
aster events, especially wildfires, floods, and storms, are of-
ten accompanied by less-than-ideal imaging conditions. For
example, Fig. 1 shows EO imagery captured for a wildfire
event that occurred in August 2023 in Hawaii, USA. The
post-event optical image shown in Fig. 1b does not provide
clear surface information due to the effects of the wildfire
smoke. However, the SAR image illustrated in Fig. 1c is not
affected by smoke and clearly shows the buildings damaged
by the wildfire.

Due to the advantages of SAR imagery, various SAR-
based methods have been proposed for building damage as-
sessment. These methods utilize intensity (Matsuoka and
Yamazaki, 2005, 2010; Matsuoka et al., 2010), coherence
(Yonezawa and Takeuchi, 2001; Arciniegas et al., 2007;
Watanabe et al., 2016; Liu and Yamazaki, 2017), and po-
larization features (Yamaguchi, 2012; Chen and Sato, 2013;
Watanabe et al., 2016; Karimzadeh and Mastuoka, 2017) to
assess building damage at a block unit level, depending on
the acquisition mode. Several studies have attempted to ex-
tend the block-level approach and have explored new ap-
proaches at the building instance level using higher spatial
resolution sensors such as COSMO-SkyMed and TerraSAR-
X (Liu et al., 2013; Brett and Guida, 2013; Chini et al., 2015;
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Figure 1. An example of the wildfire occurring in Maui, Hawaii, USA, August 2023. (a) Pre-event optical imagery (© Maxar). (b) Post-event
optical image (© Maxar) with land-cover features obscured by wildfire smoke. (c) Post-event SAR imagery (© Capella Space) unaffected by
smoke, showing the disaster area.

Ge et al., 2019). DL-based methods have also been explored
with SAR data to assess building damage (Bai et al., 2018;
Adriano et al., 2019; Bai et al., 2017; Li et al., 2023b). How-
ever, because of the lack of large-scale benchmark datasets,
such as xBD in the optical domain, these methods have fo-
cused on local regions and single disaster events, and their
ability to generalize to other disaster events remains largely
unknown.

The inherent challenges of SAR data, such as oblique
viewing angles, speckle noise, object occlusion, and geomet-
ric distortions, complicate the accurate mapping of building
damage compared to optical imagery (Adriano et al., 2021;
Xia et al., 2025). Furthermore, the limited availability of the
VHR SAR data reduces its reliability as a source of pre-event
data (Brunner et al., 2010; Adriano et al., 2021). Consider-
ing these practical limitations, the most effective strategy for
rapid assessment of building damage in all weather could ar-
guably be to combine pre-event optical images, which pro-
vide accurate localization and detailed building information
in the visible spectrum, with post-event SAR images, which
capture structural information as a cue for building damage
(Adriano et al., 2019). Previous methods have attempted to
align the two modalities with traditional statistical models
(Stramondo et al., 2006; Chini et al., 2009; Brunner et al.,
2010; Wang and Jin, 2012). These statistical models are
sensor-specific and require dedicated modeling for each sen-
sor. DL methods offer a promising solution by automatically
learning a high-dimensional feature space that aligns the two
modalities. However, to train a DL model, one must have ac-
cess to a high-quality, large-scale dataset with comprehensive
coverage of various disaster events and sufficient geographic
diversity. This remains a significant challenge that needs to
be addressed.

To support AI-based research aimed at all-weather build-
ing damage mapping, we present BRIGHT, the first open and
globally distributed multimodal VHR dataset for building
damage assessment. Advances in EO technology have en-

abled data providers like Capella (https://www.capellaspace.
com/, last access: 7 November 2025) and Umbra (https:
//umbra.space/, last access: 7 November 2025) to offer VHR
SAR imagery at a sub-meter level resolution per pixel. This
allows for detailed building damage assessments at the in-
dividual building level, to guide targeted and effective res-
cue operations as required by emergency responders. Bene-
fiting from the progress made in EO, BRIGHT incorporates
both pre-event optical imagery and post-event SAR imagery
with spatial resolutions ranging from 0.3 to 1 m pixel−1. The
types of disaster events considered in BRIGHT are earth-
quakes, storms (e.g., hurricane, cyclone), wildfires, floods,
and volcanic eruptions. These natural disasters accounted for
84 % of the fatalities and 94 % of the economic losses be-
tween 1998 and 2017 (UNDRR, 2018a). In addition to natu-
ral disasters, the BRIGHT dataset further considers disasters
caused by human activity, such as accidental explosions and
armed conflicts, which also pose significant threats to human
life and infrastructure and can occur unexpectedly, requir-
ing a rapid response (UNDRR, 2018b; Dietrich et al., 2025).
The 14 disaster events cover 23 different regions distributed
around the globe, with a focus on developing countries where
external assistance is most urgently needed after a disaster.
The labels are manually annotated with multi-level annota-
tions that distinguish between damaged buildings and com-
pletely destroyed buildings.

1.1 Comparison with existing datasets

The comparison between BRIGHT and existing datasets for
building damage assessment is summarized in Table 1. Most
current building damage assessment datasets are limited in
scale and scope due to the limited availability of disaster
events with corresponding open-source EO data and anno-
tation efforts (Rahnemoonfar et al., 2021; Gupta and Shah,
2021; Kaur et al., 2023). Because of the high cost and
time required for pixel-level labeling, some of the exist-
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Table 1. Comparison of BRIGHT with the existing building damage assessment datasets. The OA indicates whether the dataset is open
access (OA) or not, and GSD is an acronym for ground sampling distance (GSD). Note that since some datasets integrate other datasets,
we summarize only the largest one to avoid duplication here. For example, the BDD dataset (Adriano et al., 2021) includes the Tohoku-
Earthquake-2011 dataset (Bai et al., 2018) and Palu-Tsunami-2018 dataset (Adriano et al., 2019). N/A= not available.

Dataset OA Modality GSD No. of Disaster No. of Granularity
(m pixel−1) events type building

ABCD (Fujita et al., 2017) X Optical EO 0.4 1 Tsunami N/A Image-level

(Nguyen et al., 2017) X Images on social media N/A 4 3 natural disasters N/A Image-level

(Cheng et al., 2021) X Optical EO N/A 1 Hurricane 1802 Image-level

(Xue et al., 2024) X Street-view image N/A 1 Hurricane 2468 Image-level

FloodNet (Rahnemoonfar et al., 2021) X Optical EO N/A 1 Flood 6675 Pixel-level

RescueNet (Rahnemoonfar et al., 2023) X Optical EO N/A 1 Hurricane 10 903 Pixel-level

Ida-BD (Kaur et al., 2023) × Optical EO 0.5 1 Hurricane 18 083 Pixel-level

CRASAR-U-DROIDs
X Optical EO 0.02–0.12 10

4 natural disasters
21 716 Pixel-level

(Manzini et al., 2024) 1 man-made
disaster

Noto-BDA-MV (Vescovo et al., 2025) X Optical EO N/A 1 Earthquake 140 208 Pixel-level

xBD (Gupta et al., 2019) X Optical EO < 0.8 15 6 natural disasters 850 736 Pixel-level

QQB (Sun et al., 2024b) X Optical and SAR EO < 1 1 Earthquake 4029 Pixel-level

BDD (Adriano et al., 2021) × Optical and SAR EO 1.2–3.3 9 3 natural disasters 123 453 Pixel-level

BRIGHT X Optical and SAR EO 0.3–1 14
5 natural disasters

384 596 Pixel-level
2 man-made
disasters

ing datasets provide image-level labeling, indicating only
whether an image contains damaged buildings (Fujita et al.,
2017; Nguyen et al., 2017; Cheng et al., 2021; Xue et al.,
2024). Although these image-level labeling datasets have
served the community well, they lack the spatial precision
needed to guide specific rescue operations. The xBD dataset
(Gupta et al., 2019) is currently the largest open data collec-
tion, covering six natural disasters in 15 regions with more
than 700 000 building instances. However, the xBD includes
only optical EO data. It does not support all-weather disaster
response. Sun et al. (2024b) introduced a multimodal dataset,
but it is limited to a single disaster event and contains only
about 4000 building instances. The small size makes it chal-
lenging to train DL models and limits the transferability of
the trained models.

The dataset most similar to BRIGHT is the BDD proposed
by Adriano et al. (2021). The main differences between BDD
and BRIGHT datasets are: (1) BRIGHT covers more disas-
ter events and building instances, including both natural and
human-made disasters. (2) BRIGHT has higher spatial reso-
lution in both optical and SAR images. Whereas the high-
est resolution of SAR images in BDD is 1.2 m, BRIGHT
provides finer detail with spatial resolutions ranging from
0.3 to 1 m, enabling the detection of subtle structural dam-
age in individual buildings. (3) Perhaps the most important

difference is that whereas the re-distribution of BDD is re-
stricted, BRIGHT is an open-source dataset publicly available
to the global community. Apart from the datasets listed in
Table 1, there are other datasets targeted at monitoring haz-
ardous events related to disasters, including landslides (Ghor-
banzadeh et al., 2022; Meena et al., 2023), floods (Bonafilia
et al., 2020; Zhang et al., 2023) and wildfires (Artés et al.,
2019; Huot et al., 2022; He et al., 2024), but are not related
to building damage assessment.

1.2 Main contribution

The contributions of this paper are threefold:

1. We present BRIGHT, the first multimodal building dam-
age dataset with sub-meter spatial resolution, which is
publicly available to the community. BRIGHT employs
a combination of pre-event optical imagery and post-
event SAR imagery, with various disaster events and
rich geographic diversity, to support the study of AI-
based multimodal building damage mapping, especially
in developing countries.

2. We evaluate a suite of contemporary models on BRIGHT
to establish robust baselines. Beyond supervised deep
learning, BRIGHT can support a wide range of AI-based
methods. It enables research in unsupervised domain
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adaptation (UDA), semi-supervised learning (SSL), un-
supervised multimodal change detection (UMCD), and
unsupervised multimodal image matching (UMIM),
among others. To demonstrate its utility, we benchmark
a suite of representative models across several of these
tasks. All experimental results, along with the source
code and pretrained weights, are publicly released to
provide strong baselines and accelerate future develop-
ments in disaster response in the community.

3. We provide an in-depth analysis that uncovers key chal-
lenges and mechanisms of the multimodal building
damage assessment task. Through carefully designed
experiments, we reveal the difficulties of cross-event
generalization, investigate the role of pre-event optical
data in aiding damage classification, and quantify the
performance gaps between different post-event modali-
ties. These findings offer valuable insights for the devel-
opment of more robust and practical models for disaster
response.

2 Dataset Description

2.1 Study areas and disaster events

We selected 14 disaster events across the globe for BRIGHT,
as illustrated in Fig. 2 and Table 2. Since both Capella Space
and Umbra satellites were launched in 2020, we focused on
study areas where disasters have occurred since then. The
selected regions are primarily in developing countries, where
public administration and disaster response capacities tend
to be weaker compared to those in developed nations, mak-
ing international assistance more critical. The dataset covers
five major types of natural disasters: earthquakes, storms (in-
cluding hurricanes and cyclones), wildfires, floods, and vol-
canic eruptions. Additionally, it includes human-made disas-
ters, such as accidental explosions and armed conflicts. De-
tailed descriptions of the 14 disaster events are provided in
Appendix A.

2.2 Construction of BRIGHT

Figure 3 shows the flowchart of developing BRIGHT. The
optical EO data in the dataset are mainly from Maxar’s
Open Data program (https://www.maxar.com/open-data, last
access: 7 November 2025), while the SAR EO data
are from Capella Space (https://www.capellaspace.com/
earth-observation/gallery, last access: 7 November 2025)
and Umbra (https://umbra.space/open-data/, last access: 7
November 2025). Both Capella and Umbra data have two
imaging modalities, i.e., Spotlight and Stripmap, respec-
tively. The Spotlight mode has a higher spatial resolution
but less coverage. In the region of interest, we preferred
Spotlight mode if suitable data was available in the data

provider’s inventory. Otherwise, we chose Stripmap. The op-
tical EO data consists of red, blue, and green bands, while
the SAR EO data consists of amplitude data in the VV or
HH bands. For optical EO data, the digital number was con-
verted to reflectance and then standardized to an 8-bit data
format. For SAR imagery, after the data had been terrain-
corrected, we utilized the pre-processed 8-bit data when
available. In cases where 8-bit data was not provided, we
employed the data provider’s recommended method (https:
//support.capellaspace.com/scaling-geo-images-in-qgis, last
access: 7 November 2025) to convert the amplitude data. Al-
though both optical and SAR images are geocoded, there are
still pixel offsets between them. Therefore, multiple EO ex-
perts manually aligned the paired optical and SAR data and
cross-checked their results to ensure the precise registration
between the two modalities. Figure C1 in Appendix C shows
the selected control points on three disaster scenes.

