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Abstract. Polar Mesoscale Cyclones (PMCs), particularly their intense subset known as Polar Lows (PLs),
characterized by short lifespans of 3–36 h and horizontal scales below 1000 km, pose significant hazards to
polar maritime activities due to extreme winds exceeding 15 m s−1 and wave heights surpassing 11 m. These
intense weather systems play a critical role in modulating sea-ice dynamics and ocean-atmosphere heat ex-
change. However, current understanding remains constrained by sparse observational records and an overre-
liance on single data sources (e.g., remote sensing or reanalysis). To address these gaps, this study presents the
Integrated Multi-source Polar Mesoscale Cyclone Tracks (IMPMCT) dataset, a comprehensive 24-year (2001–
2024) record of wintertime (November–April) PMCs for the Nordic Seas. The IMPMCT dataset was created by
combining vortex-tracking algorithms applied to ERA5 reanalysis data with a deep learning-based method for
detecting cyclonic cloud features in Advanced Very High-Resolution Radiometer (AVHRR) infrared imagery.
It also incorporates near-surface wind data from Advanced Scatterometer (ASCAT) and Quick Scatterometer
(QuikSCAT) measurements. The dataset contains 1110 vortex tracks, 16 001 cyclonic cloud features including
length, width, position and morphological characteristics (spiral/comma shape), and 4472 wind speed records
(wind vector imagery and cyclone maximum winds). Corresponding ERA5-derived hourly vortex tracks are also
provided, including 850 hPa vorticity and proximate sea-level pressure minima. Validation demonstrates statis-
tical agreement with existing PLs track datasets while providing more complete cyclone life cycle trajectories,
more intuitive cloud imagery visualization, and a richer set of parameters compared to previous datasets. As the
most comprehensive PMCs archive for the Nordic Seas, the IMPMCT dataset provides fundamental data for ad-
vancing our understanding of the genesis and intensification mechanisms, enables the development of enhanced
monitoring and early warning systems, supports the validation and refinement of polar numerical weather predic-
tion models, and facilitates improved risk assessment and safety protocols for maritime operations. The dataset
is available at https://doi.org/10.5281/zenodo.17142448 (Fang and Ding, 2025).
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1 Introduction

Polar Mesoscale Cyclones (PMCs) are mesoscale cyclonic
weather systems that frequently occur over open waters or
sea-ice edges in regions poleward of the main polar front
zones (Condron et al., 2006; Rasmussen and Turner, 2003).
They are often identified on satellite imagery by comma-
shaped or spiral cloud patterns. PMCs occur in all seasons
but are most active in winter, with a lifespan of approxi-
mately one day and horizontal scales of less than 1000 km
(Harold et al., 1999). The most intense subset of these cy-
clonic systems, termed Polar Lows (PLs), are major haz-
ardous weather phenomena in polar regions, characterized
by average maximum wind speeds exceeding 15 m s−1 and
extreme values surpassing 30 m s−1. They can generate sig-
nificant wave heights over 11 m (Rojo et al., 2019), pos-
ing severe threats to human activities and maritime safety
in high-latitude regions (Harrold and Browning, 1969; Ori-
molade et al., 2016). Additionally, PLs induce rapid sea-ice
changes and intensify ocean-deep convection through dy-
namic and thermodynamic effects, producing complex re-
gional climatic impacts (Clancy et al., 2022; Condron and
Renfrew, 2013; Parkinson and Comiso, 2013). The Nordic
Seas (encompassing the Greenland, Norwegian, and Barents
Seas) form a critical oceanic gateway between the Arctic and
Atlantic Oceans. This region is a primary convergence zone
for Arctic and Atlantic water masses and plays a key role in
global ocean circulation and climate (Smedsrud et al., 2022).
The complex meteorological and oceanographic conditions
in this area make it the most frequent PLs occurrence region
(Stoll, 2022). Consequently, research on mesoscale cyclones
in the Nordic Seas is critical for improving Arctic maritime
safety and understanding regional climate change impacts.

Cyclonic cloud morphology and surface wind fields de-
rived from remote sensing data serve as the primary crite-
ria for distinguishing and categorizing PMCs and PLs (Ras-
mussen and Turner, 2003). The former can be manually iden-
tified through visible or infrared imageries from passive ra-
diometers (e.g., Fig. 1), while the latter can be estimated
using scatterometer or microwave data. While PLs exhibit
higher destructive potential and detection feasibility com-
pared to broader PMCs, current dataset development efforts
have predominantly targeted PLs, leaving PMCs relatively
underrepresented in existing observational records. Blech-
schmidt (2008) combined Advanced Very High-Resolution
Radiometer (AVHRR) infrared imagery (Kalluri et al., 2021)
with wind speed data derived from the Hamburg Ocean
Atmosphere Parameters and Fluxes from Satellite Data
(HOAPS, Andersson et al., 2010) to manually identify 90
PLs occurring in the Nordic Seas between 2004 and 2005.
Noer et al. (2011) utilized AVHRR infrared imagery, Ad-
vanced Scatterometer (ASCAT), and Quick Scatterometer
(QUIKSCAT) wind data to detect 121 PLs in the Nordic
Seas over a decade (2000–2009). Smirnova et al. (2015)
identified 637 PLs between 1995 and 2009 using Special

Sensor Microwave/Imager (SSM/I) data for atmospheric to-
tal water vapor (TWV) content fields, near-surface wind
speed fields, and AVHRR infrared imagery. Golubkin et
al. (2021) employed Moderate Resolution Imaging Spectro-
radiometer (MODIS) and ASCAT data to identify PLs over
the North Atlantic, compiling a catalog of 131 PLs between
2015 and 2017. In all PL lists derived from remote sens-
ing data, the Rojo list (Rojo et al., 2015, 2019) is currently
the longest temporally spanning remote sensing-derived PLs
track dataset, providing tracks of 420 PLs occurring in the
Nordic Seas from 1999 to 2019. It includes basic infor-
mation such as cyclone location, size, type, development
stage, and maximum 10 m wind speed. The manually tracked
datasets described above have provided valuable PLs infor-
mation, contributing to ongoing research efforts. However,
the unique high-latitude geography of polar regions creates
significant observational challenges. Polar-orbiting satellites
typically observe these regions at intervals ranging from tens
of minutes to several hours, resulting in temporal gaps that
make it difficult for manual tracking datasets to capture com-
plete cyclone life cycles. Additionally, some PLs forming
near sea-ice edges may exhibit distinct cyclonic cloud fea-
tures exclusively during their transition over moisture-rich
open waters (Bromwich, 1991), implying that remote sens-
ing datasets could potentially miss capturing the initial devel-
opmental stages of such PLs. Consequently, while the Rojo
list provides developmental pattern annotations for individ-
ual PLs, the objectivity and quantitative reliability of these
annotations remain constrained by the inherent limitations of
remote sensing in achieving comprehensive characterization
of PL evolution throughout their complete lifecycle. Further-
more, the occurrence of polar night, coupled with low con-
trast between sea-ice/snow surfaces and overlying clouds,
further limits the detection capabilities of remote sensing
(particularly visible-band remote sensing) methods for PLs.

With the improved resolution of reanalysis datasets,
their ability to characterize PLs has progressively advanced
(Laffineur et al., 2014; Smirnova and Golubkin, 2017), mak-
ing them an increasingly critical data source for construct-
ing PLs track datasets. Researchers have employed various
combinations of identification criteria to detect PLs. For in-
stance, Zappa et al. (2014) utilized the difference between
500 hPa temperature and near-surface temperature to rep-
resent cold air outbreak characteristics during PLs forma-
tion, while utilizing maximum near-surface wind speed to
indicate PLs intensity, and 850 hPa relative vorticity to cap-
ture their cyclonic properties. Subsequent studies adopted
or adapted these criteria (Stoll et al., 2018; Terpstra et al.,
2016; Yanase et al., 2016). Building on the fifth-generation
European Centre for Medium-Range Weather Forecasts Re-
analysis (ERA5, Hersbach et al., 2020), Stoll (2022) estab-
lished a four-criteria linear-based combination defining PLs
as intense mesoscale cyclones forming within polar oceanic
air masses northward of the polar front. This approach suc-
cessfully reproduced 60 %–80 % of PLs from five manual
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Figure 1. Two AVHRR satellite images. (a) A PMC in Barents Sea. (b) A PL in Norwegian Sea. The yellow stars mark the centers of these
two cyclones.

