Articles | Volume 17, issue 11
https://doi.org/10.5194/essd-17-5951-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-5951-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A global GNSS climate data record from 5085 stations spanning up to 22 years
Xiaoming Wang
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
University of Chinese Academy of Sciences, Beijing 100049, China
RMIT University, Melbourne, VIC 3001, Australia
Suelynn Choy
RMIT University, Melbourne, VIC 3001, Australia
Qiuying Huang
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
Wenhui Cai
RMIT University, Melbourne, VIC 3001, Australia
Anthony Rea
RMIT University, Melbourne, VIC 3001, Australia
Hongxin Zhang
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
Luis Elneser
RMIT University, Melbourne, VIC 3001, Australia
Yuriy Kuleshov
Bureau of Meteorology, Melbourne, VIC 3008, Australia
Related authors
Longjiang Li, Suqin Wu, Kefei Zhang, Xiaoming Wang, Wang Li, Zhen Shen, Dantong Zhu, Qimin He, and Moufeng Wan
Atmos. Meas. Tech., 14, 6379–6394, https://doi.org/10.5194/amt-14-6379-2021, https://doi.org/10.5194/amt-14-6379-2021, 2021
Short summary
Short summary
The zenith hydrostatic delay (ZHD) derived from blind models are of low accuracy, especially in mid- and high-latitude regions. To address this issue, the ratio of the ZHD to zenith total delay (ZTD) is firstly investigated; then, based on the relationship between the ZHD and ZTD, a new ZHD model was developed using the back propagation artificial neural network (BP-ANN) method which took the ZTD as an input variable. The model outperforms blind models.
Isabella Aitkenhead, Yuriy Kuleshov, Jessica Bhardwaj, Zhi-Weng Chua, Chayn Sun, and Suelynn Choy
Nat. Hazards Earth Syst. Sci., 23, 553–586, https://doi.org/10.5194/nhess-23-553-2023, https://doi.org/10.5194/nhess-23-553-2023, 2023
Short summary
Short summary
A case study assessing drought risk in Papua New Guinea (PNG) provinces for retrospective years (2014–2020) was conducted to demonstrate the development and validate the application of a tailored and semi-dynamic drought risk assessment methodology. Hazard, vulnerability, and exposure indicators appropriate for monitoring drought in PNG provinces were selected. The risk assessment accurately indicated a strong drought event in 2015–2016 and a moderate event in 2019.
Q. (C.) Sun, S. Das, K. Wang, Y. Tao, M. Amati, J. Hurley, S. Choy, and M. Duckham
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W5-2022, 175–182, https://doi.org/10.5194/isprs-archives-XLVIII-4-W5-2022-175-2022, https://doi.org/10.5194/isprs-archives-XLVIII-4-W5-2022-175-2022, 2022
Cameron Do and Yuriy Kuleshov
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-139, https://doi.org/10.5194/nhess-2022-139, 2022
Preprint withdrawn
Short summary
Short summary
Tropical cyclone (TC) risk over Australia was assessed focusing on the impacts on population and infrastructure from hazards of wind, storm surge, flooding and landslides. The risk posed by all hazards was highest for coastal areas of east, north and north-west of Australia, with flood and landslide hazards also affecting several inland areas. The resulting maps of risk will provide decision-makers with the information needed to further reduce TC risk, save lives, and reduce economic losses.
Longjiang Li, Suqin Wu, Kefei Zhang, Xiaoming Wang, Wang Li, Zhen Shen, Dantong Zhu, Qimin He, and Moufeng Wan
Atmos. Meas. Tech., 14, 6379–6394, https://doi.org/10.5194/amt-14-6379-2021, https://doi.org/10.5194/amt-14-6379-2021, 2021
Short summary
Short summary
The zenith hydrostatic delay (ZHD) derived from blind models are of low accuracy, especially in mid- and high-latitude regions. To address this issue, the ratio of the ZHD to zenith total delay (ZTD) is firstly investigated; then, based on the relationship between the ZHD and ZTD, a new ZHD model was developed using the back propagation artificial neural network (BP-ANN) method which took the ZTD as an input variable. The model outperforms blind models.