The labels in BRIGHT consist of two components: build-
ing polygons and post-disaster building damage attributes.
Expert annotators manually labeled the building polygons,
then all labels underwent independent visual inspections of
EO experts to ensure accuracy. Damage annotations were
obtained from Copernicus Emergency Management Service
(https://emergency.copernicus.eu, last access: 7 November
2025), the United Nations Satellite Centre (UNOSAT) Emer-
gency Mapping Products (https://unosat.org/products, last
access: 7 November 2025), and the Federal Emergency Man-
agement Agency (FEMA) (https://www.fema.gov, last ac-
cess: 7 November 2025). These annotations were derived
through visual interpretation of high-resolution optical im-
agery captured before and after the disasters by EO experts,
supplemented by partial field visits. To harmonize these di-
verse annotations and ensure consistency across all 14 dis-
aster events, we implemented a rigorous, multi-stage pro-
cess. First, we established a single, standardized three-tier
classification scheme, including Intact (with pixel value 1),
Damaged (with pixel value 2), and Destroyed (with pixel
value 3), with clear definitions provided in Table 3, draw-
ing on the frameworks of FEMA’s Damage Assessment Op-
erations Manual, EMS-98, the BDD dataset (Adriano et al.,
2021), and the xBD dataset (Gupta et al., 2019). While the
source agencies’ terminology can differ (e.g., “Severe Dam-
age” vs. “Major Damage”), their underlying definitions for
EO-based assessment are conceptually consistent. We lever-
aged this alignment for an initial rule-based mapping, where
various intermediate damage tiers were conservatively aggre-
gated into our single “Damaged” category. Second, our team
of EO experts conducted a comprehensive manual verifica-
tion and refinement of every annotation using multi-temporal
VHR imagery on platforms like Google Earth Pro. This fi-
nal stage served as the ultimate guarantor of consistency.
We paid special attention to ambiguous source labels, such
as “Possibly Damaged”. Adopting a conservative approach,
these were re-classified as “Intact” if clear structural damage
was not evident, thereby ensuring a high-confidence “Dam-
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Figure 2. Geographic distribution of disaster events present in BRIGHT.

Table 2. Summary of basic information of the BRIGHT dataset with disaster events listed in chronological order. GSI refers to the Geospatial
Information Authority of Japan, and IGN refers to the Instituto Geográfico Nacional (National Geographic Institute) of Spain.

Disaster area Type of disaster Date GSD Data provider/source No. of No. of
(m pixel−1) tiles building

Beirut, Lebanon Explosion (EP) 4 Aug 2020 1 Maxar & Capella 133 25 496
Bata, Equatorial Guinea Explosion (EP) 7 Mar 2021 0.5 Maxar & Capella 107 8893
Goma, DR Congo Volcano eruption (VE) 22 May 2021 0.33 Maxar & Capella 123 18 741
Les Cayes, Haiti Earthquake (EQ) 14 Aug 2021 0.48 Maxar & Capella 73 18 918
La Palma, Spain Volcano Eruption (VE) 19 Sep–13 Dec 2021 0.3–0.35 IGN (Spain) & Capella 933 30 239
Boulder, USA Wildfire (WF) 30 Dec 2021–1 Jan 2022 0.6 NAIP & Capella 77 8365
Ukraine Armed conflict (AC) 22 Mar–21 Sep 2022 0.6 Google Earth & Capella 513 56 770
Turkey Earthquake (EQ) 6 Feb 2023 0.30–0.35 Maxar & Capella & Umbra 1114 135 033
Kyaukpyu, Myanmar Cyclone (CC) 14 May 2023 0.6 Google Earth & Capella 126 8052
Maui, Hawaii, USA Wildfire (WF) 8–9 Aug 2023 0.6 NOAA & Capella 65 3995
Morocco Earthquake (EQ) 8 Sep 2023 0.35–0.4 Maxar & Capella 567 6269
Derna, Libya Flood (FL) 10 Sep 2023 0.35 Maxar & Capella 124 10 979
Acapulco, Mexico Hurricane (HC) 25 Oct 2023 0.35–0.8 Google Earth & Capella 212 18 437
Noto, Japan Earthquake (EQ) 1 Jan 2024 0.5 GSI & Umbra 79 8153

Total – – 0.3–1 – 4246 384 596

aged” class. We also manually disaggregated all area-based
annotations (i.e., where an entire block was assigned a sin-
gle category). We re-processed these to assign a precise,
building-wise damage label to each individual structure, en-
suring instance-level consistency and granularity across the
entire dataset. The damage annotations were provided as vec-
tor point files. The final building damage labels were gener-
ated by overlaying these points withd the building polygons
and assigning corresponding damage attributes. To prevent
geographic misallocation due to possible coordinate offsets,

the coordinate systems of the points and polygons were uni-
fied, with a visual inspection performed prior to the final al-
location. Figure 4 presents thumbnails of selected local areas
from the 14 disaster events.

2.3 Statistics of BRIGHT

The basic information about BRIGHT, including disaster
events, EO data, the number of corresponding EO tiles, and
the total number of building pixels, is summarized in Ta-
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Figure 3. Overall flowchart of developing the BRIGHT dataset. Logos/seals are shown solely for identification and scholarly illustration;
no endorsement is implied. Copernicus Emergency Management Service logo © European Union (Copernicus Programme); UNOSAT logo
© UNITAR/UNOSAT; FEMA seal: public-domain work of the U.S. federal government; QGIS logo © QGIS.org Association; Google Earth
logo © Google LLC. All rights reserved by their respective owners.

Table 3. Definition of different categories in BRIGHT.

Category Definition

Background (0) All non-building pixels

Intact (1) No visible signs of structural damage, wa-
ter intrusion, shingle displacement, or burn
marks.

Damaged (2) Partial structural damage to the building,
such as missing roof members, visible cracks,
or partial wall/roof collapse. Buildings may
be partially burned, surrounded by water or
mud, or affected by nearby volcanic flows.

Destroyed (3) Completely collapsed, burned, partially/com-
pletely covered by water/mud or no longer
present

ble 2. After cropping the EO data into 1024× 1024-pixel
tiles, BRIGHT contains 4246 multimodal image pairs.

The key statistics of BRIGHT are illustrated in Fig. 5. Fig-
ure 5a shows the pixel value distribution for optical and SAR
images from one human-made disaster and three natural dis-
asters. The varying geographical landscapes and land cover
across different regions result in distinct means and standard

deviations of pixel values. This highlights BRIGHT’s geo-
graphical diversity, which makes it a robust dataset for study-
ing building damage assessment in diverse environments. To
ensure that models trained on BRIGHT can accurately de-
tect buildings and assess damage levels, it is crucial that the
dataset includes a wide variety of building styles from differ-
ent regions. Figure 5b shows that BRIGHT covers buildings
at multiple scales, exhibiting a “long-tail” distribution. This
multi-scale representation challenges DL models to develop
the ability to capture features at varying scales, enhancing
robustness and accuracy.

Figure 5c further illustrates the feature distribution of
buildings in the optical and SAR images for the four events
shown in Fig. 5a, which demonstrates clear inter-event sep-
arability in both modalities. BRIGHT also faces a signifi-
cant challenge of sample imbalance, as shown in Fig. 5d.
There is a notable imbalance between background pixels and
foreground (building) pixels, with a ratio of approximately
7 : 1. The imbalance exists within the damage categories:
about 6.5 % of building pixels represent destroyed buildings,
10.7 % correspond to damaged buildings, and 82.8 % are in-
tact buildings. This imbalance can complicate model train-
ing, necessitating careful strategies to develop robust DL
models.
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Figure 4. Thumbnails of local areas in 14 disaster events in the BRIGHT dataset. The sources of EO images are illustrated in Table 2. For
visualization purposes, different events have different scales.

Moreover, since accurate registration ensures spatial con-
sistency across modalities, the registration accuracy between
optical and SAR EO data in BRIGHT was analyzed to pro-
vide a solid foundation for accurate building damage as-
sessment. Due to the absence of real ground truth, a proxy
method that leverages existing multimodal image descrip-
tors was introduced to estimate registration errors. This ap-
proach is detailed in Appendix C. The Table 4 reports the

mean registration errors, measured as the root mean square
error (RMSE) of pixel displacements. It was obtained using
three representative multimodal image registration methods:
RIFT (Li et al., 2020), SRIF (Li et al., 2023a), and LNIFT (Li
et al., 2022). The overall average RMSE is approximately
1.024 pixels, with a lower error of 1.006 pixels specifically
within the building regions.
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Figure 5. Statistics of the BRIGHT dataset. (a) Distributions of band values of samples from four study sites. (b) Distribution of building
scales. (c) Feature distribution of buildings of four events under two imaging modalities. (d) Percentage of building and background pixels
and percentage of different damage levels in building pixels.

Table 4. Proxy registration errors (in pixel) estimated using differ-
ent multimodal image descriptors. The estimated registration errors
for each event are reported in Table C1 in Appendix C.

Descriptor RMSE (All) RMSE (Building)

RIFT (Li et al., 2020) 1.125 1.138
LNIFT (Li et al., 2022) 0.857 0.825
SRIF (Li et al., 2023a) 1.090 1.054

Average 1.024 1.006

2.4 Dataset splitting strategy

To train DL models using BRIGHT and evaluate their gener-
alizability, it is necessary to split the dataset into a training
set, validation set, and test set. Gerard et al. (2024) suggested
that dividing the dataset on an event-by-event basis, rather
than randomly across the entire dataset, provides a more ac-
curate reflection of a model’s generalizability. Therefore, for

the 14 events listed in Table 2, we divide the corresponding
data for each event into a ratio of 7 : 1 : 2 for training, valida-
tion, and test subsets, respectively. Then, the subsets obtained
for each event are merged to create the final training, valida-
tion, and test sets. In the experiments, the baseline models are
trained using the training set, and the optimal hyperparame-
ters (e.g., learning rate) and checkpoints are selected based
on performance on the validation set. The generalization ca-
pability of the baseline models is subsequently evaluated on
the test set.

In addition to the above standard ML data splitting, we
also introduce a cross-event transfer setup to better evalu-
ate the ability of models to generalize across disaster events.
This is a critical challenge in real-world applications where
models are expected to handle unseen disaster types and lo-
cations. Two setups are established for cross-event transfer
generalization:

– Zero-shot setup: This setting mimics a real-world sce-
nario where a newly occurring disaster must be an-
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alyzed without any prior labeled data from the same
event. We isolate one event as an unseen test set while
using the remaining 13 events for training and valida-
tion. This setting evaluates the cross-event generaliza-
tion ability of models, testing how well learned knowl-
edge can be transferred from previous disasters to an
entirely new disaster event. Due to the high variability
of disaster types and geographies, this setup is inher-
ently challenging, as models trained on past disasters
may struggle to assess damage patterns in a previously
unseen event accurately.

– One-shot setup: Recognizing the difficulty of the zero-
shot setup, we introduce a one-shot setup. This setting
simulates a realistic scenario where a single, representa-
tive sample from the new disaster can be quickly labeled
to guide model adaptation. In this setting, a limited sub-
set of labeled data (one pair for training and one pair for
validation) from the target disaster event is incorporated
into the training process. At the same time, the majority
of the test set remains unseen. This setup evaluates the
model’s ability to leverage a minimal amount of manu-
ally labeled data to improve disaster-specific adaptation.

It is worth noting that our cross-event transfer setup differs
from classic few-shot learning tasks in the computer vision
field (Shaban et al., 2017; Wang et al., 2020). Our goal is not
to recognize new classes, but to adapt the model’s knowledge
of existing classes to a new domain, i.e., an unseen disaster
event.

3 Methodology

3.1 Problem statement

The objective of building damage assessment is to interpret
EO data of areas affected by a disaster by generating a build-
ing damage map that reflects the extent of damage to build-
ings. To achieve this, two common approaches are typically
employed. One is to directly treat the building damage as-
sessment task as a single semantic segmentation task (Adri-
ano et al., 2021; Gupta and Shah, 2021). In this approach,
the pre- and post-event images are taken as inputs of the
model, and then the final damage map is directly predicted.
This process can be formalized as Ydam

=Mseg(XT1 ,XT2 ),
where XT1 is the pre-event imagery, XT2 is the post-event
imagery, Mseg (·) is a semantic segmentation model, Ydam is
the obtained damage map. In the context of this paper, XT1 is
VHR optical imagery and XT2 is VHR SAR imagery.

The second adopts the task decoupling approach (Gupta
et al., 2019; Zheng et al., 2021), which breaks down build-
ing damage assessment into two subtasks: the building lo-
calization task, i.e., separating the building from the back-
ground, and the damage classification task, i.e., focusing on
the classification between different levels of damage. This
approach can be formulated as Yloc

=Mloc(XT1 ) and Yclf
=

Mclf(XT1 ,XT2 ), where Yloc is the building localization map,
Yclf is the damage classification map, Mloc (·) and Mclf (·)
are models for building localization and damage classifica-
tion, respectively. Mloc (·) and Mclf (·) can be two separate
models (Gupta et al., 2019) or a unified multi-task learning
model (Zheng et al., 2021; Chen et al., 2022a, 2024). The fi-
nal building damage map is obtained by combining the two
outputs using a simple mask operation: Ydam

= Yloc
�Yclf.

Since this work aims not only to provide a large-scale mul-
timodal dataset to support all-weather disaster response, but
also to offer insights for designing appropriate methods in
future research, both approaches are employed in the experi-
ments to compare their results.

It is worth noting that in this work, we focus on the for-
mulation of building damage assessment as a bi-temporal
task, where both pre- and post-event images are used as in-
puts. This formulation aligns closely with generic change
detection tasks, which aim to identify changes between two
time points. Conceptually, building damage assessment can
be viewed as a specialized “one-to-many” semantic change
detection problem (Zheng et al., 2021, 2024; Lu et al., 2024),
where the objective is not only to detect whether a change
has occurred but also to categorize the type and severity of
changes (damages) to buildings. Many existing methods are
thus derived from or adapted versions of generic change de-
tection frameworks (Chen et al., 2024; Zheng et al., 2024;
Guo et al., 2024).