PL lists, validating ERA5’s robust capability in PLs repre-
sentation. However, ERA5 significantly underestimates near-
surface wind speeds within PL-affected regions (Gurvich et
al., 2022; Haakenstad et al., 2021), attributed in part to insuf-
ficient representation of transient wind variability, surface di-
vergence, and unresolved mesoscale features (Belmonte Ri-
vas and Stoffelen, 2019). This limits its ability to objectively
capture PLs’ high-wind characteristics, thereby introducing
notable limitations.

In summary, remote sensing and reanalysis datasets pro-
vide complementary perspectives on PLs’ characteristics,
with the former capturing cloud morphology and the lat-
ter resolving meteorological field distributions, highlighting
their respective advantages. This complementary nature mo-
tivates the integration of both data types to construct more
comprehensive PL tracking datasets – a key objective of this
study. Furthermore, existing datasets primarily focus on PLs,
while weaker PMCs that share similar cyclonic cloud fea-
tures and environmental conditions lack comprehensive pub-
licly available track datasets. This disparity likely stems from
the fact that PMCs generally have smaller average intensities,
shorter lifespans, and smaller scales compared to PLs, mak-
ing them more difficult to detect. Although some researchers
have proposed PMC track datasets using either remote sens-
ing (Verezemskaya et al., 2017) or reanalysis data (Michel et
al., 2018; Pezza et al., 2016; Watanabe et al., 2016), these ap-
proaches face significant limitations. Remote sensing-based
datasets often have inadequate temporal coverage or lack
critical near-surface wind speed records (Condron et al.,
2006), while reanalysis-based datasets encounter challenges

in developing effective identification criteria without remote
sensing validation. As a result, no universally accepted PMC
identification standards currently exist (Michel et al., 2018).
Notably, while PLs have been well-documented in relation
to large-scale circulation patterns such as the North Atlantic
Oscillation (Claud et al., 2007) and Scandinavian blocking
(Mallet et al., 2013), the climatic impacts of PMCs remain in-
sufficiently investigated (Michel et al., 2018). These knowl-
edge gaps highlight the critical need to establish a more
comprehensive tracking dataset capable of capturing PMCs
throughout their lifecycle. Such a dataset would enable the
complete characterization of these weaker polar mesoscale
systems, representing another key motivation for this study.

Based on the above analysis, this study aims to com-
prehensively integrate the advantages of reanalysis datasets
in characterizing the dynamical and thermodynamic struc-
tures of polar mesoscale weather systems and remote sensing
data in capturing cloud morphology to establish a long-term
PMCs (hereafter, “PMCs” when used alone include “PLs”)
track dataset in the Nordic Seas encompassing the extended
winter seasons (November–April) between 2001 and 2024.
This dataset will contain the tracks of the PMCs in reanal-
ysis fields and remote sensing imagery, as well as multi-
dimensional attributes such as intensity, cloud morphology,
and near-surface wind features. The objective is to provide
a long-term, multi-attribute catalog of PMCs, offering reli-
able data support for atmospheric and oceanic research in the
Nordic Seas.
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2 Data

2.1 AVHRR data

The Advanced Very High-Resolution Radiometer (AVHRR)
(Kalluri et al., 2021) is mounted on NOAA series meteoro-
logical satellites and MetOp series satellites. Since its launch
with the TIROS-N satellite in 1979, the sensor has continu-
ously performed multiple daily observations of the Earth’s
surface. It measures reflected and emitted radiation from
the Earth and its atmosphere, providing detailed informa-
tion about surface characteristics, clouds, and atmospheric
properties. AVHRR is an across-track scanning system with
five spectral bands as shown in Table 1. It has a nadir spatial
resolution of approximately 1.1 km and a ±55.4° scan angle
on the satellite, covering a ground swath width of 2800 km.
However, the effective resolution depends on the scan angle,
with optimal image quality provided within the ±15° range.

In this study, infrared imagery used to observe cyclonic
cloud features is derived from two Level 1B data products
of the AVHRR (Kalluri et al., 2021): the GAC (Global Area
Coverage) and LAC (Local Area Coverage) forth-band data.
The GAC product provides down-sampled imagery (approx-
imately 4 km resolution) after onboard processing, select-
ing every third scan line and averaging every fifth adjacent
sample along the scan line. This resampling aims to ensure
continuous global coverage. In contrast, the LAC product
records AVHRR data at its native resolution (1.1 km) without
resampling over specific orbital regions (primarily Europe
and Africa), offering higher spatial resolution. All AVHRR
data utilized herein are obtained from NOAA’s Comprehen-
sive Large Array-data Stewardship System (https://www.aev.
class.noaa.gov/, last access: 18 July 2024).

2.2 ERA5 data

ERA5 is the fifth-generation global reanalysis dataset pro-
duced by the European Centre for Medium-Range Weather
Forecasts (ECMWF), designed to provide high-quality, con-
sistent estimates of atmospheric, land, and ocean climate
variables from 1950 to the present. It replaces the previous
ERA-Interim dataset (Dee et al., 2011) and is currently one
of the most widely used reanalysis products. ERA5 offers
hourly data with a horizontal spectral truncation of T639,
corresponding to a global grid of approximately 31 km. The
atmosphere is resolved vertically using 137 levels extending
from the surface to 80 km in height (Han and Ullrich, 2025).

ERA5 reanalysis dataset demonstrates robust performance
in representing meteorological fields over the Nordic Seas,
such as sea level pressure, air temperature, and humidity
(Graham et al., 2019; Moreno-Ibáñez et al., 2023; Yao et
al., 2021). Most notably, its effective characterization of cold
air outbreaks has been proven to correlate closely with the
timing and location of PLs (Meyer et al., 2021). However,
beyond the previously mentioned underestimation of near-

surface strong winds in Sect. 1, Wang et al. (2019) found
ERA5 data exhibits a warm bias over Arctic sea ice during
winter and spring, which makes it difficult to accurately sim-
ulate the frequently occurring strongly stable boundary lay-
ers prevalent in winter and early spring. Consequently, the
intensity of PMCs near the sea ice edge might be overes-
timated. Nevertheless, more accurate total precipitation and
snowfall data in ERA5 (Wang et al., 2019) significantly ben-
efits the representation of enhanced latent heat release mech-
anisms associated with PLs (Moreno-Ibáñez et al., 2021).

In this study, we utilize ERA5 reanalysis data spanning
2001-2024 during the extended winter period (November–
April), on a spatial grid of 0.25°× 0.25°, covering the do-
main 50–85° N in latitude and 40° W–80° E in longitude.
This dataset is employed to track vortices and compute their
evolutionary characteristics such as intensity and size.

2.3 QuikSCAT/ASCAT data

This study further leverages QuikSCAT and ASCAT data
to examine near-surface wind field properties within the
cyclone core and its surrounding ambient conditions.
QuikSCAT, a NASA-developed Earth-observing satellite,
employs a Ku-band SeaWinds microwave scatterometer to
provide global measurements of ocean surface wind vectors.
Similarly, ASCAT features a C-band microwave scatterom-
eter aboard EUMETSAT-operated MetOp polar-orbiting
meteorological satellites. These advanced instruments are
specifically engineered to deliver accurate (e.g., ASCAT-A
zonal/meridional wind component error standard deviations
of ∼ 0.37/0.51 m s−1 and ASCAT-B of ∼ 0.39/0.44 m s−1,
Vogelzang and Stoffelen 2022), high-resolution, continuous
wind vector measurements under all weather conditions, of-
fering comprehensive global coverage of near-surface wind
patterns. The full potential of these measurements extends to
their spatial derivatives, specifically vorticity and divergence,
which are closely associated with deep moist convection and
cyclonic activity (King et al., 2022).