S. Choy, Y. B. Bai, S. Zlatanova, A. Diakite, E. Rubinov, C. Marshall, P. Knight, A. Riddell, V. Rooke, M. Woolf, N. Kishi, and S. Kogure
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIV-3-W1-2020, 21–28, https://doi.org/10.5194/isprs-archives-XLIV-3-W1-2020-21-2020, https://doi.org/10.5194/isprs-archives-XLIV-3-W1-2020-21-2020, 2020
C. Sun, S. Choy, Z. Chua, I. Aitkenhead, and Y. Kuleshov
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIV-3-W1-2020, 139–144, https://doi.org/10.5194/isprs-archives-XLIV-3-W1-2020-139-2020, https://doi.org/10.5194/isprs-archives-XLIV-3-W1-2020-139-2020, 2020
Cited articles
Abatzoglou, J. T., Rupp, D. E., O'Neill, L. W., and Sadegh, M.: Compound extremes drive the Western Oregon wildfires of September 2020, Geophys. Res. Lett., 48, e2021GL092520, https://doi.org/10.1029/2021GL092520, 2021.
Arguez, A. and Vose, R. S.: The definition of the standard WMO climate normal: The key to deriving alternative climate normals, B. Am. Meteorol. Soc., 92, 699–704, https://doi.org/10.1175/2010BAMS2955.1, 2011.
Asian Disaster Reduction Centre: Sendai Framework for Disaster Risk Reduction 2015–2030, United Nations Office for Disaster Risk Reduction, Geneva, Switzerland, https://www.undrr.org/publication/sendai-framework-disaster-risk-reduction-2015-2030 (last access: 23 August 2024), 2015.
Bai, J., Lou, Y., Zhang, W., Zhou, Y., Zhang, Z., Shi, C., and Liu, J.: Impact analysis of processing strategies for long-term GPS zenith tropospheric delay (ZTD), Atmos. Meas. Tech., 16, 5249–5259, https://doi.org/10.5194/amt-16-5249-2023, 2023.
Behrend, D., Cucurull, L., Vilà, J., and Haas, R.: An inter-comparison study to estimate zenith wet delays using VLBI, GPS, and NWP models, Earth Planets Space, 52, 691–694, https://doi.org/10.1186/BF03352265, 2014.
Benevides, P., Catalao, J., and Nico, G.: Neural network approach to forecast hourly intense rainfall using GNSS precipitable water vapor and meteorological sensors, Remote Sens., 11, 966, https://doi.org/10.3390/rs11080966, 2019.
Benjamin, S. G., Dévényi, D., Weygandt, S. S., Brundage, K. J., Brown, J. M., Grell, G. A., Kim, D., Schwartz, B. E., Smirnova, T. G., Smith, T. L., and Manikin, G. S.: An hourly assimilation-forecast vycle: The RUC, Mon. Weather Rev., 132, 495–518, https://doi.org/10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2, 2004.
Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., and Ware, R. H.: GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system, J. Geophys. Res., 97, 15787–15801, https://doi.org/10.1029/92JD01517, 1992.
Blunden, J. and Boyer, T.: State of the climate in 2020, B. Am. Meteorol. Soc., 102, S1–S475, https://doi.org/10.1175/2021BAMSStateoftheClimate.1, 2021.
Bock, O.: Standardization of ZTD screening and IWV conversion, in: Advanced GNSS Tropospheric Products for Monitoring SevereWeather Events and Climate: COST Action ES1206 Final Action Dissemination Report, chap. 5, edited by: Jones, J., Guerova, G., Douša, J., Dick, G., de Haan, S., Pottiaux, E., Bock, O., Pacione, R., and van Malderen, R., Springer International Publishing, 314–324, https://doi.org/10.1007/978-3-030-13901-8_5, 2020.
Bock, O. and Parracho, A. C.: Consistency and representativeness of integrated water vapour from ground-based GPS observations and ERA-Interim reanalysis, Atmos. Chem. Phys., 19, 9453–9468, https://doi.org/10.5194/acp-19-9453-2019, 2019.
Bock, O., Guichard, F., Janicot, S., Lafore, J. P., Bouin, M. N., and Sultan, B.: Multiscale analysis of precipitable water vapor over Africa from GPS data and ECMWF analyses, Geophys. Res. Lett., 34, 2006GL028039, https://doi.org/10.1029/2006GL028039, 2007.
Bock, O., Willis, P., Wang, J., and Mears, C.: A high-quality, homogenized, global, long-term (1993–2008) DORIS precipitable water data set for climate monitoring and model verification, J. Geophys. Res.-Atmos., 119, 7209–7230, https://doi.org/10.1002/2013JD021124, 2014.
Bock, O., Bosser, P., and Mears, C.: An improved vertical correction method for the inter-comparison and inter-validation of integrated water vapour measurements, Atmos. Meas. Tech., 15, 5643–5665, https://doi.org/10.5194/amt-15-5643-2022, 2022.