3.2 Benchmark suites

Several advanced deep network architectures from both
the computer vision and EO communities are evaluated
on BRIGHT. Since building damage assessment can be
considered a specialized semantic segmentation task, we
adopted two well-known segmentation networks from the
computer vision field: UNet (Ronneberger et al., 2015) and
DeepLabV3+ (Chen et al., 2018); and five state-of-the-art
networks from the EO community: SiamAttnUNet (Adriano
et al., 2021), SiamCRNN (Chen et al., 2020), ChangeOS
(Zheng et al., 2021), DamageFormer (Chen et al., 2022a),
and ChangeMamba (Chen et al., 2024). These seven net-
works encompass a broad range of representative DL archi-
tectures, including convolutional neural networks (CNNs),
recurrent neural networks (RNNs), Transformers, and the
more recent Mamba architecture. Among the seven net-
works, UNet, DeepLabV3+, and SiamAttnUNet adopt the
first approach defined in Sect. 3.1, i.e., directly treating build-
ing damage assessment as a single semantic segmentation
task. In contrast, SiamCRNN, ChangeOS, DamageFormer,
and ChangeMamba adopt the second approach by decou-
pling the task into building localization and damage classi-
fication tasks.

Beyond supervised DL models, BRIGHT also enables the
evaluation of other learning strategies and methods com-
monly explored in the EO and computer vision communities:
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– Unsupervised domain adaptation (UDA) methods for
the zero-shot transfer setup, enabling models to transfer
knowledge across disaster events with no labeled sam-
ples from the target event.

– Semi-supervised learning (SSL) approaches for the one-
shot transfer setup, leveraging a small number of labeled
samples and the remaining unlabeled samples from new
disaster events to refine model adaptation.

– Unsupervised multimodal change detection (UMCD)
methods, which exploit the modality-independent rela-
tionship in optical and SAR data to detect land-cover
changes without requiring manual annotations.

– Unsupervised multimodal image matching (UMIM)
methods, which aim to learn modality-independent fea-
tures to enable automatic registration of multimodal
data without relying on manual alignment.

3.3 Model training

To train the supervised models, we use a combination of
cross-entropy loss and Lovasz softmax loss (Berman et al.,
2018). Cross-entropy loss serves as the basic loss function
for dense prediction tasks, while Lovasz softmax loss ef-
fectively addresses sample imbalance between non-building
and building pixels and across different damage levels. For
UNet, DeepLabV3+, and SiamAttnUNet, which directly pre-
dict damage maps from the input multimodal image pairs, the
training loss function is defined as:

Lbda
coupled = Lbda

ce +Lbda
lov . (1)

For SiamCRNN, ChangeOS, DamageFormer, and Change-
Mamba, which decouple building damage assessment into
building localization and damage classification subtasks, the
training loss function is defined as:

Lbda
decoupled = Lloc

ce +Lloc
lov+Lclf

ce +Lclf
lov. (2)

All the models are trained using the AdamW optimizer
(Loshchilov and Hutter, 2017) with a learning rate of 1×
10−4 and a weight decay of 5× 10−3. The training process
consists of 50 000 iterations, with a batch size of 16. To en-
hance sample diversity and improve model generalization,
we apply several data augmentation techniques, including
random flipping, random rotation (in 90° increments), and
random cropping. For the zero-shot and one-shot setups, we
also test UDA and SSL techniques to better utilize unlabeled
and limited target disaster data. The training settings for the
UDA, SSL, UMCD, and UMIM approaches are provided in
Appendix F, G, H, and I, respectively.

3.4 Accuracy assessment

We adopt overall accuracy (OA), F1 score (F1), and mean
intersection over union (mIoU) to evaluate the performance

of the models. These are commonly used metrics in building
damage assessment (Zheng et al., 2021). Following the setup
in previous unimodal building damage assessment studies
and the related xView2 Challenge (Gupta et al., 2019), the
F1 score is used to assess the performance of the models
in the building localization and damage classification sub-
tasks. OA and mIoU are used to measure the overall qual-
ity of the building damage map, providing a comprehensive
assessment of the models’ ability to localize buildings and
classify damage levels accurately.

4 Results and Analysis

4.1 Evaluation on standard machine learning data split

Table 5 shows the results for each model on the test set.
We observe that ChangeMamba achieves the best overall
performance, with an OA of 96.22 %, a mIoU of 67.63 %,
and the highest F loc

1 and F clf
1 scores of 90.90 % and 72.70 %,

respectively. DamageFormer also performs well, following
ChangeMamba, with a mIoU of 67.09 % and an OA of
96.13 %. Both models demonstrate a strong capability in
the building localization and damage classification tasks.
The accuracy of ChangeMamba and DamageFormer under-
scores the importance of leveraging advanced DL architec-
tures to improve performance in complex tasks such as build-
ing damage assessment. For models that use a direct predic-
tion approach (UNet, DeepLabV3+, SiamAttnUNet), UNet
achieves the best results, with a mIoU of 64.94 % and an OA
of 95.47 %. However, its performance still lags behind the
decoupled models, which emphasizes the advantage of task
decoupling.

To ensure that the evaluation is not dominated by a few
events with a large number of images, e.g., Turkey-EQ-
2023, Table 6 presents the event-level mIoU for each model.
ChangeMamba and DamageFormer achieve the highest av-
erage mIoU, with scores of 51.39 % and 52.26 %, respec-
tively. DamageFormer performs very well on events such
as Beirut-EP-2020, Marshall-WF-2021, and Derna-FL-2023.
This shows its robustness across different types of disas-
ters. Although performance varies across events, earthquake-
related events such as Les Cayes-EQ-2021, Morocco-EQ-
2023, and Noto-EQ-2024 present a greater challenge to all
models, with a relatively low average mIoU. This highlights
the need for further research to improve the robustness of
earthquake damage assessment models, particularly where
damage patterns are more complex and diverse. Figure 6
shows some building damage maps obtained by the seven
models on the test set.

4.2 What have the models learned and what can they
learn?

To better understand the models’ behavior beyond perfor-
mance metrics, we explore the internal attention patterns of

https://doi.org/10.5194/essd-17-6217-2025 Earth Syst. Sci. Data, 17, 6217–6253, 2025



6228 H. Chen et al.: BRIGHT

Figure 6. Damage maps predicted by different models on the test images of the 14 disaster events. The meaning of the color in reference
maps and damage maps is consistent with Fig. 4. The sources of EO images are illustrated in Table 2.
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Table 5. Accuracy assessment for different DL models on the test set under the standard ML data split (set-level mIoU). The highest values
in each column are in bold, and the second-highest values are italicized.

Method F loc
1 (%) F clf

1 (%) Final OA (%) Final mIoU (%)
IoU per class (%)

Background Intact Damaged Destroyed

UNet 87.97 72.24 95.47 64.94 96.19 71.27 39.13 53.17
DeepLabV3+ 87.00 70.33 95.43 64.80 95.98 70.98 37.53 54.69
SiamAttnUNet 88.16 70.13 95.45 64.26 96.14 71.90 35.06 53.92

SiamCRNN 89.45 72.02 95.76 65.73 96.48 73.44 38.91 54.18
ChangeOS 89.60 71.88 95.84 65.98 96.54 73.85 38.99 54.53
DamageFormer 90.29 72.51 96.13 67.09 96.87 75.04 39.86 56.59
ChangeMamba 90.90 72.70 96.22 67.63 96.96 75.59 40.05 57.91

Table 6. The mIoU on different events for different DL models (event-level mIoU). The highest values in each event (row) are in bold, and
the second-highest values are italicized.

Events UNet DeepLabV3+ SiamAttnUNet SiamCRNN ChangeOS DamageFormer ChangeMamba

Beirut-EP-2020 52.23 48.53 51.85 52.04 52.57 60.55 49.38
Bata-EP-2021 39.24 40.26 38.69 41.44 39.80 40.37 40.47
Goma-VE-2021 61.52 59.26 62.95 62.50 61.84 61.55 62.89
Les Cayes-EQ-2021 40.39 38.52 40.84 40.99 41.24 41.75 42.36
La Palma-VE-2021 62.72 64.31 65.56 64.24 65.34 64.27 65.13
Marshall-WF-2021 53.96 44.67 51.48 56.57 56.55 57.50 57.23
Ukraine-AC-2022 43.92 43.84 40.71 45.52 45.56 47.45 47.43
Turkey-EQ-2023 49.34 49.53 48.57 50.69 52.34 51.36 52.70
Kyaukpyu-CC-2023 38.11 38.56 40.49 42.35 42.03 48.42 41.05
Hawaii-WF-2023 53.02 57.81 57.92 55.34 58.40 60.82 60.70
Morocco-EQ-2023 42.62 42.05 42.58 43.17 43.05 44.00 44.06
Derna-FL-2023 59.47 56.08 66.82 59.48 57.73 62.24 63.30
Acapulco-HC-2023 49.21 46.66 42.15 49.98 51.08 50.82 47.01
Noto-EQ-2024 36.49 37.33 36.56 38.35 42.84 40.57 45.78

Average 48.73 47.67 49.08 50.19 50.74 52.26 51.39

the trained ChangeOS using class activation maps (CAMs)
(Selvaraju et al., 2017). Figure 7 presents the CAM responses
of ChangeOS across six representative disaster events: vol-
cano, explosion, flood, wildfire, earthquake, and hurricane.
We observe that the attention distribution varies across dis-
aster types. Taking Goma-VE-2021 as an example, for the
“Destroyed” category, the encoder exhibits strong activations
in nearly all the built-up regions in the optical images, ac-
curately localizing individual buildings. This suggests that
the model has effectively learned to extract detailed struc-
tural cues from pre-event optical imagery. In contrast, for the
SAR images, the encoder shows intense activation over the
lava-covered regions on the left. This indicates that the model
has identified the lava-covered regions as a key signal for
destruction, likely due to the significant backscatter changes
caused by lava flow. In the “Damaged” category, the activa-
tions are more subtle. Attention is primarily focused near the
boundary of the lava flow, where partial or ambiguous struc-
tural changes occur. In the decoder, the destroyed buildings

in the lava-affected area are strongly activated, which aligns
well with the reference labels. Conversely, for the “Dam-
aged” class, only a few regions are activated. This suggests
that inferring partial damage from SAR imagery in volcanic
disaster scenarios remains a significant challenge, as subtle
structural degradation is often not clearly reflected in SAR
backscatter or texture.

Beyond understanding what the models have already
learned, a more critical question is: What can they learn?
More specifically, to what extent can optical–SAR modality
improve the accuracy of building damage assessment across
diverse disaster scenarios? To investigate this, we aggregate
the IoUs of the seven models and calculate their average IoU
across the seven major disaster types, as shown in Fig. 8. The
wildfire and volcano events exhibit the highest IoU scores
for the “Destroyed” category, both exceeding 70 %. This in-
dicates that the model can effectively leverage SAR-based
backscatter anomalies, such as lava flows or widespread de-
bris fields, to detect fully destroyed structures. These results
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Figure 7. Visualization of feature response to “Damaged” and “Destroyed” categories in different layers of deep models over three event
cases. (a) Goma-VE-2021. (b) Beirut-EP-2023. (c) Libya-FL-2023. (d) Hawii-WF-2023. (e) Turkey-EQ-2023. (f) Acapulco-HC-2023. In
the visualization, closer to red indicates larger response values, and closer to dark blue the opposite. See Appendix B for implementation
details.

Figure 8. IoU distribution of deep models over seven disaster types. Each bar represents the average IoU of seven DL models for that specific
category under each disaster type. The error bars indicate the standard deviation of IoU scores across the seven models.
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demonstrate a strong potential of optical–SAR fusion in such
high-impact scenarios. For the “Damaged” category, the per-
formance drops significantly. The average IoU for damaged
buildings in wildfire events remains below 20 %, while in
volcano events, it falls to around 5 %. This suggests that
single-polarization SAR imagery lacks the fine-grained in-
formation needed to reliably distinguish partially damaged
buildings, where structural integrity may still be partially
preserved and backscatter signals remain ambiguous. In the
earthquake events, both damaged and destroyed categories
yield relatively low IoUs. This is likely due to the complex
and heterogeneous patterns of structural collapse typical of
seismic events, where damage is often subtle, partial, and
highly variable. These conditions pose significant challenges
for SAR-based assessment. Interestingly, the model achieves
relatively high IoU scores in the flood and hurricane events
for the “Damaged” category with approximately 50 % and
60 %, respectively. This indicates that SAR effectively cap-
tures contextual environmental changes, such as water inun-
dation or terrain disruption, which indirectly aid in assess-
ing building damage. In the case of the conflict event, the
model’s performance on the “Destroyed” class is surprisingly
low. This might be attributed to the limited number of de-
stroyed samples in the dataset for this category, which leads
to insufficient learning and poor generalization.

These quantitative limitations are vividly illustrated by the
typical failure cases shown in Fig. 9. In the Bata-Explosion-
2021 event, models misclassify severely destroyed buildings
as intact, reflecting the difficulty of interpreting heteroge-
neous debris patterns. Similarly, in the Noto-Earthquake-
2024 event, large-scale collapses are largely missed, high-
lighting the challenge of diverse and subtle seismic damage.
These examples visually confirm that the significant hetero-
geneity in damage patterns makes it challenging for models
to learn a consistent and generalizable representation of dam-
age.