We utilize Level 2 near-surface wind vector retrieval prod-
ucts from both instruments to analyze wind field character-
istics during cyclone development, with both datasets fea-
turing a 12.5 km resolution. For QuikSCAT, a slice-based
compositing technique integrates high-resolution measure-
ments derived from Level 1B data into 12.5 km wind vec-
tor cells. In contrast, ASCAT employs a spatial box filter to
minimize land contamination of microwave signals and en-
hance retrieval accuracy in coastal regions. Both datasets are
sourced from NASA’s Physical Oceanography DAAC (https:
//podaac.jpl.nasa.gov/, last access: 28 November 2024). For
the two products, QuikSCAT is available from 1999 to 2009,
whereas ASCAT start providing since 2010. To ensure com-
prehensive temporal coverage across the track dataset, the
two products are utilized in their respective operational peri-
ods to ensure comprehensive temporal coverage.
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Table 1. AVHRR radiometer channel information.

Channel Wavelength (µm) Satellite Application

1 0.58–0.68 ALL satellites Surface albedo estimation
2 0.725–1.00 ALL satellites Water body delineation
3A 1.58–1.64 NOAA15-19/MetOP A-C Snow and ice cover identification
3B 3.55–3.93 NOAA8-19/MetOP A-C low-level clouds identification and surface temperature
4 10.3–11.30 ALL satellites Cloud-top temperature and surface temperature
5 11.50–12.5 NOAA8-19/MetOP A-C Cloud-top temperature and surface temperature

3 Methodology

To establish a more comprehensive cyclone track dataset in
the Nordic Seas, we first utilize ERA5 reanalysis data which
exploits the evolving global observing system to obtain all
vortex tracks. In this process, a lower vorticity maxima cri-
terion is applied to extract vorticity perturbations within the
reanalysis data. Subsequently, vortex tracks and their merg-
ing and splitting processes are identified based on spatial
and boundary changes of vortices across consecutive time
steps. For each vortex with available AVHRR data, we gen-
erate Vortex-Centered Infrared (VCI, mentioned in the fol-
lowing text) images to identify corresponding cyclonic cloud
features with a cyclone-detection deep-learning model. Fi-
nally, near-surface wind fields derived from QuikSCAT/AS-
CAT are matched to characterize cyclones’ core wind speed.
The algorithm workflow is outlined in Fig. 2, with method-
ological details provided in subsequent subsections.

3.1 Objective algorithm for identifying and tracking
vortices

Sea-level pressure (Laffineur et al., 2014; Michel et al., 2018)
and low-level relative vorticity (Day et al., 2018; Stoll et
al., 2021; Watanabe et al., 2016; Zappa et al., 2014) are the
two most common tracer variables for PMCs in reanalysis
datasets. Existing studies demonstrate that high values of
low-level relative vorticity, compared to sea-level lows which
are susceptible to synoptic scale pressure fields, are more
closely associated with actual cyclone positions and exhibit
smaller biases in cyclone detection and intensity estimation
(Stoll, 2022; Stoll et al., 2020; Zappa et al., 2014). There-
fore, we apply an objective mesoscale vortices-tracking al-
gorithm to the 850 hPa relative vorticity fields in ERA5 data
to obtain hourly-resolution vortex tracks. This algorithm was
first proposed by Shimizu and Uyeda (2012) to track con-
vective cells prone to merging and splitting, and has since
been developed and improved for PMC tracking (Watanabe
et al., 2016; Stoll et al., 2021). It specifically comprises two
components: hourly vortices identification and connection of
continuous time step vortices.

Figure 2. The workflow diagram. In the diagram, all methodolo-
gies are enclosed in dashed circular outlines, while derived datasets
are framed in solid rectangular boxes. The title of each swimlane
denotes the data utilized by all methods within that swimlane.

3.1.1 Hourly vortices identification

When multiple vortices coexist within the same region of cy-
clonic shear flow, they often manifest as a contiguous posi-
tive vorticity zone in the vorticity field (hereafter referred to
as an unpartitioned-vortex in the algorithm). The major chal-
lenge in vortex identification within vorticity fields is how to
partition such regions (as exemplified in Fig. 3) into distinct
isolated vortex regions.

First, a uniform 60 km smoothing radius is applied to
hourly 850 hPa relative vorticity to disconnect weak continu-
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Figure 3. (a) 850 hPa relative vorticity field obtained by ERA5 data. (b) AVHRR infrared imagery concurrent with the time step in (a). The
shading represents 850 hPa relative vorticity smoothed over a uniform 60 km radius and local vorticity maxima are marked by green star
symbols, while regions enclosed by solid black contours denote the unpartitioned-vortex zone.

ity zones and eliminate minor perturbation maxima, which
may arise from assimilation increments (Belmonte Rivas
and Stoffelen, 2019). Subsequently, in the smoothed vortic-
ity field, regions enclosed by closed contour lines exceed-
ing a minimum threshold ζmin0 are identified as unpartitioned
vortices. Thereafter, each unpartitioned-vortex (e.g., the area
within the thick black solid line in Fig. 4) is subjected to iso-
lated vortex extraction via the following procedure:

– Step 1. Identify local vorticity maxima exceeding the
threshold ζmax0, designated as vortex peaks with relative
vorticity values ζmax (e.g., in Fig. 4, three local vortic-
ity maxima satisfy b > a > c). Contour lines (thin gray
solid lines) are then drawn at 10−6 s−1 intervals. Subse-
quently, the outermost contour line enclosing each indi-
vidual or combined peak (s) is identified as the valley-
line (black thin solid lines, e.g., ζmin1 ≈ ζmin2 < ζmin3 ≈

ζmin4 in Fig. 4). These valley-lines enable the separation
of distinct vortex regions containing single or multiple
peaks.

– Step2. The isolation status of each vortex region is deter-
mined by assessing the relative disparity between each
valley-line and its internal maximum peak. As illus-
trated in Fig. 4: peak a represents the strongest peak
within its associated valley-line ζmin4, peak b corre-
sponds to the maximum within two valley-line-enclosed
areas ζmin1 and ζmin3, and peak c is the dominant peak
within its respective valley-line ζmin2. The assessment
proceeds systematically through vortex regions in de-
scending order of their valley-line vorticity magnitude
(ζmin): for the maximum peak with relative vorticity

value ζmax within the valley-line-enclosed vortex re-
gion, if the criterion (ζmax − ζmin)/ζmax > γ is satisfied
(where γ denotes the isolation vortex threshold), the
area centered on this peak and bounded by the valley-
line is classified as an isolated vortex region. If a vortex
region contains only one such isolated vortex region, the
isolated vortex will be expanded to encompass the en-
tire domain. (in Fig. 4, the vortex region enclosed by
ζmin4 associated with peak a fails to meet the isolation
criterion. Conversely, peaks b and c forming two dis-
tinct isolated vortex regions bounded by their respective
valley-lines ζmin1and ζmin2).

– Step3. For all vortex points located within each
unpartitioned-vortex but outside the isolated vortex re-
gions, each point is assigned to the nearest isolated vor-
tex based on geographical distance. Finally, all isolated
vortices in the each unpartitioned-vortex region are mu-
tually designated as adjacent vortices (e.g., vortices b
and c), serving as inputs for subsequent analysis of
merging or splitting events. The area of each vortex is
defined by its corresponding allocated isolated vortex
region.

3.1.2 Connection of continuous time step vortices

Based on the results of hourly vortices identification, the
introduction of steering wind is employed to estimate the
movement of vortices. The steering wind is computed by av-
eraging wind fields within a 450 km radius around the vortex
center at 550, 700, and 850 hPa, which is statistically proven
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Figure 4. Vortex identification algorithm example. The black thick
solid lines ζmin0 represent the unpartitioned-vortex border. The vor-
ticity peaks a, b, and c are three detected local vorticity maxima
within this unpartitioned-vortex. The thin black solid lines from
ζmin1 to ζmin4 in Step 1 denote vortex valley-lines that divide sin-
gle or multiple peak regions. After vortex isolation assessment in
Step 2, the retained valley lines ζmin1 and ζmin2 for peaks b and
c form the initial boundaries of their respective isolated vortices,
while vortex a is classified as non-isolated, with its boundary shown
as a dashed line. In Step 3, the pale pink regions outside the isolated
vortices are further allocated to vortices b and c.

to have minimal bias (Yan et al., 2023). Specifically, for a
vortex at a given time step, its ideal point after experiencing
a time step under the steering wind influence is first calcu-
lated. A search radius of 180 km is then applied around this
estimated location to facilitate vortex tracking in subsequent
time steps. Subsequently, the (a) nearest neighbor principle
or (b) maximum area overlap principle (as shown in Fig. 5)
is applied to connect vortices between two consecutive time
steps, when vortices exist within the estimated region, the
nearest vortex is connected; otherwise, the vortex with the
largest area overlap within the region is selected for connec-
tion. Finally, if the distance between the centers of vortices
to be connected in adjacent time steps exceeds 200 km and
the vorticity of the vortex center at next time step is less
than 1.5× 10−4 s−1, the connection is terminated to mini-
mize spurious connections.

