Articles | Volume 17, issue 11
https://doi.org/10.5194/essd-17-6049-2025
https://doi.org/10.5194/essd-17-6049-2025
Data description paper
 | 
12 Nov 2025
Data description paper |  | 12 Nov 2025

IMPMCT: a dataset of Integrated Multi-source Polar Mesoscale Cyclone Tracks in the Nordic Seas

Runzhuo Fang, Jinfeng Ding, Wenjuan Gao, Xi Liang, Zhuoqi Chen, Chuanfeng Zhao, Haijin Dai, and Lei Liu

Related authors

Wildfires heat the middle troposphere over the Himalayas and Tibetan Plateau during the peak of fire season
Qiaomin Pei, Chuanfeng Zhao, Yikun Yang, Annan Chen, Zhiyuan Cong, Xin Wan, Haotian Zhang, and Guangming Wu
Atmos. Chem. Phys., 25, 10443–10456, https://doi.org/10.5194/acp-25-10443-2025,https://doi.org/10.5194/acp-25-10443-2025, 2025
Short summary
Numerical Simulation of a Severe Blowing Snow Event over the Prydz Bay Region
Jinfeng Ding, Yuan Shang, Yulong Shan, Jinkai Ma, Jin Ye, Xichuan Liu, Lei Liu, and Xiaoqiao Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2718,https://doi.org/10.5194/egusphere-2025-2718, 2025
Short summary
Vertical profiles of raindrop size distribution parameters of summer rainfall in the eastern Tibetan Plateau: retrieval method and characteristics
Pingyi Dong, Xingwen Jiang, Xingbing Zhao, Yuanchang Dong, Jiafeng Zheng, Chun Hu, Guolu Gao, Lei Liu, Shulei Li, and Lingbing Bu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2523,https://doi.org/10.5194/egusphere-2025-2523, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Machine learning significantly improves the simulation of hourly-to-yearly scale cloud nuclei concentration and radiative forcing in polluted atmosphere
Jingye Ren, Songjian Zou, Honghao Xu, Guiquan Liu, Zhe Wang, Anran Zhang, Chuanfeng Zhao, Min Hu, Dongjie Shang, Lizi Tang, Ru-Jin Huang, Yele Sun, and Fang Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1483,https://doi.org/10.5194/egusphere-2025-1483, 2025
Preprint archived
Short summary
An introduction of the Three-Dimensional Precipitation Particle Imager (3D-PPI)
Jiayi Shi, Xichuan Liu, Lei Liu, Liying Liu, and Peng Wang
Atmos. Meas. Tech., 18, 2261–2278, https://doi.org/10.5194/amt-18-2261-2025,https://doi.org/10.5194/amt-18-2261-2025, 2025
Short summary

Cited articles

Andersson, A., Fennig, K., Klepp, C., Bakan, S., Graßl, H., and Schulz, J.: The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data – HOAPS-3, Earth Syst. Sci. Data, 2, 215–234, https://doi.org/10.5194/essd-2-215-2010, 2010. 
Belmonte Rivas, M. and Stoffelen, A.: Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT, Ocean Sci., 15, 831–852, https://doi.org/10.5194/os-15-831-2019, 2019. 
Businger, S. and Reed, R. J.: Cyclogenesis in cold air masses, Wea. Forecasting, 4, 133–156, https://doi.org/10.1175/1520-0434(1989)004<0133:cicam>2.0.co;2, 1989. 
Bromwich, D. H.: Mesoscale cyclogenesis over the southwestern ross sea linked to strong katabatic winds, Mon. Wea. Rev., 119, 1736–1753, https://doi.org/10.1175/1520-0493(1991)119<1736:MCOTSR>2.0.CO;2, 1991. 
Bland, J. M. and Altman, D. G.: Measuring agreement in method comparison studies, Stat. Methods Med. Res., 8, 135–60, https://doi.org/10.1177/096228029900800204, 1999. 
Download
Short summary
Integrated Multi-source Polar Mesoscale Cyclone Tracks (IMPMCT) is a dataset containing a 24-year record (2001–2024) of polar storms in the Nordic Seas. These storms, called Polar Mesoscale Cyclones (PMCs), sometimes cause extreme winds and waves, threatening marine operations. IMPMCT combines remote sensing measurements and reanalysis data to construct a comprehensive PMCs archive. It includes 1110 PMCs tracks, 16 001 cloud patterns, and 4472 wind records, providing fundamental data for advancing our understanding of their development mechanisms.
Share
Altmetrics
Final-revised paper
Preprint