In summary, these findings confirm both the promise and
limitations of optical-SAR modality for all-weather, global-
scale disaster response. Although this combination performs
well in events characterized by large-scale surface disruption
(e.g., wildfires, volcanoes), it struggles with subtle or local-
ized damage patterns. Incorporating richer data sources, such
as fully polarimetric SAR and LiDAR data, can further en-
hance the accuracy and reliability of future all-weather build-
ing damage assessments.

4.3 The role of optical pre-event data in multimodal
building damage assessment

In the last section, CAM visualizations revealed that DL
models also exhibit responses to disaster-specific patterns in
pre-event optical imagery. This observation suggests that op-
tical data may play a more complex role in multimodal build-
ing damage mapping than simply supporting building local-
ization. In other words, in a multimodal bi-temporal setup,

does pre-event optical imagery act solely as a localization
aid, or does it provide additional semantic cues that networks
can exploit for more accurate damage classification?

To explore this, we conducted controlled experiments us-
ing UNet and DeepLabV3+. Both networks were trained un-
der two configurations: (i) using post-event SAR imagery
only, and (ii) using multimodal pre- and post-event inputs
(optical-SAR). To isolate the contribution of pre-event op-
tical data beyond building localization, we provided perfect
building masks for postprocessing in both settings. This de-
sign ensures that any observed differences in performance are
attributable to the additional information from pre-event op-
tical imagery, rather than differences in network architecture
or localization accuracy.

The results, summarized in Table 7, show that incorporat-
ing pre-event optical imagery leads to notable improvements
in distinguishing building damage levels. For UNet, the IoU
for the “Damaged” class increased from 35.83 % (SAR only)
to 44.83 % (Optical-SAR), and for the “Destroyed” class
from 55.35 % to 55.42 %. DeepLabV3+ exhibited significant
gains also, with IoU improvements from 39.63 % to 40.45 %
for “Damaged” category, and from 59.54 % to 64.94 % for
“Destroyed” category. These results suggest that pre-event
optical imagery contributes beyond mere building localiza-
tion, enriching the feature space for more effective seman-
tic comparison for different building damage levels across
modalities.

4.4 Impact of post-event modality on building damage
assessment performance

Although the primary design of BRIGHT is to facilitate
all-weather disaster response through the use of pre-event
optical and post-event SAR imagery, it is also important
to understand how these modalities compare when high-
quality post-event optical imagery is available. To this end,
we conducted supplementary experiments on a subset of
events, including Bata-Explosion-2020, Beirut-Explosion-
2021, Hawaii-Wildfire-2023, Libya-Flood-2023, and Noto-
Earthquake-2024, for which pre-processed post-event opti-
cal data were accessible. We evaluated three experimental
setups: (i) optical-only (pre-event optical + post-event opti-
cal), (ii) SAR-only (pre-event optical+ post-event SAR, i.e.,
the standard BRIGHT setting), and (iii) optical+ SAR fusion
(pre-event optical + post-event optical + post-event SAR).

Table 8 presents the experimental results. As expected,
when ideal post-event optical imagery is available, the
optical-only setup achieves higher performance than the
SAR-only setup. For example, with DamageFormer, the
optical-only configuration reaches a final mIoU of 69.76 %,
compared to 65.56 % for SAR-only. Importantly, the per-
formance gap between optical and SAR is not substantial,
demonstrating that SAR alone provides a strong alternative in
the absence of usable optical imagery. Moreover, the fusion
of optical and SAR consistently yields the best results across
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Figure 9. Typical failure cases of different models on Bata-Explosion-2021 and Noto-Earthquake-2024 in BRIGHT, where optical images
are from © Maxar and © GSI Japan and SAR images are from © Capella Space and © Umbra.

Table 7. Performance comparison of UNet and DeepLabV3+ using only post-event SAR input and pre-event optical plus post-event SAR
inputs for damage classification task. Here, accurate building masks are provided as the post-processing step to all models to isolate the effect
of building localization task on the damage classification task.

Method Modality F clf
1 (%) Final mIoU (%)

IoU per class (%)

Background Intact Damaged Destroyed

UNet
Post-event SAR 68.71 69.84 100.0 88.19 35.83 55.35
Pre-event optical + post-event SAR 73.59 72.41 100.0 89.38 44.83 55.42

DeepLabV3+
Post-event SAR 72.12 72.19 100.0 89.59 39.63 59.54
Pre-event optical + post-event SAR 73.90 73.93 100.0 90.32 40.45 64.94

all tested models. For instance, DamageFormer’s mIoU fur-
ther increases to 70.79 % with Optical+SAR fusion, indicat-
ing that SAR contributes complementary information that
strengthens performance even under optimal optical condi-
tions.

These findings underscore two important insights. First,
multimodal fusion is beneficial even when high-quality opti-
cal data are available, as SAR provides unique structural in-
formation that enriches the optical signal. Second, the perfor-
mance of the SAR-only approach, being reasonably close to
the optical-only results, highlights the practical value of SAR
in real-world disaster scenarios where post-event optical im-
agery is often unavailable. BRIGHT is therefore designed to
advance the development of models for these realistic, of-
ten non-ideal, but operationally critical all-weather disaster
response settings.

4.5 Effect of post-processing method

Post-processing techniques help refine raw predictions from
DL models, to reduce noise, improve consistency, and ensure
spatial coherence in damage maps (Zheng et al., 2021). Here,
we explore the impact of post-processing algorithms. Table 9
presents the effect of three post-processing techniques ap-
plied to ChangeMamba. The post-processing methods eval-
uated include test-time augmentation, object-based majority
voting, and model ensembling. The details of the methods are
provided in Appendix E. As shown in Table 9, the test-time
augmentation improves the mIoU by 0.87 % at the set level
and 0.56 % at the event level, demonstrating its effectiveness
in enhancing model robustness across diverse disaster sce-
narios. Object-based majority voting, which aggregates pre-
dictions at the building-object level to enforce spatial con-
sistency, slightly reduces set-level mIoU (−0.41 %) but im-
proves event-level mIoU (+0.69 %). Ensembling multiple
models leads to a 0.82 % increase in mIoU at the set level and

Earth Syst. Sci. Data, 17, 6217–6253, 2025 https://doi.org/10.5194/essd-17-6217-2025



H. Chen et al.: BRIGHT 6233

Table 8. Performance comparison of different post-event modalities on a subset of BRIGHT. Results are reported for UNet, DeepLabV3+, and
DamageFormer on five disaster events where high-quality post-event optical imagery is available: Bata-Explosion-2020, Beirut-Explosion-
2021, Hawaii-Wildfire-2023, Libya-Flood-2023, and Noto-Earthquake-2024.

Method Post-event modality F loc
1 (%) F clf

1 (%) Final mIoU (%)
IoU per class (%)

Background Intact Damaged Destroyed

UNet
SAR 85.05 71.43 62.94 94.39 65.60 42.34 49.43
Optical 86.46 75.64 65.96 94.56 68.62 45.27 55.36
Optical+SAR 86.70 74.46 66.29 94.72 69.16 41.73 59.57

DeepLabV3+
SAR 83.55 67.52 60.57 93.86 65.62 35.64 47.16
Optical 85.79 74.39 64.87 94.33 67.90 44.31 52.94
Optical+SAR 85.90 74.87 65.84 94.48 69.60 44.68 54.60

DamageFormer
SAR 88.41 73.43 65.56 95.30 70.62 41.31 55.00
Optical 88.32 78.04 69.76 95.37 72.72 47.26 63.68
Optical+SAR 88.86 79.27 70.79 95.56 73.64 48.44 65.51

Table 9. Further contributions to mIoU from post-processing al-
gorithms. ChangeMamba (Chen et al., 2024) is used here as the
baseline. Details on these algorithms are provided in Appendix E.

Method mIoU (set) mIoU (event)

Baseline 67.63 51.39

Test-time augmentation 68.50 51.95
Object-based majority voting 67.22 52.08
Ensembling multiple models 68.45 52.14

All 68.86 52.31

a 0.75 % increase at the event level, reinforcing its effective-
ness in improving model performance across different disas-
ter events. Applying all post-processing techniques together
yielded the highest performance improvement, with a 1.23 %
increase in set-level mIoU and a 0.92 % increase in event-
level mIoU. These results confirm that combining different
post-processing methods can significantly enhance the relia-
bility of AI-based damage assessments, ensuring better gen-
eralization across disaster types and locations. In summary,
post-processing techniques are crucial in improving the accu-
racy of building damage maps. Future work can further ex-
plore adaptive post-processing strategies tailored to specific
disaster types to enhance prediction reliability in multimodal
EO data contexts.

4.6 Evaluation on cross-event transfer setup

4.6.1 Baseline methods

Cross-event transfer, especially under zero-shot settings,
poses a significant challenge for building damage assess-
ment. As shown in Table 10, the average mIoU of all baseline
models in the zero-shot setting is below 40 %, a noticeable
drop compared to their performance under the fully super-

vised standard ML data split in Table 6, where the models
typically achieve 48 % to 52 % mIoU. This performance gap
underscores the difficulty of generalizing to unseen disaster
events without access to any target domain supervision due to
substantial domain shifts in imaging conditions, damage pat-
terns, urban morphology, and sensor response. Despite this,
all models exhibit clear performance gains in the one-shot
setting, where a small number of labeled samples from the
target event are available. This suggests that even minimal
supervision can significantly aid adaptation to new disaster
contexts.

Among the evaluated models, ChangeMamba consistently
achieves the highest overall performance, with an aver-
age mIoU of 39.38 % in zero-shot and 43.23 % in one-
shot settings, followed by DamageFormer. This highlights
the strength of recent Transformer- and Mamba-based ar-
chitectures in transferring learned knowledge under com-
plex multimodal and disaster scenarios. Models using a de-
coupled architecture generally outperform direct segmen-
tation models, which confirms that separating building lo-
calization and damage classification improves generaliza-
tion in cross-event transfer tasks. In contrast, the Acapulco-
HC-2023 and Ukraine-AC-2022 events show weaker results
across all models, reflecting the difficulty in transferring to
domains with limited or inconsistent destruction patterns.

4.6.2 Unsupervised domain adaptation and
semi-supervised learning methods

In the context of cross-event transfer, the UDA and SSL
methods naturally emerge as promising strategies to bridge
the domain gap between the source and the target disaster
events. In the zero-shot setting, UDA methods aim to im-
prove model generalization by aligning the source and tar-
get domains without requiring any target labels. In the one-
shot setting, SSL methods leverage a small number of la-
beled samples with abundant unlabeled data from the target
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Table 10. The mIoU on different events for different DL models in zero-shot and one-shot cross-event transfer setups. The highest values in
each event (row) are in bold, and the second-highest values are italicized.

Events
UNet DeepLabV3+ SiamAttnUNet SiamCRNN ChangeOS DamageFormer ChangeMamba

zero-/one-shot zero-/one-shot zero-/one-shot zero-/one-shot zero-/one-shot zero-/one-shot zero-/one-shot

Beirut-EP-2020 31.62/34.89 34.72/33.58 35.33/29.17 39.43/40.94 38.48/38.21 38.71/39.93 40.30/40.92
Bata-EP-2021 33.48/37.48 33.55/30.23 33.78/35.24 37.46/40.06 38.00/38.18 38.91/39.42 39.17/40.31
Goma-VE-2021 55.97/57.14 55.01/58.13 57.52/55.75 58.91/59.54 58.66/57.85 55.86/59.89 60.39/61.91
Les Cayes-EQ-2021 26.21/38.72 35.50/37.90 37.22/38.76 39.45/40.28 39.36/40.26 40.41/41.07 41.35/42.06
La Palma-VE-2021 32.74/35.29 30.86/36.25 34.00/34.99 32.90/33.32 29.96/32.60 32.28/37.62 34.18/34.93
Marshall-WF-2021 34.97/37.84 35.05/37.12 35.23/39.54 39.82/46.83 36.31/43.72 40.93/51.15 40.61/45.96
Ukraine-AC-2022 32.36/37.50 32.23/35.98 33.84/35.76 34.77/38.14 36.30/39.28 33.84/36.51 35.78/36.99
Turkey-EQ-2023 37.82/35.83 37.28/40.49 36.09/37.49 38.32/40.11 38.45/39.51 37.20/40.27 41.28/42.80
Kyaukpyu-CC-2023 31.46/31.71 34.01/34.75 33.77/35.93 34.19/37.71 36.66/36.25 32.99/33.54 33.85/36.08
Hawaii-WF-2023 31.73/39.80 31.32/45.44 31.79/45.12 30.94/42.65 31.15/41.96 31.60/50.64 36.14/50.89
Morocco-EQ-2023 38.24/39.81 40.48/41.23 40.78/40.69 40.89/42.89 41.40/41.89 41.89/43.42 42.86/43.51
Derna-FL-2023 33.25/38.44 35.07/40.02 33.76/42.15 35.88/44.77 35.80/43.85 36.27/44.69 37.02/45.47
Acapulco-HC-2023 26.99/38.76 27.78/33.24 30.93/38.94 26.70/34.53 27.06/34.50 27.48/32.87 28.45/38.96
Noto-EQ-2024 31.02/33.83 35.57/39.17 35.87/36.22 36.04/38.52 39.14/39.15 36.37/43.93 39.90/44.33

Average 34.13/38.36 35.60/38.82 36.42/38.98 37.55/41.45 37.62/40.52 37.48/42.49 39.38/43.23

Table 11. Results of unsupervised domain adaptation methods
adopted for zero-shot cross-event transfer setup. DeepLabV3+
(Chen et al., 2018) is used as the baseline here. Detailed mIoU on
each event is listed in Table F1. The highest values are highlighted
in bold, and the second-highest results are highlighted in italicized.