Additionally, If no spatially connectable vortices are iden-
tified in adjacent time steps, the vortex is classified as be-
ing terminated. Under the assumption of constant centroid
positions during splitting and merging (Shimizu and Uyeda,
2012), if a vortex is contiguous to other vortices at its start
(end) track point, it is considered to have been generated (ter-
minated) via splitting (merging). As shown in Fig. 6, in two
simplified vortex motion scenarios, vortex b begins splitting
and merging at the t3 time step.

Figure 5. Schematics of continuous time step vortices connection.

3.1.3 Sensitivity experiments of vortex identification
parameters

To evaluate the sensitivity of vortex identification parame-
ters, we conducted three sensitivity experiments with the fol-
lowing configurations, each designed to test the impact of
varying key thresholds ζmax0 (ζmin0) and γ on vortex detec-
tion:

1. Experiment a (lenient thresholds):
ζmax0 = 1.2× 10−4 s−1, ζmin0 = 1.0× 10−4 s−1,
γ = 0.15;

2. Experiment b (intermediate thresholds):
ζmax0 = 1.2× 10−4 s−1, ζmin0 = 1.0× 10−4 s−1,
γ = 0.25;

3. Experiment c (strict thresholds, following Stoll et al.,
2021): ζmax0 = 1.5× 10−4 s−1, ζmin0 = 1.2× 10−4 s−1,
γ = 0.25

The influence of threshold variations on vortex detec-
tion characteristics was systematically evaluated by analyz-
ing differences in the number of identified vortex tracks,
their lifespans, and their vorticity across the three experi-
ments. As shown in Fig. 7, threshold adjustments predom-
inantly affected vortices exhibiting lifetime-maximum vor-
ticity (ζtr max) less than 2× 10−4 s−1. The principal findings
are:

First, focusing on the impact of ζmax0 (by comparing Ex-
periment b, which uses a lenient ζmax0, with Experiment c,
which uses a strict ζmax0), we found that the lenient thresh-
old in Experiment b captured an additional 8077 weak-
vorticity tracks (with ζtr max < 1.5× 10−4 s−1). This adjust-
ment also extended the mean lifespan of detected vortices by
approximately 3 h. Under the 6 h minimum lifespan criterion
which is used to filter transient disturbances, this extension
nearly doubled the detection rate of moderately weak vor-
tices (1.5× 10−4 s−1<ζtr max< 2× 10−4 s−1), highlighting
the importance of ζmax0 in capturing less intense but persis-
tent systems.

Second, examining the role of γ (by comparing Experi-
ment a, which uses a lenient γ , with Experiment b, which
uses an intermediate γ ) revealed that the lenient γ threshold
in Experiment a increased the count of weak-to-moderate
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Figure 6. The schematic diagram illustrates two vortices splitting and merging processes. The t1 to t4 represent four consecutive time steps.
The red/blue arrow indicates the direction corresponding to the splitting/merging process of two vortices. The colored regions and solid lines
represent isolated vortex regions and their boundaries. Gray solid lines show contour lines of the 850 hPa relative vorticity field, and black
solid lines indicate the unpartitioned-vortex boundaries. The blue dashed line indicates that the vortex b is not yet an isolated vortex at time
t2.

Figure 7. Sensitivity analysis of vortex identification parameters
across different maximum track vorticity groups: (a) number of
identified tracks, (b) mean track lifetime.

vortices (1.5× 10−4 s−1< ζtr max< 3× 10−4 s−1). This in-
crease was attributed to enhanced sensitivity to vortex split-
ting events, and it came with a trade-off: the mean lifes-
pan of detected vortices was reduced by approximately 2 h,
likely due to more frequent identification of short-lived sub-
vortices during splitting.

Given the objective of constructing a comprehensive
dataset capturing the full spectrum of PMCs, including
weaker systems potentially omitted by stricter criteria, the
parameter set from Experiment a was ultimately selected.
This configuration yielded the highest number of vortex
tracks, thereby ensuring the inclusion of marginally intense
or transient PMCs and providing a more robust foundation
for subsequent analysis. Validation of these results against
established polar low datasets is presented in Sect. 4.

3.2 Matching SLP minimum

While vortices often fail to produce closed isobars in SLP
fields due to interference from background pressure gra-
dients, their atmospheric influence can still be quantified

through detectable SLP minima. Notably, certain polar lows
originate within upper-level cold-core systems (known as
“cold low types”) frequently generate deep convection and
produce substantial near-surface impacts (Rasmussen, 1981;
Businger and Reed, 1989). To systematically capture SLP
characteristics, the SLP field is first smoothed using Gaus-
sian filtering with a radius of 50 km to suppress noise. Sub-
sequently, the SLP minimum point located within a 150 km
radius of the nearest vortex centroid is designated as the SLP
center for that vortex.

3.3 Detection and extraction of cyclonic cloud
characteristics

Building upon the lenient vorticity identification criteria pre-
viously constructed, a substantial population of vortex tracks
have been identified using reanalysis data, including not only
cyclonic systems but also low-pressure troughs, and small-
scale atmospheric disturbances. To assess whether these vor-
tices represent PMCs, AVHRR infrared imagery is used for
comparative validation. This process begins with temporal
matching of satellite overpasses to vortex track timesteps,
followed by generation of Vortex-Centered Infrared (VCI)
images through linear interpolation of infrared data onto
a geographically-referenced 801× 801 grid coordinate with
2 km resolution, centered on each vortex center (Fig. 8c and
d). The coordinate transformation employs the formulas:

lat (x,y)=
y

2πR
+ vortlat ,

x,y ∈ {−800,−798, . . .,798,800} (1)

lon(x,y)=
x

2πR · cos(vortlat)
+ vortlon,

x,y ∈ {−800,−798, . . .,798,800} (2)

The coordinate transformation utilizes vortlon and vortlat as
the longitude and latitude of the original coordinate grid, cor-
responding to either the vortex center at the given timestep.
This approach implements a conformal projection that pro-
vides a first-order approximation of geographic coordinates
within the vicinity of the origin point.

The VCI images enable comprehensive analysis of cloud
features within a 1600 km× 1600 km domain centered on

Earth Syst. Sci. Data, 17, 6049–6069, 2025 https://doi.org/10.5194/essd-17-6049-2025



R. Fang et al.: IMPMCT 6057

each tracked vortex position, providing an optimal spatial
scale that captures the majority of PMCs while simultane-
ously accommodating larger-scale extratropical systems ad-
vected into Arctic regions. By transitioning from broad-scale
satellite observations to these precisely localized domains,
this imagery method significantly enhances the spatial corre-
spondence between vorticity-derived tracks and cloud fea-
tures, with particular sensitivity improvement for smaller-
scale and shallower cyclones. Meanwhile, the georeferenced
framework of VCI images provides two critical analytical ca-
pabilities: first, it enables direct quantification of cyclone di-
mensions through the standardized geographic grid; second,
it allows precise measurement of positional discrepancies be-
tween observed cloud systems and modeled vortices through
center-to-center displacement vectors. Furthermore, VCI im-
ages are also generated for two-time steps before the start and
after the end of each vortex track. This allows us to capture
the initial formation and dissipation stages of PMCs that are
not adequately represented in vorticity fields, enabling users
to better evaluate the representation of PMCs.