Boehm, J., Werl, B., and Schuh, H.: Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data, J. Geophys. Res., 111, 2005JB003629, https://doi.org/10.1029/2005JB003629, 2006.
Bojinski, S., Verstraete, M., Peterson, T. C., Richter, C., Simmons, A., and Zemp, M.: The concept of essential climate variables in support of climate research, applications, and policy, B. Am. Meteorol. Soc., 95, 1431–1443, https://doi.org/10.1175/BAMS-D-13-00047.1, 2014.
Bond, N. A., Cronin, M. F., Freeland, H., and Mantua, N.: Causes and impacts of the 2014 warm anomaly in the NE Pacific, Geophys. Res. Lett., 42, 3414–3420, https://doi.org/10.1002/2015GL063306, 2015.
Brettle, M. J. and Galvin, J. F. P.: Back to basics: Radiosondes: Part 1 – The instrument, Weather, 58, 336–341, https://doi.org/10.1256/wea.126.02A, 2003.
Buehler, S. A., Kuvatov, M., John, V. O., Milz, M., Soden, B. J., Jackson, D. L., and Notholt, J.: An upper tropospheric humidity data set from operational satellite microwave data, J. Geophys. Res., 113, 2007JD009314, https://doi.org/10.1029/2007JD009314, 2008.
Buehler, S. A., Östman, S., Melsheimer, C., Holl, G., Eliasson, S., John, V. O., Blumenstock, T., Hase, F., Elgered, G., Raffalski, U., Nasuno, T., Satoh, M., Milz, M., and Mendrok, J.: A multi-instrument comparison of integrated water vapour measurements at a high latitude site, Atmos. Chem. Phys., 12, 10925–10943, https://doi.org/10.5194/acp-12-10925-2012, 2012.
Byram, S.: IGS Final Troposphere Product Update. United States Naval Observatory (USNO), Washington, D.C., USA, https://files.igs.org/pub/resource/pubs/workshop/2017/W2017-PS04-03 - Byram.pdf (last access: 13 February 2025), 2017.
Byram, S., Hackman, C., and Tracey, J.: Computation of a high-precision GPS-based troposphere product by the USNO, in: Proceedings of the 24th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2011), 572–578, https://www.ion.org/publications/abstract.cfm?articleID=9618 (last access: 13 February 2025), 2011.
Caussinus, H. and Mestre, O.: Detection and correction of artificial shifts in climate series, J. Roy. Stat. Soc. Ser. C, 53, 405–425, https://doi.org/10.1111/j.1467-9876.2004.05155.x, 2004.
Chen, B., Yu, W., Wang, W., Zhang, Z., and Dai, W.: A global assessment of precipitable water vapor derived from GNSS zenith tropospheric delays with ERA5, NCEP FNL, and NCEP GFS products, Earth Space Sci., 8, e2021EA001796, https://doi.org/10.1029/2021EA001796, 2021.
Chen, G. and Herring, T. A.: Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data, J. Geophys. Res., 102, 20489–20502, https://doi.org/10.1029/97JB01739, 1997.
Choy, S., Zhang, K., Wang, C. S., Li, Y., and Kuleshov, Y.: Remote sensing of the Earth's lower atmosphere during severe weather events using GPS technology: A study in Victoria, Australia, in: Proceedings of the 24th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2011), Oregon Convention Center, Portland, OR, USA, 559–571, https://www.ion.org/publications/abstract.cfm?articleID=9617 (last access: 28 October 2024), 2011.
Choy, S., Wang, C.-S., Yeh, T.-K., Dawson, J., Jia, M., and Kuleshov, Y.: Precipitable water vapor estimates in the Australian region from ground-based GPS observations, Adv. Meteorol., 2015, 1–14, https://doi.org/10.1155/2015/956481, 2015.
Coldewey-Egbers, M., Loyola, D. G., Lerot, C., and Van Roozendael, M.: Global, regional and seasonal analysis of total ozone trends derived from the 1995–2020 GTO-ECV climate data record, Atmos. Chem. Phys., 22, 6861–6878, https://doi.org/10.5194/acp-22-6861-2022, 2022.
Dach, R., Lutz, S., Walser, P., and Fridez, P.: Bernese GNSS software version 5.2, Astronomical Institute, University of Bern, 858, https://doi.org/10.7892/boris.72297, 2015.
Dach, R., Selmke, I., Villiger, A., Arnold, D., Prange, L., Schaer, S., Sidorov, D., Stebler, P., Jäggi, A., and Hugentobler, U.: Review of recent GNSS modelling improvements based on CODEs Repro3 contribution, Adv. Space Res., 68, 1263–1280, https://doi.org/10.1016/j.asr.2021.04.046, 2021.