Method Avg. mIoU

Source-Only 35.60

AdaptSeg (Tsai et al., 2018) 36.05
AdvEnt (Vu et al., 2019) 35.43
CLAN (Luo et al., 2019) 36.01
PyCDA (Lian et al., 2019) 33.19
FDA (Yang and Soatto, 2020) 36.29

event, making them especially appealing for real-world dis-
aster scenarios where rapid and comprehensive annotation is
infeasible. It remains an open question whether these UDA
and SSL methods, originally developed for natural image do-
mains, can effectively handle the challenges of multimodal
EO data in complex disaster scenarios. We evaluated several
representative UDA and SSL methods using DeepLabV3+ as
the baseline model to examine their capabilities in complex
disaster scenarios. The results for UDA and SSL are reported
in Tables 11 and 12, respectively.

Table 11 presents the performance of five classical UDA
methods. Compared to the source-only baseline (35.60 %
mIoU), most methods achieve modest improvements, with
FDA (+0.69 %) and AdaptSeg (+0.45 %) showing the
most consistent gains. CLAN also performs slightly bet-
ter (+0.41 %), suggesting that category-level alignment con-
tributes positively even under a large domain shift. In con-
trast, AdvEnt shows negligible change, and PyCDA signif-

Table 12. Results of semi-supervised learning methods adopted
for one-shot cross-event transfer setup. DeepLabV3+ (Chen et al.,
2018) is used as the baseline here. Detailed mIoU on each event is
listed in Table G1. The highest values are highlighted in bold, and
the second-highest results are highlighted in italicized.

Method Avg. mIoU

Baseline 38.82

MT (Tarvainen and Valpola, 2017) 40.00
CCT (Ouali et al., 2020) 39.49
GCT (Ke et al., 2020) 39.34
CPS (Chen et al., 2021) 37.06

icantly underperforms, dropping 2.41 % mIoU below the
baseline. This performance degradation indicates that ap-
proaches relying on pseudo-label refinement or curriculum
learning may struggle in multimodal imagery under disaster
scenarios, where spatial layout and damage semantics vary
drastically across events. Overall, while UDA methods show
some promise, their improvements are relatively minor and
not robust across all events, underscoring the difficulty of do-
main alignment in EO-based damage mapping.

In the one-shot setting, we evaluated several popular SSL
methods, as shown in Table 12. With only minimal supervi-
sion in the target event, all methods except CPS improved
over the one-shot baseline (38.82 %). The best-performing
method is Mean Teacher (MT), which yields a gain of
+1.18 %, followed by CCT (+0.67 %) and GCT (+0.52 %).
These results show that simple consistency-based teacher-
student frameworks are particularly effective in leveraging
unlabeled data under limited supervision, likely due to their
robustness to noisy or class-imbalanced targets.
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4.6.3 Why is cross-event transfer challenging?

To better understand why cross-event generalization is diffi-
cult, we explore two fundamental factors rooted in the nature
of real-world disaster response.

1. Inconsistent damage signatures across events. Figure 10
presents violin plots of SAR backscatter values for in-
tact, damaged, and destroyed buildings across multiple
event pairs. These plots reveal two key observations.
First, even within the same disaster category (the first
row), the pixel intensity distributions for damaged and
destroyed buildings differ significantly between events.
This indicates that SAR-based damage signatures are
inconsistent across locations, possibly due to differ-
ences in urban layout, building materials, or sensor
incidence angles. Secondly, the distribution shift be-
comes more pronounced across different types of disas-
ters (the second row). For example, the signatures of de-
stroyed buildings in wildfires notably differ from those
in volcano eruptions, which also differ from floods or
hurricanes. These variations reflect fundamental differ-
ences in damage mechanisms: buildings burned in wild-
fires, submerged in floods, or collapsed in earthquakes
leave very different patterns in SAR backscatter. Such
distributional discrepancies make it extremely difficult
for models to generalize from one event to another. A
model trained on one disaster might learn class bound-
aries (e.g., between “Damaged” and “Destroyed”) that
do not transfer well to another disaster, especially when
the visual and physical properties of damage are funda-
mentally different.

2. Lack of target domain supervision for model selection.
Another critical challenge in cross-event setup is the ab-
sence of labeled target domain samples for model selec-
tion. In typical domain adaptation benchmarks in com-
puter vision, a validation set of target domain is avail-
able to tune hyperparameters or select the best check-
point. However, no such validation data can be assumed
in disaster response scenarios. Figure 11 illustrates the
resulting issue: the gap between the actual best mIoU on
the test event and the mIoU of the checkpoint selected
using a source domain validation set for several repre-
sentative models under both zero-shot and one-shot set-
tings. In the zero-shot setting, this performance gap is
substantial across most models. This indicates that re-
lying on source domain validation leads to suboptimal
model selection due to poor reflection of the target dis-
tribution. The one-shot setting helps reduce this gap by
enabling limited target-aware selection. However, the
issue is not entirely resolved. Even with a few labeled
samples, model instability and domain shift still make
selection challenging.

Together, these two findings highlight that cross-event
transfer is hindered not only by semantic and statistical shifts

across disaster types but also by operational constraints that
prevent ideal training and tuning. Future studies should con-
sider both aspects, i.e., developing models that are robust to
distributional variance and designing selection strategies that
do not depend on target supervision, such as self-validation,
early stopping heuristics, or domain-agnostic performance
proxies (Yang et al., 2023).

4.7 Evaluation of unsupervised multimodal change
detection methods

Unsupervised multimodal change detection (UMCD) plays
a crucial role in post-disaster assessment by enabling rapid
analysis of affected areas without requiring labeled data or
prior model training (Lv et al., 2022). Current studies are
mainly conducted on toy datasets with limited geographic
diversity and scene complexity. These datasets are for gen-
eral land cover changes. Whether these methods work in
real-world disaster occurrence/building damage scenarios is
still unknown. BRIGHT offers a new opportunity to evaluate
UMCD methods to provide insights into their robustness and
scalability in disaster response scenarios. Six representative
UMCD methods (Sun et al., 2021; Chen et al., 2022b, 2023;
Han et al., 2024; Sun et al., 2024a; Liu et al., 2025) are eval-
uated in this work. The experimental setup is described in
Appendix H.

Table 13 presents the performance of UMCD methods on
BRIGHT and UMCD benchmark datasets. To provide a base-
line for reference, we also include a random guessing result,
representing the performance floor under the UMCD setup.
The UMCD benchmark datasets1 are detailed in Fig. H1 in
Appendix H. Although these methods achieved considerable
performance on existing UMCD benchmark datasets, their
performance suffers noticeable declines on BRIGHT. For in-
stance, while they achieved F1 scores between 70 %–85 %
on existing benchmarks, their F1 scores dropped to 20 %
on BRIGHT. This dramatic performance gap underscores the
limitations of current UMCD research and highlights the
challenges posed by real disaster scenarios. We identify three
primary reasons for this decline:

1. Limitations in traditional UMCD datasets. The exist-
ing UMCD datasets consist of only a handful of image
pairs, often depicting simple land cover changes, such
as urban expansion and deforestation, with relatively
low-resolution imagery and limited geographic diver-
sity, as shown in Fig. H1 in Appendix H. These datasets
fail to capture the complexity and variability found in
real-world disaster scenarios. In contrast, BRIGHT pro-
vides thousands of VHR multimodal image pairs across
different types of disasters, significantly increasing the
diversity of test cases and making it a more challenging
benchmark for UMCD model evaluation.

1These benchmark datasets are open access at http://www-labs.
iro.umontreal.ca/~mignotte/ (last access: 7 November 2025)

https://doi.org/10.5194/essd-17-6217-2025 Earth Syst. Sci. Data, 17, 6217–6253, 2025

http://www-labs.iro.umontreal.ca/~mignotte/
http://www-labs.iro.umontreal.ca/~mignotte/


6236 H. Chen et al.: BRIGHT

Figure 10. The comparison of pixel distribution of different categories in SAR images for different events. The first row compares different
events with the same disaster type. (a) Explosion. (b) Volcano eruption. (c) Wildfire. (d) Cyclone/Hurricane (e) Earthquake. The second
row compares different disaster types. (f) Explosion vs Conflict. (g) Wildfire vs Volcano Eruption. (h) Cyclone vs Flood. (i) Explosion vs
Wildfire. (j) Conflict vs Earthquake.

Table 13. Results of representative unsupervised multimodal change detection methods. KC is the acronym of kappa coefficient. The highest
values are highlighted in bold, and the second-highest results are highlighted in italicized. The accuracies on the UMCD benchmark dataset
are the accuracies on the four datasets presented in Fig. H1, obtained from their literature. Details of methods and benchmark datasets are
presented in Appendix H. The random guessing baseline is included to indicate the performance floor under the UMCD setup. The “–”
symbol indicates that the corresponding method did not report results on that dataset in their original publications.

Method
UMCD benchmark datasets BRIGHT

OA F1 KC OA F1 IoU KC

Random guessing 50.0 8.4/6.0/11.0/11.4 0.0 50.00 7.83 4.08 0.00
IRG–McS (Sun et al., 2021) 98.3/–/97.1/97.2 80.4/–/75.4/73.7 79.4/–/73.9/75.1 90.03 12.65 6.75 7.65
SR–GCAE (Chen et al., 2022b) 98.6/98.5/–/– 82.9/77.6/–/– 82.1/76.9/–/– 77.83 14.35 7.73 5.64
FD–MCD (Chen et al., 2023) 98.2/97.8/–/96.7 81.4/72.2/–/73.2 82.3/71.1/–/71.4 80.96 15.84 8.60 7.94
AOSG (Han et al., 2024) –/–/–/96.4 –/–/–/77.7 –/–/–/75.9 77.93 10.75 5.68 3.98
AGSCC (Sun et al., 2024a) 98.3/–/95.9/97.6 78.2/–/68.0/77.9 77.3/–/65.8/76.6 88.49 14.82 8.00 9.54
AEKAN (Liu et al., 2025) 98.7/–/–/98.3 83.8/–/–/84.7 83.1/–/–/83.9 81.60 13.09 7.00 3.56

2. Interference from non-disaster changes. Unlike pre-
vious UMCD benchmarks, where general land cover
changes are the primary detection target, changes such
as vegetation growth, water body shifts, and urban de-
velopment may introduce noise and interfere with dam-
age detection in real-world disaster scenarios. While
prior UMCD studies treat such changes as valid de-
tection targets, BRIGHT requires methods to differenti-
ate true building structural damage from irrelevant land
cover variations, posing a unique challenge to current
approaches.

3. Problematic evaluation protocol. Current UMCD re-
search follows a problematic evaluation protocol where
models are trained, hyperparameters are tuned, and then

validated on the same dataset. This approach can ac-
tually lead to overfitting, artificially making the model
look very accurate but not generalizable to real-world
scenarios. In a real-world disaster scenario, there are
no labeled samples available for hyperparameter tuning,
which makes the current practice unrealistic. BRIGHT
exposes this limitation, as models now need to be
trained or tuned before being tested directly on new,
unseen data, requiring truly generalizable and adaptive
learning strategies.

The results have highlighted the challenges of applying
existing UMCD models to real-world disaster scenarios.
BRIGHT reveals significant limitations in current method-
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Figure 11. Comparison of models’ best performance (mIoU) on
test events versus the best checkpoints selected on validation sets
under the cross-event transfer setting. Each point represents the per-
formance on a single test event under cross-event transfer. The far-
ther a point lies from the diagonal line, the larger the gap between
the model’s selected performance and its true upper bound.

ologies and presents new opportunities for future UMCD re-
search.

4.8 Evaluation of unsupervised multimodal image
matching methods

Precise image alignment is a critical prerequisite for any mul-
timodal EO application. BRIGHT offers a unique opportu-
nity to evaluate the performance of existing UMIM algo-
rithms under realistic, large-scale disaster conditions. Due
to the lack of real pixel-level ground truth correspondences,
we adopt a proxy evaluation strategy using manually selected
control points (as shown in Fig. C1 in Appendix C) as refer-
ences. These points were selected by EO experts to represent
identifiable and stable features across modalities. While this
does not constitute absolute ground truth, using such human-
verified correspondences provides a valuable reference. This
allows us to assess how closely automated methods approxi-
mate human matching ability under multimodal and disaster
conditions.

Table 14 presents the quantitative results of four UMIM
methods on the Noto-Earthquake-2024 scene. These meth-
ods fall into two main categories: feature-based methods
(LNIFT (Li et al., 2022) and SRIF (Li et al., 2023a)), which
rely on sparse keypoint detection and matching, and area-
based methods (FLSS (Ye et al., 2017) and HOPC (Ye et al.,
2019)), which operate on local regions to estimate correspon-

Table 14. Registration performance of different UMIM methods on
the scene of Noto-Earthquake-2024. Note that the offsets here are
in meters and are calculated based on the geo-coordinates of control
points manually selected by EO experts. N/A means that the method
is unable to complete the registration task.

Method Before (meters) After (meters)

FLSS (Ye et al., 2017)

16.97

10.01
HOPC (Ye et al., 2019) 9.37

LNIFT (Li et al., 2022) N/A
SRIF (Li et al., 2023a) N/A

dences. A detailed description of each method is provided in
Appendix I. The experimental results reveal that traditional
feature-based methods fail to achieve successful automatic
registration. We attribute this limitation to the large spatial
extent of the scenes and the drastic cross-modal differences,
which make direct keypoint matching highly error-prone and
unreliable.