Figure 9 illustrates typical cyclonic cloud morphologies,
the most common comma-shaped cloud structure is shown
in Fig. 9a, where the head is typically composed of a tall
and smooth cirrus shield surrounding a dark, nearly cloud-
free center. Ripple-like wave patterns sometimes appear at
the edge of the head, indicating significant wind shear within
the cyclone. Figure 9d presents the typical spiral cloud mor-
phology, characterized by one or more convective cloud spi-
ral bands encircling the circulation center. These spiral bands
are occasionally predominantly composed of cellular clouds.
Intermediate baroclinic forms illustrated in Fig. 9b and c rep-
resent transitional stages between comma and spiral types,
sharing structural similarities with occluded extratropical cy-
clones but at reduced horizontal scales, and are consequently
classified within the spiral category. The centers of comma
cloud and spiral cloud configurations in our research were vi-
sually determined following Forbes and Lottes (1985), based
on the characteristic curvature and convergence of cloud
bands surrounding the circulation core as identified in satel-
lite imagery. Additionally, the analytical framework of ori-
ented bounding box is also introduced that provide quanti-
tative measures of cyclone scale, with the long axis aligned
parallel to the tail cloud band and the short axis tangent to
the cloud head. While conventional approaches estimate cy-
clone size using the mean axis length (Smirnova et al., 2015),
this dataset provides separate measurements of both axes to
account for potential overestimation caused by the connec-
tion of tail cloud band of cyclones and long cloud bands of
mesoscale-front, thereby enabling researchers to make more
precise assessments of true cloud coverage dimensions.

To extract such cyclonic cloud features corresponding to
vortices from the vast collection of VCI images, the YOLO
(You Only Look Once) object detection algorithm is em-
ployed to automate this process. Object detection is a com-
puter vision task that uses neural networks to locate and clas-

sify objects within images. The YOLO series of algorithms
(Redmon et al., 2016), characterized by high efficiency and
accuracy, has become prominent in real-time object detec-
tion tasks across various fields. In this track dataset construc-
tion, the YOLOv8 framework (Jocher et al., 2023) is adopted
to automatically extract cyclonic cloud morphology features,
including cloud type classification (spiral cloud or comma-
shaped cloud), center coordinates, and an oriented bounding
box enclosing the cyclone. The YOLOv8-obb-pose model
is configured using the YOLOv8 model framework, which
combines oriented object detection (obb) and keypoint de-
tection (pose). Specifically, a branch for keypoint prediction
is added to the decoupled head module of the YOLOv8-obb
model. This enables the new YOLOv8-obb-pose model to si-
multaneously perform automatic detection of cyclone type,
center position, and oriented bounding box. The network ar-
chitecture of the YOLOv8-obb-pose model comprises three
main components: Backbone for multi-dimensional feature
extraction, Neck for enabling multiscale feature fusion, and
Head for extracting cyclone type, center coordinates, and ori-
ented bounding box parameters (e.g., length, orientation). As
shown in Fig. 10, the YOLOv8-obb-pose model successfully
detects two spiral clouds (Fig. 10a) and two comma-shaped
clouds (Fig. 10b) in VCI images, with oriented bounding
boxes,cyclone type and center points marked.

During the model training process, we first construct a
manually annotated dataset to train the YOLOv8-obb-pose
model. To ensure prediction stability, particular emphasis is
placed on maintaining consistent oriented bounding box an-
notations and center point positions across similar evolution-
ary phases of cyclonic cloud morphologies. To optimize the
trade-off between detection efficiency and accuracy, we im-
plement an iterative training protocol involving successive
cycles of prediction, manual correction, and retraining us-
ing VCI images. As detailed in Table S1 in the Supplement,
the model achieves competitive performance metrics on the
validation set following this optimization process. The final
YOLOv8-obb-pose implementation demonstrates robust ca-
pabilities in both cyclone detection and center localization
tasks, satisfying requirements for practical applications.

For each detected cyclone, the center coordinates and the
four vertices of the oriented bounding box are converted back
to geodetic coordinates using the inverse of Eqs. (1) and (2).
The lengths of the four sides of the bounding box are calcu-
lated using the haversine formula, with the cyclone’s length
(width) defined as the mean size of the two long (short) sides
of the rectangle. The geographic coordinates of the cyclone
center are then used for subsequent matching with vortex
centers.

3.4 Validation of the vortex tracks

Each series of VCI images based on vortex track provides
spatiotemporal neighboring local infrared cloud imagery that
follows the vortex’s movement. After extracting cyclonic fea-
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Figure 8. Two examples of VCI image generation. For the two vortices shown in (a), the AVHRR IR image (b) reveals a polar low located to
the east of vortex 1 and vortex 2. This polar low exists simultaneously in the VCI images centered on vortex 1 and vortex 2 (c, d). The shading
in (a) represents 850 hPa relative vorticity smoothed over a uniform 60 km radius, with gray contour lines indicating sea-level pressure at
10 hPa intervals. The centers of vortex 1, vortex 2, and the polar low are respectively marked by green, red, and yellow stars.

tures from VCI images, whether a vortex track corresponds
to a cyclone evolution process is determined by proximity
matching between the cyclone center detected in each VCI
image and the vortex center. The following steps ensure that
each VCI image only retains a cyclone uniquely matched to
a vortex track point:

i. Uniqueness. As illustrated in Fig. 8, spatially proxi-
mate vortices in reanalysis data can result in multiple
detections of the same cyclone across corresponding

VCI images. To remove duplicate records, we imple-
ment a selection criterion: for any cluster of detections
from the same AVHRR infrared scan (with cyclone cen-
ters< 50 km apart), only the detection whose center is
nearest to the VCI image center is retained.

ii. Proximity. Each VCI image retains only the cyclone
whose center is nearest to the VCI image center and
within 250 km of it. Further, we extend the point-to-
point matching to the track-to-track. When points of
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Figure 9. Different cyclonic cloud morphologies in four VCI images: (a) comma-shaped cloud; (b, c, d) spiral clouds. The yellow/blue
bounding boxes and stars respectively denote the oriented bounding boxes and center positions of comma-shaped/spiral cyclones.

a vortex track are continuously matched with a series
of cyclones in VCI images over four hour or longer
time-steps with an average matching distance less than
150 km, the vortex track is preliminarily identified as a
PMC track associated with the cyclone evolution pro-
cess (as shown in Fig. 11).

3.5 Matching cyclone-related max wind

When cyclonic cloud features are identified in VCI imagery,
near-surface wind speeds over the ocean are matched to as-
sess cyclone intensity. Based on established criteria (Ras-
mussen and Turner, 2003), PLs are generally associated
with high near-surface wind speeds exceeding 15 m s−1 (gale
force), concentrated in narrow cloud bands connected to the
eye wall or intense convective regions surrounding the cen-
ter. In contrast, weaker PMCs often do not penetrate the tem-

perature inversion above the marine mixed layer, resulting in
lower near-surface wind speeds (Noer et al., 2011). In this
study, near-surface wind speed matching is performed using
ASCAT/QuikSCAT data selected when the time difference
from the VCI image is within 30 min. This tolerance is con-
sidered acceptable given that most PLs move at speeds be-
low 13 m s−1 (Rojo et al., 2015; Smirnova et al., 2015), mak-
ing the associated representative error negligible. To estimate
the maximum wind speed associated with the cyclone core, a
cloud-scale-based search radius is applied. The search radius
is defined as the distance from the cyclone center to the near-
est short edge of its oriented bounding box. This confines
the wind search to the high-wind region near the cyclone’s
core, with the maximum value within this area taken as the
system’s maximum wind speed.

It is important to recognize that scatterometer wind speeds
may not always reflect cyclone-induced circulation and could
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Figure 10. Examples of cyclonic cloud detection using the YOLOv8-obb-pose model: (a) two spiral clouds detected in a VCI image and
(b) two comma-shaped clouds detected in a VCI image. The oriented bounding boxes for spiral clouds are shown in purple, and for comma-
shaped clouds in blue. The centers of the cyclones are marked with green points. The cyclone type and detection confidence are displayed
above each bounding box.