In contrast, area-based methods, which rely on the simi-
larity in a local region rather than point correspondence at
the global level, can partially mitigate registration errors and
achieve relatively more stable performance. However, these
methods still face a critical limitation: they typically perform
local matching within a fixed search window. This strategy is
inherently inadequate for handling large displacements, es-
pecially in SAR imagery over mountainous or uneven ter-
rain, where terrain-induced distortions can cause substantial
pixel shifts that far exceed the local search range. Thus, au-
tomatic methods may serve as a useful auxiliary tool for pre-
liminary matching or candidate generation, but human exper-
tise remains indispensable for ensuring precise and reliable
alignment in operational scenarios. We hope that BRIGHT
and its challenging real-world scenarios will inspire the de-
velopment of new UMIM methods that are more robust to
large-scale scene variations, sensitive to terrain-induced dis-
tortions, and ultimately capable of reducing human efforts in
future operational EO-based disaster response workflows.

5 Discussion

5.1 Limitation of BRIGHT

We begin this subsection by acknowledging that the com-
position of the BRIGHT dataset is fundamentally shaped by
practical constraints in data availability. While BRIGHT rep-
resents a significant step forward in assembling a large-scale,
multimodal, and globally distributed dataset for disaster re-
sponse, it is important to recognize several inherent limi-
tations. These limitations arise not only from the scarcity
of open-access VHR SAR imagery, especially over disaster-
affected regions, but also from the challenges of manual an-
notation and the uneven distribution of events. To provide a
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clearer picture for potential users, we summarize these con-
straints in four aspects below.

1. Registration error. BRIGHT dataset consists of optical
and SAR images covering the same locations. SAR im-
ages, in particular, can be distorted and stretched in
certain areas. Despite thorough preprocessing, includ-
ing manual alignment and cross-checking by multiple
experts in EO data processing, minor alignment errors
may persist, as Table 4 suggests.

2. Label quality. The building polygons in BRIGHT were
manually annotated by expert annotators. Although
manual labeling generally ensures high accuracy, mi-
nor errors in polygon boundaries are inevitable due to
the complexity of building shapes and the variability in
image resolution. These inaccuracies may slightly af-
fect the performance of the models trained on BRIGHT.
Furthermore, experts assessed the extent of damage to
buildings through visual interpretation of optical EO
data. This process is susceptible to occasional misjudg-
ments, contributing to label noise.

3. Sample and regional imbalance. Although BRIGHT is
rich in geographically diverse data, it has the problem of
regional imbalance in the number of labels. Some of its
events have more tiles and building numbers, thus, are
more dominant in training and evaluation, e.g., Turkey-
Earthquake-2023 (1114 tiles) v.s. Hawaii-Wildfire-2023
(65 tiles) in Table 2. To address this, we used an addi-
tional event-level evaluation method. However, the ef-
fect of events, which account for a large percentage of
the sample, on the model during the training phase is
still not negligible. This may affect the generalizability
of the trained model in real-world disaster scenarios. In
addition, all the disaster events in BRIGHT are located
near the equator or in the northern hemisphere, with no
events from the southern hemisphere. This spatial bias
could potentially limit the applicability of trained mod-
els to regions with different building styles, land cover
patterns, or SAR imaging characteristics prevalent in
the southern part of the globe.

4. Modality and temporal scope. The dataset’s scope is de-
fined by two key characteristics of the available data.
First, it exclusively utilizes single-polarization SAR im-
agery. The current version lacks the more informa-
tive multi-polarization or dense time-series SAR data,
which, if available, could enable more nuanced damage
characterization and long-term recovery monitoring, re-
spectively. Second, the dataset’s temporal coverage is
concentrated on events from 2020 onwards. This is a
direct consequence of its reliance on modern commer-
cial VHR SAR providers (Capella Space and Umbra),
whose open-data initiatives largely commenced around
that time.

Overall, despite these limitations, it is the first time such an
open multimodal VHR dataset has been constructed for mul-
timodal EO research with a large-scale and diverse disaster
context.

5.2 Significance of BRIGHT

Delays in both EO data acquisition and damage interpretation
workflows often hinder timely disaster response (Ye et al.,
2024). Traditional expert-driven building damage mapping is
time-consuming and not scalable. While ML and DL meth-
ods offer automated alternatives, their effectiveness remains
limited by the scope and quality of available training data.
Most existing open-source datasets are optical, restricting
the models’ operational applicability in adverse weather and
low-light conditions. As the first globally distributed multi-
modal dataset, BRIGHT encompasses pre-event optical im-
ages and post-event SAR images. This unique combination
overcomes the limitations of optical EO data by enabling
models trained on BRIGHT to monitor disaster-stricken ar-
eas regardless of weather conditions or daylight. Compared
to existing building damage datasets, BRIGHT offers several
distinct characteristics: multimodal data, VHR imagery with
sub-meter spatial resolution, coverage of five types of natu-
ral disasters and two human-made disasters, rich geographic
diversity, and open access to the community. Due to these
features, BRIGHT is anticipated to serve as a benchmark for
many future studies and practical disaster relief applications.

Beyond building damage assessment, BRIGHT can also
support several research directions within the EO and vi-
sion community. In this work, we have applied BRIGHT to
evaluate the performance of several UDA and SSL methods
for cross-event transfer. We also demonstrated its applica-
bility to UMCD and UMIM, showcasing its versatility as
a benchmark for multiple EO challenges under real-world
constraints. Furthermore, the dataset provides a strong foun-
dation for broader multimodal EO research. Its high-quality
annotations and geographic diversity directly apply to tasks,
such as building footprint extraction, land cover mapping,
height estimation, and EO-based visual question answering
(VQA). Researchers can also repurpose or extend BRIGHT
to create task-specific benchmarks, enabling flexible exper-
imentation across tasks. v is also well-positioned to support
the development of EO-based foundation models, large-scale
pre-trained models designed to generalize across sensors,
tasks, and regions (Wang et al., 2023; Hong et al., 2024). Its
rich combination of modalities, spatial detail, and contextual
diversity provides the data diversity required to build such
general-purpose foundation models. This contribution is sig-
nificant as the field moves toward creating versatile, scalable
AI models that can be applied across different types of EO
data and disaster scenarios (Li et al., 2024).

Looking ahead, BRIGHT can be further enhanced by in-
corporating additional modalities. For example, the inclu-
sion of fully polarimetric SAR data would enable more nu-
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anced damage classification than current single polarization
SAR data by characterizing the different scattering proper-
ties of building materials and debris. Meanwhile, LiDAR
data would offer precise 3D information to directly quantify
structural collapse and enable a truly terrain-aware analysis.
Future versions may also help fill current geographic gaps,
including southern hemisphere regions, to ensure more glob-
ally representative coverage. Ultimately, we envision that
BRIGHT, true to its name, will bring even a glimmer of
brightness to people in disaster-stricken areas by enabling
more prompt and effective disaster response and relief.

6 Code and data availability

The BRIGHT dataset is available at
https://doi.org/10.5281/zenodo.14619797 (Chen et al.,
2025a). The code for training and testing benchmark
methods (including code related to IEEE GRSS DFC 2025)
is accessible at https://doi.org/10.5281/zenodo.17569363
(Chen et al, 2025c). Models’ checkpoints can be downloaded
at https://doi.org/10.5281/zenodo.15349461 (Chen et al.,
2025b).

7 Conclusions

In this paper, we introduced BRIGHT, the first globally dis-
tributed multimodal dataset with open access to the commu-
nity, covering 14 natural and human-made disaster events.
BRIGHT includes pre-event optical and post-event SAR im-
ages with sub-meter spatial resolution. Beyond introducing
the dataset, we conducted a comprehensive series of experi-
ments to validate its utility. We benchmarked several state-of-
the-art supervised learning models under a standard machine
learning data split. Moreover, we extended the evaluation
to a cross-event transfer setting, simulating real-world sce-
narios where no or limited target annotations are available.
Furthermore, we assessed the performance of unsupervised
domain adaptation, semi-supervised learning methods, unsu-
pervised multimodal change detection, and image matching
techniques. The findings serve as performance baselines and
provide valuable insights for future research in DL model de-
sign for real-world disaster response. BRIGHT is an ongoing
project, and we remain committed to continuously enhanc-
ing its diversity and quality by incorporating new disaster
events and refining the existing data. Our objective is to im-
prove BRIGHT’s utility for practical disaster response appli-
cations at all levels (regional, national, and international) and
research in the community.

Appendix A: Details of disaster events

A1 Explosion in Beirut, 2020

On 4 August 2020, a massive explosion occurred at the
Port of Beirut in Lebanon, caused by the improper stor-

age of 2750 t of ammonium nitrate. The explosion caused
widespread damage within a radius of several kilometers,
significantly impacting the port and surrounding neighbor-
hoods, including areas such as Gemmayzeh, Mar Mikhael,
and Achrafieh. It resulted in 218 deaths and more than 7000
injuries, and left approximately 300 000 people homeless
(Fakih and Majzoub, 2021). Economic losses were estimated
to be 15 billion USD (Valsamos et al., 2021). The disaster
compounded Lebanon’s ongoing economic challenges and
contributed to political instability and social unrest.

A2 Explosion in Bata, 2021

On 7 March 2021, a series of four explosions occurred at the
Cuartel Militar de Nkoantoma in Bata, Equatorial Guinea,
caused by improperly stored explosives. The blasts led to
at least 107 deaths and over 615 injuries, and widespread
destruction throughout the city (OCHA, 2021a). A total of
243 structures were destroyed or severely damaged, displac-
ing many residents. Around 150 families sought refuge in
temporary shelters, while others stayed with relatives. Local
hospitals treated more than 500 injured individuals, and the
economic impact was severe, underscoring the dangers asso-
ciated with the improper storage of hazardous materials.

A3 Volcano Eruption in DR Congo and Rwanda, 2021

On 22 May 2021, Mount Nyiragongo in the Democratic Re-
public of the Congo erupted, causing widespread devasta-
tion. The eruption resulted in 32 deaths and the destruction
of 1000 homes. The displacement of thousands as lava flows
threatened the city of Goma (IFRC, 2021). Nearly 400 000
people were evacuated due to the risk of further volcanic
activity, including potential magma flow beneath Goma and
nearby Lake Kivu. Despite continued seismic activity, life in
Goma largely returned to normal by August 2021. However,
plans to relocate parts of the city remain under consideration
due to the ongoing threat from the volcano.

A4 Earthquake in Haiti, 2021

On 14 August 2021, a magnitude 7.2 earthquake struck
Haiti’s Tiburon Peninsula, primarily affecting the Nippes,
Sud, and Grand’Anse departments. The disaster caused over
2200 deaths and more than 12 200 injuries, and left thousands
homeless. The economic losses were significant, estimated at
over USD 1.5 billion. Approximately 137 500 buildings, in-
cluding homes, schools, and hospitals, were damaged or de-
stroyed (OCHA, 2021b). As the deadliest natural disaster of
2021, the earthquake exacerbated Haiti’s existing challenges,
including widespread poverty and political instability.

A5 Volcano Eruption in La Palma, 2021

On 19 September 2021, the Cumbre Vieja volcano on La
Palma, part of Spain’s Canary Islands, erupted following sev-
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eral days of seismic activity. The eruption primarily impacted
the island’s western side, covering over 1000 hectares with
lava and destroying more than 3000 buildings, including the
towns of Todoque and La Laguna. The lava flow, measur-
ing about 3.5 km wide and 6.2 km long, reached the sea, cut-
ting off the coastal highway and forming a new peninsula
with extensive lava tubes. Although the timely evacuation of
around 8000 people prevented major casualties, one person
died from inhaling toxic gases (Troll et al., 2024). It caused
significant damage to arable land and affected livelihoods,
displacing thousands of residents. Economic losses exceeded
EUR 800 million.

A6 Wildfire in Colorado, 2021

The Marshall Fire, which started on 30 December 2021,
in Boulder County, Colorado, became the most destructive
wildfire in the State’s history in terms of destroyed buildings.
Fueled by dry grass from an unusually warm and dry season,
and winds up to 185 km h−1, the fire killed two people and
injured eight. It destroyed 1084 structures, including homes,
a hotel, and a shopping center, causing over USD 2 billion in
damage (Forrister et al., 2024). More than 37 500 residents
were evacuated, and significant damage to public drinking
water systems occurred (Forrister et al., 2024).

A7 Armed Conflict in Ukraine, 2022

In February 2022, Russian forces launched a full-scale
invasion of Ukraine, resulting in widespread destruction
and displacement. By November 2024, total damages to
Ukraine’s infrastructure had reached USD 170 billion. More
than 236 000 residential buildings were damaged or de-
stroyed, including 209 000 private houses, 27 000 apartment
buildings, and 600 dormitories. Over 4000 educational insti-
tutions and 1554 medical facilities were also affected, with
extensive damage to transport, energy, and telecommuni-
cations infrastructure. The conflict has inflicted more than
40 000 civilian casualties, displaced four million people in-
ternally, and forced 6.8 million to flee. As of late 2024, ap-
proximately 14.6 million Ukrainians require humanitarian
assistance (Andrienko et al., 2025).