Figure 11. (a) A matched vortex track and cyclone track and (b) partial corresponding VCI images. For (a), blue solid line represents
the vortex track at hourly resolution, while grey solid line with green points depicts the cyclone track points formed in VCI images that
correspond one-to-one with vortex points. The color of the track points indicates the magnitude of relative vorticity at each vortex point. For
(b), the cyclone develops sequentially from left to right and top to bottom, with scan intervals between images approximately six hours apart.

include contributions from large-scale advective wind. Some
PMCs occurring during cold air outbreaks may exhibit wind
speed maxima surpassing 15 m s−1 due to background en-
vironmental wind advection. To prevent misclassifying such
systems as PLs, careful subjective analysis has traditionally
been applied (Wilhelmsen, 1985). This highlights that what
is retrieved from scatterometer wind measurements may not

always reflect cyclone-induced circulation, but could also in-
clude contributions from large-scale advective winds. By us-
ing the spatial derivatives from scatterometer wind vector
fields, vortical structures or divergent flows near the surface
associated with PLs/PMCs may become easily visible (King
et al., 2022). For instance, Fig. 12a illustrates a system with a
well-defined cyclonic circulation where the high wind speeds
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at its head are clearly associated with the cyclone itself. The
fine-scale and complex structure of the corresponding vortic-
ity field exhibits a strong and organized vorticity signature
coincident with the cloud vortex, confirming the presence of
an intense mesoscale vortex and a trailing shear line. In con-
trast, Fig. 12b shows a case where the wind field is largely
straight and convergent in the ambient flow, accompanied by
only a weak vorticity signal (1× 10−4 s−1) localized near the
cloud eye and lacking any broader organized cyclonic struc-
ture, suggesting that the surface circulation appears to be ei-
ther not yet formed or obscured. Due to technical constraints,
additional parameters such as vorticity and divergence are
not provided alongside wind speed. Nevertheless, they retain
substantial application potential, as evidenced by the vor-
ticity structures revealed in Fig. 12, which demonstrate the
value of scatterometer spatial derivatives in elucidating the
complex dynamical features of mesoscale systems.

4 Results and discussion

Our analysis began by applying a vortex tracking algorithm
to reanalysis data, which identified 59 975 vortex tracks. Val-
idation against VCI imagery confirmed 1110 cyclone-related
vortex tracks, encompassing 16 001 distinct cyclone cloud
features. Subsequent analysis of surface wind speed charac-
teristics revealed 4472 instances with measurable wind pat-
terns, among which 794 tracks exhibited maximum wind
speeds exceeding the 15 m s−1 threshold. These validated
1110 vortex tracks, along with their corresponding remote-
sensing images, form the IMPMCT track dataset. The ac-
curacy of IMPMCT was rigorously evaluated through com-
prehensive comparisons with existing track datasets derived
from manual identification and reanalysis products.

First, to validate the accuracy of the vortex track datasets
obtained from the vortices tracking algorithm, they are com-
pared with the manually identified PL lists published by
Noer et al. (2011), Rojo et al. (2015, 2019), and the ob-
jectively derived PL track datasets from reanalysis data by
Stoll (2022). All reference datasets are spatially and tempo-
rally co-located with our derived tracks, retaining only those
persisting for ≥ 3 h. We applied the following matching cri-
teria: a vortex track is considered matched with a PL track if
more than 50 % of temporally coincident track points (within
±1 h) fall within a 150 km radius (applying an 80 % thresh-
old for Stoll’s dataset). To avoid spurious matches of short-
lived spurious tracks, only vortex tracks with lifespans ex-
ceeding 60 % of the corresponding reference PL track’s du-
ration were included. A single vortex track was permitted to
match multiple PL tracks from reference datasets, provided
that these PL tracks did not overlap temporally and each was
uniquely paired with its nearest vortex track. As presented in
Table 2, the validation results demonstrate strong agreement
with Stoll’s dataset, confirming the robustness of our vortex
tracking algorithm. Moreover we achieve higher matching

rates with manual PL lists by using lower vortex identifica-
tion thresholds, which further underscores the improved ca-
pability of ERA5 reanalysis data in representing PL charac-
teristics. Additional validation using tracks from the sensi-
tivity experiment (Sect. 3.1) revealed a critical insight: vortex
tracks derived under lenient thresholds consistently produced
higher matching rates when compared against established
PL datasets (Table S2). This suggests that some PLs exhibit
weaker vorticity signals in the lower atmosphere, highlight-
ing intrinsic intensity diversity that stricter thresholds may
fail to capture.

To further investigate the mismatches between reanalysis-
derived tracks and existing PL datasets, we conducted a
nearest-point matching analysis (Table 2). A match was con-
sidered successful when a PL center from any reference
dataset had at least one temporally coincident vortex center
within a 120 km radius (60 km for the Stoll dataset). Track-
level mismatches were found to originate primarily from
these point-level discrepancies. The variation across datasets
can be largely attributed to methodological differences: while
the Noer list derives from numerically modeled and AVHRR-
assimilated hourly positions (typical of operational forecast-
ing systems), the Rojo list relies on direct AVHRR identifi-
cation at irregular temporal intervals, leading to greater de-
viation from ERA5 representations. Furthermore, the Rojo
compilation includes numerous secondary PL centers, which
are features inherently less resolved by reanalysis data (Stoll,
2022), whereas Noer focuses primarily on dominant PLs of
operational significance. This distinction is clearly reflected
in our results: major PL centers (n= 2527) showed an 80 %
matching rate, compared to only 54 % for secondary centers
(n= 1115), thereby lowering the overall match rate for the
Rojo dataset.

For the Stoll dataset, we also computed a vortex match-
ing rate (Table 2), defined as the proportion of Stoll centers
falling within the spatial extent of the nearest co-temporal
vortex. This measure helps account for positional discrepan-
cies caused by misalignment of vorticity peaks, which ap-
pear to stem from differences in smoothing techniques (see
Fig. S1). Our algorithm applies stronger uniform smoothing
compared to Stoll’s approach, explaining why more lenient
identification thresholds improve track matching with Stoll’s
dataset. This finding offers valuable insight for algorithm ap-
plication: although the algorithm is not highly sensitive to
the specific input vorticity fields, provided their grid spac-
ing is sufficient to capture mesoscale vortices, the choice of
smoothing method significantly influences identification out-
comes, alongside the threshold parameters examined in the
sensitivity experiments (Sect. 3.1.1). The smoothing strategy
should be tailored to the assimilation noise and effective res-
olution of the input vorticity field. For example, Gaussian
smoothing may be better suited for model data with lower
noise levels, as it better preserves the spatial coherence of
vortex cores.
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Figure 12. VCI images overlaid with near-surface wind speeds for cyclones exhibiting strong (a) and weak (b) cyclonic near-surface wind
patterns. Color shading represents QuikSCAT-measured 10 m near-surface wind speeds, with green arrows indicating corresponding wind
vectors. Yellow borders denote the cyclones’ bounding oriented box. Blue circular border represents the search range. Yellow and red stars
indicate the cyclone center and maximum wind speed point locations. The vorticity calculated from the wind fields is shown as white-to-red
contours, with units of 10−4 s−1.

Table 2. The matching rate of the reanalysis-based track dataset for IMPMCT generation compared to other PL track datasets.

PL Time period Tracks in Nordic Sea Track matched Points Nearest points matched Vortex matched
tracks (> 3 h) fraction (%) fraction (%) fraction

Noer 2002–2011 114 87.72 1670 85 –
Rojo 2000–2019 370 69.73 3642 71 –
Stoll 2000–2020 3179 93.68 75 650 93 99

After excluding vortex tracks with over 60 % land cover-
age (resulting in an approximately 20 % reduction), 47 167
tracks remained eligible for AVHRR matching. The match-
ing procedure required: (1) complete spatial coverage within
a 200 km radius for individual vortex points, and (2) at least
two temporally matched points within ±3 h of peak vortic-
ity, along with a minimum of six matched points over the
track’s lifetime. Figure 13 presents the matching statistics for
the winter months (November to April): on average, 43 % of
points and 61 % of tracks were successfully matched. How-
ever, only about 3 % of the matched tracks were ultimately
incorporated into the IMPMCT dataset. This low inclusion
rate can be attributed to several factors: frequent cloud ob-
struction, limitations in cloud–ice contrast, temporal resolu-
tion constraints, and inherent detection methodology (e.g.,
the higher inclusion rate in 2001 reflects meticulous man-
ual identification, whereas the lower rate in 2023 resulted
from incidental post-publication discoveries). Importantly,
the proportion of cyclones in IMPMCT likely underestimates

the true prevalence of polar mesoscale cyclones (PMCs), as
many systems with low cloud cover lack discernible vortex
structures. In cases where AVHRR data are unavailable, an
alternative approach using hourly wind field data calibrated
with scatterometer measurements may provide a more robust
method for validating ERA5-derived vortex tracks (Furevik
et al., 2015).