A8 Earthquake in Turkey, 2023

On 6 February 2023, a magnitude 7.8 earthquake struck
southeastern Turkey near Gaziantep, followed by a magni-
tude 7.7 aftershock. The disaster, the most powerful earth-
quake in Turkey since 1939, caused widespread destruction
across approximately 350 000 km2, affecting 14 million peo-
ple and displacing 1.5 million. The death toll reached 53 537,
with 107 213 injuries (STL, 2024), making it one of the dead-
liest earthquakes in modern history. Economic losses were
estimated at USD 148.8 billion, with over 518 000 houses
and 345 000 apartments destroyed (Government of Türkiye,

2023). The earthquake caused severe damage to infrastruc-
ture, agriculture, and essential services, further worsening the
region’s economic challenges. International aid was mobi-
lized to support the affected populations.

A9 Cyclone in Myanmar, 2023

In May 2023, Cyclone Mocha, a Category 5 hurricane, struck
Myanmar, causing widespread devastation in the country’s
coastal regions, particularly in Rakhine State. According to
official estimates, at least 148 people were killed and 132 in-
jured, although other sources suggest higher figures (GFDRR
and World Bank, 2023). The cyclone affected around 1.2 mil-
lion people in Rakhine alone, with over 200 000 buildings
reportedly damaged or destroyed, making it one of the most
destructive cyclones in the region in the past 15 years. The di-
rect economic damage was estimated at USD 2.24 billion in
damages, equivalent to 3.4 % of Myanmar’s GDP (GFDRR
and World Bank, 2023).

A10 Wildfire in Hawaii, 2023

In August 2023, a series of wildfires broke out on the is-
land of Maui, Hawaii, causing widespread destruction and
significant impacts on the local population and environment.
The fires, fueled by dry conditions and strong winds, primar-
ily affected the town of Lahaina, where at least 102 people
were killed and two remain missing (Hedayati et al., 2024).
Over 2200 buildings were destroyed, including many historic
landmarks, resulting in estimated damages of USD 5.5 bil-
lion (Jones et al., 2024; NCEI, 2025). The fires prompted
evacuations and led to the displacement of thousands of res-
idents, with significant economic losses in the tourism and
agriculture sectors.

A11 Earthquake in Morocco, 2023

On 8 September 2023, a 6.9 magnitude earthquake struck
Morocco’s Al Haouz Province near Marrakesh, causing
widespread devastation. The earthquake killed nearly 3000
people, injured more than 5500, and displaced more than
half a million (OCHA, 2023). The earthquake damaged or
destroyed nearly 60 000 houses, with the heaviest losses re-
ported in rural communities of the Atlas Mountains (Inter-
national Federation of Red Cross and Red Crescent Soci-
eties, 2024). Overall damage is estimated at about USD 7 bil-
lion (National Geophysical Data Center/World Data Service,
2025), while direct economic losses of roughly USD 30 mil-
lion amount to approximately 0.24 % of Morocco’s GDP.
Cultural heritage in Marrakesh was also hard-hit, sections
of the UNESCO-listed Medina and several historic mosques
sustained severe damage.
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A12 Flood and Storm in Libya, 2023

In September 2023, Storm Daniel brought catastrophic flood-
ing to northeastern Libya, particularly in Derna, when two
dams collapsed and released an estimated 30 million cu-
bic meters of water. At least 5923 people were killed,
though local officials warned fatalities could reach 18 000–
20 000 (USAID Bureau for Humanitarian Assistance, 2024).
Post-event analyses revealed that approximately 10 % of
Derna’s housing stock was destroyed and a further 18.5 %
sustained damage. Across the wider coastal belt – from
Benghazi, through Jabal Al Akhdar and Al Marj, to Derna
– an estimated 18 838 dwellings were damaged or obliter-
ated (Normand and Heggy, 2024). The disaster, considered
the second deadliest dam failure in history, destroyed the
city’s infrastructure; four bridges collapsed, and entire neigh-
borhoods were washed out to sea. Long-standing neglect of
dam maintenance, compounded by Libya’s political turmoil,
contributed significantly to the scale of the tragedy.

A13 Hurricane in Mexico, 2023

In September 2023, Hurricane Norma, a Category 4 hurri-
cane, struck the western coast of Mexico, severely affecting
Sinaloa and Baja California Sur. This was followed by Hurri-
cane Otis in October, which made landfall near Acapulco as
a Category 5 hurricane. Otis was the strongest Pacific hurri-
cane to hit Mexico, causing at least 52 deaths and leaving 32
missing. The storm caused unprecedented destruction, with
more than 51 864 homes destroyed and damages estimated
at USD 12–16 billion, surpassing Hurricane Wilma as the
costliest Mexican hurricane (Reinhart and Reinhart, 2024).

A14 Earthquake in Noto, 2024

On 1 January 2024, a magnitude 7.5 earthquake struck the
Noto Peninsula in Ishikawa Prefecture, Japan, reaching a
maximum JMA seismic intensity of Shindo 7. The earth-
quake caused widespread destruction, particularly in the
towns of Suzu, Wajima, Noto, and Anamizu, and triggered
a 7.45 m tsunami along the coast of the Sea of Japan. The
disaster resulted in 572 deaths and over 1300 injuries, with
193 529 structures damaged across nine prefectures (Fire
and Disaster Management Agency, 2025). It was the dead-
liest earthquake in Japan since the 2011 Tōhoku disaster.
As of 20 February 2024, 12 929 people remained in 521
evacuation centers (Japanese Red Cross Society, 2024). The
event prompted Japan’s first major tsunami warning since
2011. Total damage is estimated at JPY 16.9 trillion, re-
flecting substantial economic losses with significant impacts
on infrastructure and communities across the affected re-
gions (Kaneko, 2024).

Appendix B: Feature visualization

For the feature visualisation of buildings in different events in
Fig. 5c, we specifically employ DINOv2 (Oquab et al., 2024)
to extract the high-dimensional features of buildings in dif-
ferent events. The corresponding reference maps are used to
exclude background features. The features are then visual-
ized using the t-SNE algorithm (van der Maaten and Hinton,
2008).

To visualize the spatial focus of models during build-
ing damage mapping, we apply Grad-CAM technique
(https://github.com/jacobgil/pytorch-grad-cam, last access: 7
November 2025), a gradient-based technique for generat-
ing class-specific activation maps (Selvaraju et al., 2017).
We perform Grad-CAM analysis on the ChangeOS model.
Specifically, we compute the activation responses for the
“Damaged” and “Destroyed” categories from the following
components: the third or fourth ResNet block of the two
branches of encoder, capturing mid- to high-level modality-
specific features; the fusion module of the damage classifica-
tion branch in the decoder, reflecting early-stage fusion and
decision-making. These activations help reveal which spatial
regions the model relies on when assessing different damage
levels and how it utilizes information from optical and SAR
modalities differently, depending on the disaster context.

Appendix C: Manual registration and estimating
registration errors

We performed the manual registration process using QGIS,
with the “Georeferencer” plugin to align SAR images to the
optical imagery as the reference. The transformation type
was set to “Thin Plate Spline”, and “Lanczos resampling
(6× 6 kernels)” was applied to achieve high-quality interpo-
lation. The manually selected control points by EO experts
on some disaster scenes are shown in Fig. C1.

Despite multiple rounds of meticulous registration and
cross-validation by several EO experts, registration errors be-
tween optical and SAR images cannot be completely elimi-
nated. Since we cannot directly obtain ground truth (i.e., ac-
tual ground control points), we propose a proxy method for
registration error estimation:

1. Feature point selection. Select many feature points (e.g.,
3000 points) from both the optical and SAR tiles using
a keypoint detection algorithm.

2. Feature extraction. Use validated and well-performing
multimodal registration descriptors (Li et al.,
2020, 2022, 2023a) to extract modality-independent
features for the selected points.

3. Feature matching. Perform feature matching between
the extracted feature points across the optical and SAR
images.
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Figure C1. Overview of manually selected control points used for registration on some events. The number in parentheses of each event is
the number of control points selected on that view of the image. The labeled yellow boxes highlight specific zoom-in regions that are shown
in below. Data source: SAR images of Bata-Explosion-2020 and La Palma-Volcano-2020 are sourced from Capella Space Open Data Gallery
while the SAR image of Noto-Earthquake-2024 is from Umbra Open Data Program.

4. Registration error computation. After completing the
matching process, compute the pixel distances between
the registered point pairs. These distances serve as a
proxy for registration error.

5. Outlier removal. To improve the reliability of the esti-
mation, we exclude matched points with a root mean
square error (RMSE) greater than a certain threshold
(e.g., 20 pixels). This threshold is set because after mul-
tiple rounds of expert corrections and cross-checking,
large registration errors have already been eliminated.
Points exceeding this threshold can be considered out-
liers.

By following this method, we can estimate the registration
errors between optical and SAR images in the dataset, pro-
viding a reliable foundation for further damage assessment
analysis.

Table C1. The estimated proxy registration error (in pixel) for each
event.

Event RMSE (All) RMSE (Building)

Beirut-EP-2020 1.365 1.365
Bata-EP-2021 1.226 1.160
Goma-VE-2021 0.966 0.975
Les Cayes-EQ-2021 1.392 1.377
La Palma-VE-2021 0.976 0.944
Marshall-WF-2021 1.263 1.266
Ukraine-AC-2022 0.899 0.882
Turkey-EQ-2023 0.937 0.901
Kyaukpyu-CC-2023 0.970 0.998
Hawaii-WF-2023 1.124 1.124
Morocco-EQ-2023 1.088 1.050
Derna-FL-2023 1.267 1.255
Acapulco-HC-2023 1.166 1.148
Noto-EQ-2024 1.072 1.043
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Appendix D: Details of benchmark deep learning
models

Here, we present some implementation details of our base-
line model.

– For UNet, the encoder has five convolutional blocks,
each consisting of two 3× 3 convolutional layers and
two batch normalization layers. The number of chan-
nels in the five blocks are 64, 128, 256, 512, and 1024,
respectively. The decoder contains four convolutional
blocks, and the number of channels is set accordingly to
the number of channels of the skip-connected features
extracted by the encoder.

– For DeepLabV3+, we applied ResNet-50 initialized
with ImageNet pretraining weights (He et al., 2016) as
the encoder. We then modified the input channel of the
encoder so that the network can predict building damage
maps directly from the optical and SAR stacked images.

– For SiamAttnUNet, we followed the settings in its orig-
inal literature (Adriano et al., 2021).

– For SiamCRNN, we applied pseudo-siamese ResNet-
18 as encoder and four ConvLSTM layers (Shi et al.,
2015) with 3× 3 convolutional kernel size and a hidden
dimension of 128, as the decoder.

– For ChangeOS, we used the ResNet-18 initialized with
ImageNet pretraining weights as the encoder. We modi-
fied the encoder to a pseudo-siamese structure to extract
features from pre-event and post-event images with dif-
ferent modalities.

– For DamageFormer, we used pseudo-siamese Swin-
Transformer-Tiny (Liu et al., 2021) as the encoder in-
stead of pure-siamese MixFormer (Xie et al., 2021) as
in the original literature (Chen et al., 2022a).

– For the ChangeMamba family of models (Chen et al.,
2024), we chose one of them, MambaBDA-Tiny, for
our experiments. We modified the encoder to a pseudo-
siamese structure to extract features from pre-event and
post-event images with different modalities.

Appendix E: Details of post-processing methods

To further refine the raw predictions from DL models and en-
hance the quality of building damage maps, we apply three
post-processing techniques: test-time augmentation (TTA),
object-based majority voting, and model ensembling in
Sect. 4.5. This section provides an overview of these methods
and details the specific implementation used in our study.

– Test-time augmentation is a widely used technique to
improve model robustness by applying transformations

to the input images at inference time. Instead of mak-
ing a single prediction per image, multiple augmented
versions of the same input are passed through the net-
work, and the resulting predictions are aggregated. This
reduces model sensitivity to spatial variations and in-
creases prediction stability. In our study, we apply ro-
tation (90, 180, 270°) and horizontal/vertical flipping
to the input images during inference. The network pro-
duces a set of predictions for each augmented version,
which are then aggregated at the logit level by summing
the outputs before applying the softmax function.

– Object-based majority voting aims to enforce spatial
consistency by considering entire building instances
rather than making independent pixel-wise predictions.
Instead of classifying each pixel separately, the final la-
bel is determined based on a majority vote across the
entire building object, leading to more coherent and re-
liable results. We follow the setup from (Zheng et al.,
2021), where each building is treated as an indepen-
dent object, and a weighted majority voting scheme is
applied. The weighting is determined by the inverse of
class proportions in the training set, meaning that under-
represented damage categories (e.g., destroyed build-
ings) have higher voting weights compared to dominant
classes (e.g., intact buildings).

– Model ensembling is a technique that combines predic-
tions from multiple models to reduce uncertainty and
improve generalization. By leveraging diverse models
with different architectures, ensembling helps smooth
out individual model biases and enhances the overall
robustness of predictions. We perform ensembling by
combining the results of three top-performing models:
ChangeOS (Zheng et al., 2021), DamageFormer (Chen
et al., 2022a), and ChangeMamba (Chen et al., 2024).
Each model independently generates a damage proxy
map, and the final prediction is obtained by averaging
their logits before applying the softmax function.

Appendix F: Details of unsupervised domain
adaptation methods

To evaluate the effectiveness of UDA techniques in the cross-
event zero-shot setting, we selected several representative
methods from the computer vision literature originally de-
signed for semantic segmentation tasks. The following meth-
ods are implemented:

– AdaptSeg (Tsai et al., 2018): an adversarial training
framework that aligns output space distributions be-
tween source and target domains.

– AdvEnt (Vu et al., 2019): a variant of adversarial adap-
tation focusing on entropy minimization and structured
output alignment.
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Table F1. The mIoU on different events for different UDA methods
in Table 11.