We further assess the reliability of vortex properties in
IMPMCT by comparing three key parameters (850 hPa rela-
tive vorticity, SLP minima, and vortex equivalent diameter),
with the corresponding values from Stoll’s dataset, in addi-
tion to evaluating the spatial distance between vortex centers.
From this comparison, 638 matched tracks were identified
between IMPMCT and Stoll’s dataset. As shown in Fig. 14a,
among the matched tracks, 90 % of vortex points remain
within 50 km of each other at the same time step. The mean
absolute differences of the three vortex properties at these
proximate track points remain small: 1.11× 10−5 s−1 for rel-
ative vorticity, 0.43 hPa for sea-level pressure, and 22.79 km
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Figure 13. Annual winter (November–April) time series:
(a) ERA5-derived vortex points (green), available AVHRR files
(red), and AVHRR-matched vortex points (blue), (b) ratio of
AVHRR-matched vortex tracks to ERA5-derived tracks (yellow),
and ratio of IMPMCT tracks to AVHRR-match tracks (purple).
Note: Bars represent distinct categories (not stacked).

for vortex equivalent diameter. Furthermore, these property
discrepancies exhibit a positive correlation with separation
distance, suggesting that differences between IMPMCT and
Stoll’s tracks primarily arise from their respective identifica-
tion thresholds.

To demonstrate that these discrepancies reflect divergent
tracking methodologies rather than detection errors, we cal-
culated the standard deviation of each vortex property over
three consecutive time steps for every track and then aver-
aged these values across each track. Low amplitude in these
local variations implies consistent feature identification by a
given method. Figure 14b–d present the track-averaged local
standard deviations of the three properties for both datasets.
Importantly, the magnitudes of these short-term variabili-
ties are generally comparable between IMPMCT and Stoll’s
tracks. This consistency indicates that the increasing prop-
erty differences at larger separations stem from intrinsic peak
misalignments due to differing detection logics, rather than
fundamental errors in either tracking approach. In fact, the
IMPMCT dataset often exhibits slightly smoother variabil-
ity, which is consistent with its specific algorithmic configu-
ration.

IMPMCT uses hourly-resolution vortex tracks from re-
analysis data as a basis for cyclone tracks. The correspon-
dence between vortex and cyclone tracks is established ex-
clusively via continuous spatiotemporal matching of their

respective centers. To ensure the accuracy of this corre-
spondence, we perform subjective validation to confirm that
each cyclone track does not incorporate irrelevant cyclonic
processes. Notably, while the average matching distance
between vortex and cyclone tracks is constrained within
150 km, approximately 95 % of track pairs have average
matching distances below 100 km (as shown in Fig. 15),
demonstrating strong consistency between cyclone and vor-
tex tracks.

The cyclone properties in IMPMCT include cyclone scales
and maximum core near-surface wind speeds. These proper-
ties are validated through comparison with the Rojo list. For
scale validation, we compare the diameter from the Rojo list
with the approximate cyclone scale in the IMPMCT dataset
(calculated as the average of cyclone width and length). We
matched cyclone tracks between IMPMCT and Rojo list
based on the following criteria: the nearest cyclone centers
are matched if their distance is less than 120 km and their
overpass times fell within 60 min of each other. A cyclone
track pair was deemed matched if more than 50 % of the
points in a Rojo track were matched. Using this approach,
1424 cyclone centers from the Rojo list (corresponding to
139 distinct tracks) were matched to tracks in IMPMCT. It is
worth noting that although the maximum permitted match-
ing distance was 120 km, the 90th percentile of all actual
matching distances was only 56 km. This indicates that cy-
clone center identification remained consistent even when
exact temporal alignment was not achieved.

Comparisons of cyclone cloud scale and maximum wind
speeds between the matched time periods are shown in
Fig. 16. When cyclone center identification errors are small,
the discrepancies in diameter relative to the Rojo list arise
not only from methodological differences in measurement,
but also significantly from subjective interpretation. The fre-
quent presence of frontal cloud bands associated with cy-
clones makes consistent measurement of the long axis highly
subjective. Moreover, when a cyclone is adjacent to other
cloud systems, its boundaries often become ambiguous, lead-
ing to variability in extent estimation. Therefore, a standard
deviation of up to 120 km in diameter is still considered ac-
ceptable. Furthermore, as the dataset includes corresponding
remote sensing images, users can readily examine the visual
context of each cyclone and adjust the properties according
to their specific research needs.

To statistically evaluate the agreement between IMPMCT
and the reference datasets (Stoll, 2022, and Rojo et al. 2015,
2019), we applied Bland–Altman analysis (Bland and Alt-
man, 1999). This method quantifies the agreement between
two measurement techniques by estimating the mean differ-
ence (bias) and the 95 % limits of agreement (LoA), defined
as the mean difference ±1.96 standard deviations of the dif-
ferences. A summary of the Bland–Altman results for key
vortex and cyclone properties is provided in Table 3, while
the corresponding plots of differences versus averages are in-
cluded in Supplement Fig. S2. As indicated in Table 3, vor-

https://doi.org/10.5194/essd-17-6049-2025 Earth Syst. Sci. Data, 17, 6049–6069, 2025



6064 R. Fang et al.: IMPMCT

Figure 14. Distribution of differences in three vortex properties and their track-averaged local standard deviations at co-located hourly track
points between matched IMPMCT and Stoll tracks. The boxplot in (a) shows property differences as a function of spatial deviation distance
between matched track points. The red numbers above the x-axis indicate the count of track point pairs in each distance bin. Each boxplot’s
y-axis scale corresponds to the color of its respective property (green: relative vorticity, blue: sea-level pressure, red: vortex diameter).
Frequency histograms and fitted curves of track-averaged local standard deviations for the three properties are displayed in (b) relative
vorticity, (c) sea-level pressure, and (d) vortex diameter.

Figure 15. Probability distribution of distances between matched
cyclone-vortex points (green) and track-average distances (blue).

tex properties derived from ERA5 reanalysis show a small
systematic bias relative to the other datasets, which is likely
due to differences in computational algorithms or processing

workflows. Importantly, the Bland–Altman results demon-
strate strong agreement between the datasets: approximately
94 % of the differences for each property fall within the
respective 95 % limits of agreement (final column of Ta-
ble 3), supporting the overall consistency and reliability of
IMPMCT

For most newly identified mesoscale cyclones not docu-
mented in existing PL databases, direct validation can be per-
formed by applying objectively derived identification thresh-
olds from previous studies to independently verify three es-
sential characteristics: polar origin, mesoscale size, and cy-
clonic intensity:

1. Polar-front criterion. As PMCs are defined as
mesoscale cyclones forming north of the polar
front (Rasmussen and Turner, 2003), we employ two
indicators to distinguish polar air masses from extra-
tropical air masses: tropopause potential temperature
(θtrop) and the maximum poleward value of 200 hPa
wind speed (U200,p). For each cyclone, we compute the
track-averaged θtrop averaged within a 250 km radius of
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Figure 16. Frequency distribution of bias in (a) Track-max near-surface wind speed and (b) diameter between matched cyclones in the Rojo
and IMPMCT datasets (Rojo minus IMPMCT). The cyclone diameter in IMPMCT is calculated as the average of the width and length of the
bounding box enclosing the cyclone.

Table 3. Property difference between IMPMCT and other PLs list.

Property Matched Mean Standard Deviation % Points
number Difference of Differences within LoA

850 hPa relative vorticity (10−5 s−1) 20 294 0.6 2.1 95.1
SLP (hPa) 13 929 0.3 0.8 95.7
vortex equivalent diameter (km) 20 294 −6.8 39.2 93.7
track-max near-surface wind speed (m s−1) 51 −1.07 5.0 94.1
cyclone cloud diameter (km) 1145 8.8 120 94.5

the cyclone center and the track-averaged U200,p within
a longitudinal band of ±1.0° great-circle distance.
Following Stoll (2022), θtrop< 300.8 K is used to
identify polar air mass origin. This threshold effectively
distinguishes PLs from extratropical cyclones, retaining
76 % of systems across subjective archives while
capturing 90 % of known PLs. Han and Ullrich (2025)
employed U200,p< 25 m s−1 to position PLs north of
the polar jet, achieving an approximately 80 % hit rate
for PL classification with a miss rate of only 11.9 %.