Events AdaptSeg AdvEnt CLAN PyCDA FDA

Beirut-EP-2020 35.55 33.07 37.25 32.15 35.89
Bata-EP-2021 37.54 35.20 36.98 30.01 36.31
Goma-VE-2021 52.49 51.54 56.91 49.67 52.46
Les Cayes-EQ-2021 37.11 36.86 39.47 33.40 33.90
La Palma-VE-2021 30.54 30.04 30.10 32.76 30.50
Marshall-WF-2021 37.20 35.01 34.35 30.14 33.93
Ukraine-AC-2022 32.36 32.65 32.21 32.92 35.03
Turkey-EQ-2023 33.69 34.54 36.68 34.58 36.82
Kyaukpyu-CC-2023 34.62 29.22 30.83 31.31 36.71
Hawaii-WF-2023 36.52 42.17 33.36 34.30 36.19
Morocco-EQ-2023 37.93 37.42 39.04 30.55 38.76
Derna-FL-2023 36.69 35.31 35.24 37.31 38.53
Acapulco-HC-2023 27.05 27.32 27.73 30.11 31.68
Noto-EQ-2024 35.49 35.65 33.99 25.44 31.39

Average 36.05 35.43 36.01 33.19 36.29

– CLAN (Luo et al., 2019): a category-level alignment
method that selectively aligns class-specific features.

– PyCDA (Lian et al., 2019): a curriculum domain adap-
tation framework that iteratively refines pseudo-labels
across domains.

– FDA (Yang and Soatto, 2020): a simple style-transfer-
based approach that transfers source images into the tar-
get domain appearance via frequency mixing.

All methods are implemented using DeepLabV3+ as the
backbone architecture. This choice is motivated by the fact
that DeepLab-based networks are commonly used in the offi-
cial implementations of these UDA methods, and many code-
bases are tightly coupled with DeepLab’s structure. There-
fore, adopting DeepLabV3+ as the shared backbone ensures
compatibility with existing implementations and avoids the
need for extensive code modification. It also provides a fair
and consistent basis for comparison across all methods.

In our experimental setup, each test disaster event is
treated as the target domain, and only its unlabeled optical-
SAR image pairs are used for adaptation. Importantly, no la-
beled target domain data is used for training or model se-
lection, in line with our zero-shot assumption. This setup
is fundamentally different from conventional UDA proto-
cols in the computer vision community, where a target do-
main validation set is typically available to select the best
model checkpoint, and the target test set is held out purely
for evaluation. In contrast, our setting is designed to reflect
real-world disaster response scenarios, where it is realistic
to obtain unlabeled imagery, but no ground-truth annotations
are available at adaptation time. Therefore, model selection
must rely solely on source domain feedback, which intro-
duces additional challenges and more closely aligns with the
operational constraints of emergency response.

The hyperparameters for each method closely follow the
original papers to preserve method fidelity. Below are addi-
tional implementation details specific to certain methods:

– FDA. For each training iteration, we generate
frequency-transferred source images using FDA
and mix them 1:1 with the original source images.
The combined dataset is used to train the model from
scratch.

– PyCDA. Training proceeds in two stages. First, the
model is trained on the source domain for 30 000 it-
erations. In the second stage, the adaptation module is
applied to the target domain using pseudo-labeling and
uncertainty-aware refinement as proposed in the origi-
nal work.

For all methods, the same data preprocessing pipeline and
training schedule (e.g., learning rate, batch size) are used un-
less otherwise specified in the original method, like those su-
pervised models. The final evaluation is conducted on the tar-
get domain, and performance is reported in terms of mIoU.

Appendix G: Details of semi-supervised learning
methods

In the one-shot cross-event transfer setting, we evaluate sev-
eral representative SSL methods for semantic segmentation.
These methods were originally developed for natural image
domains and are adapted here to the multimodal EO-based
building damage assessment scenario.

– Mean Teacher (MT) (Tarvainen and Valpola, 2017)
maintains an exponential moving average (EMA) of
model weights to generate stable predictions for unla-
beled data, enforcing consistency between the student
and teacher outputs.

– CCT (Ouali et al., 2020) applies perturbations to the
input data and enforces consistency between differ-
ent views of the same image using multiple decoder
branches.

– GCT (Ke et al., 2020) further enhances this idea by in-
troducing guidance from a pre-trained model to regular-
ize learning.

– CPS (Chen et al., 2021) trains two separate networks
that generate pseudo-labels for each other, encouraging
cross-supervised learning on unlabeled data.

All methods also use DeepLabV3+ as the backbone net-
work. This decision is consistent with their original imple-
mentations and allows for seamless integration with official
codebases without the need for architectural modifications.
It also ensures a fair and consistent comparison across meth-
ods.
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Table G1. The mIoU on different events for different semi-
supervised learning methods in Table 12.

Events MT CCT GCT CPS

Beirut-EP-2020 32.91 35.68 35.48 35.46
Bata-EP-2021 37.94 36.61 38.25 36.96
Goma-VE-2021 56.46 57.68 53.52 47.49
Les Cayes-EQ-2021 40.20 39.57 38.83 39.41
La Palma-VE-2021 33.52 33.03 36.90 33.29
Marshall-WF-2021 39.73 40.12 38.74 32.94
Ukraine-AC-2022 39.11 36.34 36.44 31.34
Turkey-EQ-2023 38.96 39.72 36.50 37.15
Kyaukpyu-CC-2023 36.72 35.84 33.56 30.22
Hawaii-WF-2023 54.10 48.93 49.99 47.64
Morocco-EQ-2023 37.18 40.54 41.10 37.54
Derna-FL-2023 37.55 41.07 40.45 40.28
Acapulco-HC-2023 32.30 30.16 33.36 31.51
Noto-EQ-2024 43.40 37.61 37.74 37.65

Average 40.00 39.49 39.34 37.06

In the setup, 13 labeled disaster events serve as the train-
ing and validation sets, while a single labeled sample from
the test (target) event is provided to simulate a realistic one-
shot adaptation scenario. In addition, the remaining unla-
beled samples from the test event are made available and
used to facilitate SSL.

Each model is trained in two stages. In the first stage,
the model is trained for 10 000 iterations using only stan-
dard supervised losses, including cross-entropy and Lovász-
Softmax on the labeled data from the source domain and
the single labeled sample from the target domain. This
stage serves to initialize the model with a stable represen-
tation before semi-supervised training begins. In the sec-
ond stage, each SSL method applies its respective semi-
supervised objective using the unlabeled data from the tar-
get domain. These include consistency regularization (e.g.,
Mean Teacher), cross-view perturbation training (e.g., CCT
and GCT), or dual-network pseudo supervision (e.g., CPS).
Hyperparameters for each method follow the configurations
suggested in their original publications.

Final performance is evaluated on the target disaster event
using mIoU as the primary evaluation metric.

Appendix H: Unsupervised multimodal change
detection: methods and evaluation protocol

H1 Evaluated UMCD methods

We further evaluate several recent UMCD methods on
BRIGHT. These methods are designed to detect binary
changes from paired multimodal imagery without relying on
manual labels.

– Random guessing assumes each pixel has an equal
probability (50 %) of being classified as changed or

unchanged. This baseline provides a reference perfor-
mance floor for evaluating the relative effectiveness of
other UMCD methods.

– IRG-McS (Sun et al., 2021) constructs superpixel-
based graphs for each modality and iteratively matches
their structural relationships to detect changes across
heterogeneous image pairs, followed by Markov co-
segmentation for final change map generation.

– SR-GCAE (Chen et al., 2022b) learns robust graph-
based representations of local and nonlocal structural
relationships in multimodal images using a graph con-
volutional autoencoder, enabling effective change de-
tection without supervision.

– FD-MCD (Chen et al., 2023) proposes a Fourier do-
main framework that analyzes both local and nonlocal
structural relationships using graph spectral convolution
and adaptive fusion, enabling robust unsupervised mul-
timodal change detection.

– AOSG (Han et al., 2024) constructs an adaptively op-
timized structured graph to capture patch-level struc-
tural features in multimodal images, iteratively refining
change intensity measures by fusing self-change and
cross-domain structural differences for accurate unsu-
pervised change detection.

– AGSCC (Sun et al., 2024a) translates multimodal im-
ages via a structure cycle-consistent image regression
framework that enforces similarity in structural graphs
across domains, using adaptive graphs and multiple reg-
ularization terms to robustly detect changes without su-
pervision.

– AEKAN (Liu et al., 2025) utilizes a superpixel-based
Siamese AutoEncoder built on Kolmogorov–Arnold
Networks (KAN) to extract latent commonality features
between multimodal images, using reconstruction and
hierarchical consistency losses to detect changes in an
unsupervised manner.

H2 A more practical evaluation protocol on BRIGHT

The training and evaluation protocols commonly adopted in
the UMCD literature are often limited to individual image
pairs (shown in Fig. H1), using the same scene for repre-
sentation learning, hyperparameter tuning, and evaluation.
While this is understandable due to the lack of large-scale
public datasets in this field, such a setup fails to reflect real-
world use cases and often leads to overfitting and overes-
timated performance. To address this, we introduce a stan-
dardized and practical evaluation protocol using the BRIGHT
dataset. Specifically, we use the validation set from the stan-
dard ML split in Sect. 2.4 as the training set for UMCD
methods, including any hyperparameter or threshold tuning.
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Figure H1. Illustration of benchmark datasets commonly used in unsupervised multimodal change detection. The order from left to right is
the corresponding order in the Table 13. In reference maps, white color indicates changed pixels, and black color indicates unchanged pixels.
Shuguang, River, and Italy datasets are sourced from (Zhang et al., 2016), while the Gloucester dataset is from (Prendes et al., 2015).

These models are then evaluated on the combined train-
ing and test sets, which are strictly held out during adap-
tation. This avoids overlap between tuning and evaluation
scenes and better simulates the real-world deployment set-
ting, where a model is expected to generalize to new, unseen
data.

For evaluation, it is important to note that most of these
methods were originally developed for land cover change
detection, where changes correspond to transitions between
semantic categories such as vegetation, water, or built-up
areas. Applying them directly to disaster damage detection
poses certain challenges. In particular, “Damaged” buildings
do not always exhibit strong spatial or spectral signals, mak-
ing them hard to distinguish in an unsupervised setting. How-
ever, “Destroyed” buildings often result in a complete change
of land cover appearance (e.g., collapsed structures, debris,
or ground exposure), which aligns better with the assump-
tions of existing UMCD methods. Therefore, in our evalua-
tion, we treat buildings labeled as “Destroyed” in BRIGHT as
the positive (changed) class, and all other regions (including
intact, damaged, and background) as the unchanged class.
This ensures fair adaptation to disaster scenarios while re-
specting the original design of these methods.

Appendix I: Details of unsupervised multimodal
image matching methods

In our extended evaluation of UMIM methods, we catego-
rized the selected algorithms into two groups based on their
matching strategies: feature-based and area-based methods.

Feature-based methods, such as LNIFT (Li et al., 2022)
and SRIF (Li et al., 2023a), aim to detect sparse keypoints
independently in both optical and SAR images and compute
modality-invariant feature descriptors. The matching is then
performed globally by comparing descriptor similarity be-
tween the two modalities. These methods are implemented
using publicly available code (https://github.com/LJY-RS/
SRIF, last access: 7 November 2025).

In contrast, area-based methods, including FLSS (Ye et al.,
2017) and HOPC (Ye et al., 2019), begin by identifying
keypoints only in the optical image. These points are then
matched by sliding a template window across a local search
region in the SAR image, relying on local patch similarity. In
our experiments, we used a template size of 120× 120 pix-
els, and a search window of 200× 200 pixels for both meth-
ods. This category is also implemented using open-source
code (https://github.com/yeyuanxin110/CFOG, last access: 7
November 2025).

We performed registration on the entire original EO im-
age pair from the Noto-Earthquake-2024 event. Because of
the large spatial size of the input images, images were down-
sampled to half their original resolution to improve compu-
tational efficiency and maintain feasibility for all methods.

For quantitative evaluation, we adopted a control-point-
based proxy metric. A set of manually selected control
points, validated by EO experts shown in Fig. C1, is used
to represent stable, cross-modal, and clearly identifiable fea-
tures (e.g., building corners, road intersections). The average
spatial offset is computed using their coordinates in a com-
mon projected coordinate system (e.g., UTM), both before
and after registration. Before registration, the offset can be

Earth Syst. Sci. Data, 17, 6217–6253, 2025 https://doi.org/10.5194/essd-17-6217-2025
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calculated as:

Ebefore =
1
N

N∑
i=1

√
(xopt

i − xsar
i )2+ (yopt

i − ysar
i )2. (I1)

where (xopt
i ,y

opt
i ) and (xsar

i ,ysar
i ) are the projected coordi-

nates of the ith control point in the optical and SAR images,
respectively.

After registration, SAR points are transformed using the
estimated mapping T , and the post-registration error is com-
puted as:

Eafter =
1
N

N∑
i=1

√
(xopt

i − x̂sar
i )2+ (yopt

i − ŷsar
i )2, (I2)

where (x̂sar
i , ŷsar

i )= T (xsar
i ,ysar

i ) are transformed SAR coor-
dinates.

This approach provides an alternative approximation of
alignment accuracy in the absence of ground truth. Although
this metric is not a substitute for full correspondence maps,
it offers a practical and interpretable measure of registra-
tion performance, and enables us to assess how well unsu-
pervised methods can approach human-level matching under
complex, real-world disaster conditions.
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