2. Mesoscale-size criterion. Vortex radius, derived from
the vorticity field, is used to exclude extratropical cy-
clones penetrating polar regions and large-scale frontal
structures. In Stoll (2022), a maximum vortex diame-
ter of 430 km (representing the 90th percentile across
all PL lists) was applied, excluding approximately 24 %
of non-PL vortices. As we employ the same vorticity
boundary threshold (1.0× 10−4 s−1) for vortex defini-
tion, this criterion remains valid for our dataset.

3. Cyclonic intensity criterion. A robust measure of
mesoscale cyclone intensity is the pressure anomaly
(pdef), defined as the difference between the SLP min-
ima and the mean SLP within a 110 km radius (pdef =

SLP110 km−SLPmin). Stoll et al. (2018) demonstrated
that high pdef values (with 90 % of PLs exceeding
0.4 hPa) highlight the anomalous intensity of the local

low-pressure centre relative to its environment, signify-
ing a steep pressure gradient near the core, indicative
of small, deep low-pressure systems typical of PLs. We
calculate the maximum pdef based on the SLP centre
for each vortex track. For tracks where no SLP centre is
identified, pdef is set to 0.

All discriminatory features for IMPMCT tracks are com-
puted from ERA5 data. The quantiles of these features and
the proportion of tracks meeting each criterion are presented
in Table 4. Notably, 88.4 % of tracks satisfy the polar-front
criterion, 90 % meet the mesoscale criterion, and 84 % fulfill
the cyclonic intensity criterion. It should be noted that these
thresholds were originally developed specifically for the PLs.
For the broader spectrum of PMCs, the thresholds for θtrop
and pdef are inherently stricter, as they reflect the conditions
of cold-air outbreaks and the stronger destructive potential
typically associated with PLs. Nevertheless, the vast major-
ity of tracks in the IMPMCT dataset satisfy these criteria,
supporting their robustness as mesoscale cyclone tracks.

The comprehensiveness of the dataset is constrained by the
cyclone representation capabilities of ERA5 reanalysis and
the availability of remote sensing data. Since the number of
in-orbit satellites carrying the AVHRR sensor peaked around
2013, the IMPMCT track dataset includes the highest num-
ber of tracks during this period. Additionally, due to the use
of more lenient identification thresholds, IMPMCT tracks
typically include longer life compared to the Stoll dataset.
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Table 4. Quantiles of discriminatory features and proportion of IMPMCT tracks meeting validation criteria.

Criterion Track feature Percentage Proportion meeting
the criterion (%)

50 % 75 % 90 %

Polar front
θtrop< 301 K
or
U200,p < 25 m s−1

θtrop (K) 298.9 304.1 310.0

88.4

U200,p (m s−1) 18.4 23.7 29.7

Mesoscale
r < 215 km

r (km) 137.1 176.9 213.5 90.6

Cyclonic
pdef> 0.4 hPa

pdef (hPa) 1.4 2.3 3.2 84.1

The extended portions of these tracks may include: weak vor-
ticity periods during the early/late stages of cyclone develop-
ment or the vortices pass over land/sea-ice, or redevelopment
processes of vortices after interacting with blocked extropical
cyclones or frontal zones. If users require only the core devel-
opment phases of tracks, they should select segments based
on vortex properties or cyclone images that represent the
system’s core development. The dataset also includes some
tracks with high vorticity at their start/end points, which may
arise from splitting/merging events or jumps of the vortex
center position during tracking. It is noteworthy that while
this study demonstrates ERA5 reanalysis data’s enhanced
capability in capturing PMCs and PLs, it does not reflect
ERA5’s predictive skill for such systems. This predictive ca-
pability should be evaluated by testing ERA5 background
states in characterizing PLs/PMCs, thereby isolating the in-
fluence of real-time assimilated data – particularly scatterom-
eter measurements (Furevik et al., 2015).

The dataset does not explicitly distinguish between PMCs
and PLs due to the time-sparse wind speed data, particularly
when the cyclone’s wind speed at a given time step falls
below the 15 m s−1 threshold. In such cases, it is difficult
to determine whether the cyclone is a PMC or merely in a
weaker phase of a PL. A more reliable validation method
may be provided by the hourly bias-corrected sea surface
wind product (WIND_GLO_PHY_L4_MY_012_006) from
the E.U. Copernicus Marine Service Information (Coperni-
cus Marine Service, 2024). Such product systematically cor-
rects ECMWF ERA5 model fields using scatterometer ob-
servations to reduce persistent biases and includes uncer-
tainty estimates. Furthermore, the L3 scatterometer products
available through CMEMS, which contain the spatial deriva-
tives of the wind vector fields (vorticity and divergence), of-
fer a more direct characterization of the dynamical core of
mesoscale systems. These observed fields hold significant
potential for refining objective identification criteria, moving
beyond a reliance on wind speed thresholds alone. Due to
the low resolution of AVHRR infrared images at scan edges,

a significant portion of VCI images appear blurred. However,
these images are retained as long as cyclonic features remain
recognizable, prioritizing the preservation of high temporal
resolution for cyclone track records. Additionally, while the
YOLOv8-obb-pose model facilitates detection and feature
extraction of cyclonic cloud characteristics in VCI images,
the process still involves subjective steps to ensure continuity
in cyclone features (e.g., size, type, and position). This im-
plies that objective methods for constructing multi-parameter
PMC track datasets remain underdeveloped. Consequently,
cyclone-evolution-aware deep-learning tracking algorithms
could further enhance the efficiency of track construction.

5 Code and data availability

The IMPMCT dataset described in this paper is
freely accessible on Zenodo via the following link:
https://doi.org/10.5281/zenodo.17142448 (Fang and Ding,
2025), accompanied by comprehensive documentation.
The YOLOv8-obb-pose model weights for detecting PMC
cloud features, along with the test set, are open-sourced
and available at: https://doi.org/10.5281/zenodo.15119534
(Fang, 2025b). All code is developed in Python and stored
at: https://doi.org/10.5281/zenodo.17498230 (Fang, 2025a).

6 Conclusions

The Integrated Multi-source Polar Mesoscale Cyclone Track
(IMPMCT) dataset represents a major advancement in
the study of polar mesoscale cyclonic systems. By inte-
grating ERA5 reanalysis, AVHRR infrared imagery, and
QuikSCAT/ASCAT wind data, this dataset provides a com-
prehensive record of 1110 vortex tracks, 16 001 cyclonic
cloud features, and 4472 wind speed observations across the
Nordic Seas (2001–2024). This integrated approach over-
comes key limitations of previous single-source datasets by
enhancing detection sensitivity for weaker polar mesoscale

Earth Syst. Sci. Data, 17, 6049–6069, 2025 https://doi.org/10.5194/essd-17-6049-2025

https://doi.org/10.5281/zenodo.17142448
https://doi.org/10.5281/zenodo.15119534
https://doi.org/10.5281/zenodo.17498230


R. Fang et al.: IMPMCT 6067

cyclones (PMCs), capturing complete lifecycle evolution
from genesis to dissipation, and providing simultaneous
cloud morphology and wind fields observations. Rigor-
ous validation against established datasets (Stoll, 2022 and
Rojo et al., 2019) confirms IMPMCT’s accuracy, demon-
strating 90 % spatial consistency with track points cy-
clone centers alignments within 50 km (60 km for cyclone
centers) and minimal parameter discrepancies including a
1.11× 10−5 s−1 mean absolute difference in relative vortic-
ity and 0.43 hPa mean absolute difference in sea-level pres-
sure.

The IMPMCT dataset serves as a critical benchmark for
evaluating high-latitude numerical weather prediction model
performance, while simultaneously functioning as a unique
case library for comparative studies of PLs and PMCs con-
cerning their formation mechanisms, intensity thresholds,
and sea-ice interaction dynamics. Furthermore, it constitutes
an essential resource for enhancing polar maritime hazard
forecasting. The repository of cyclone cloud morphology fa-
cilitates automated identification of model-undetected sys-
tems. This is enabled by advanced deep learning frameworks,
enabling systematic evaluation of model representation fi-
delity for PLs/PMCs.

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/essd-17-6049-2025-supplement.
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