Desai, S. D. and Sibois, A. E.: Evaluating predicted diurnal and semidiurnal tidal variations in polar motion with GPS-based observations, J. Geophys. Res.-Solid, 121, 5237–5256, https://doi.org/10.1002/2016JB013125, 2016.
Dessler, A. E., Zhang, Z., and Yang, P.: Water vapor climate feedback inferred from climate fluctuations, 2003–2008, Geophys. Res. Lett., 35, 2008GL035333, https://doi.org/10.1029/2008GL035333, 2008.
Di Lorenzo, E. and Mantua, N.: Multi-year persistence of the 2014/15 North Pacific marine heatwave, Nat. Clim. Change, 6, 1042–1047, https://doi.org/10.1038/nclimate3082, 2016.
Dousa, J., Vaclavovic, P., and Elias, M.: Tropospheric products of the second GOP European GNSS reprocessing (1996–2014), Atmos. Meas. Tech., 10, 3589–3607, https://doi.org/10.5194/amt-10-3589-2017, 2017.
Duan, J., Bevis, M., Fang, P., Bock, Y., Chiswell, S., Businger, S., Rocken, C., Solheim, F., Van Hove, T., Ware, R., McClusky, S., Herring, T. A., and King, R. W.: GPS meteorology: Direct estimation of the absolute value of precipitable water, J. Appl. Meteorol., 35, 830–838, https://doi.org/10.1175/1520-0450(1996)035<0830:GMDEOT>2.0.CO;2, 1996.
Duine, G. J., Carvalho, L. M. V., and Jones, C.: Mesoscale patterns associated with two distinct heatwave events in coastal Santa Barbara, California, and their impact on local fire risk conditions, Weather Clim. Ext., 37, 100482, https://doi.org/10.1016/j.wace.2022.100482, 2022.
Durre, I., Vose, R. S., and Wuertz, D. B.: Overview of the Integrated Global Radiosonde Archive, J. Climate, 19, 53–68, https://doi.org/10.1175/JCLI3594.1, 2006.
Durre, I., Xungang, Y., Vose, R. S., Applequist, S., and Arnfield, J.: Integrated Global Radiosonde Archive (IGRA) Version 2, NOAA National Centers for Environmental Information, https://doi.org/10.7289/V5X63K0Q, 2016.
Elgered, G., Davis, J. L., Herring, T. A., and Shapiro, I. I.: Geodesy by radio interferometry: Water vapor radiometry for estimation of the wet delay, J. Geophys. Res., 96, 6541–6555, https://doi.org/10.1029/90JB00834, 1991.
Elliott, W. P.: On detecting long-term changes in atmospheric moisture, Climatic Change, 31, 349–367, https://doi.org/10.1007/BF01095152, 1995.
England, M. N., Schmidlin, F. J., and Johansson, J. M.: Atmospheric moisture measurements: A microwave radiometer-radiosonde comparison, IEEE T. Geosci. Remote, 31, 389–398, https://doi.org/10.1109/36.214915, 1993.
EPN: Minutes of the EPN Analysis Centres Workshop, https://www.epncb.oma.be/_newseventslinks/workshops/EPNLACWS_2022/ (last access: 17 March 2025), 2022.
Foster, J., Bevis, M., Schroeder, T., Merrifield, M., Businger, S., Dorn, S., Marcus, S., Dickey, J., and Bar-Sever, Y.: El Niño, water vapor, and the global positioning system, Geophys. Res. Lett., 27, 2697–2700, https://doi.org/10.1029/2000GL011429, 2000.
Gradinarsky, L. P., Johansson, J. M., Bouma, H. R., Scherneck, H. G., and Elgered, G.: Climate monitoring using GPS, Phys. Chem. Earth Pt. A/B/C, 27, 335–340, https://doi.org/10.1016/S1474-7065(02)00009-8, 2002.
Guerova, G., Jones, J., Douša, J., Dick, G., De Haan, S., Pottiaux, E., Bock, O., Pacione, R., Elgered, G., Vedel, H., and Bender, M.: Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe, Atmos. Meas. Tech., 9, 5385–5406, https://doi.org/10.5194/amt-9-5385-2016, 2016.
Gui, K., Che, H., Chen, Q., Zeng, Z., Liu, H., Wang, Y., Zheng, Y., Sun, T., Liao, T., Wang, H., and Zhang, X.: Evaluation of radiosonde, MODIS-NIR-Clear, and AERONET precipitable water vapor using IGS ground-based GPS measurements over China, Atmos. Res., 197, 461–473, https://doi.org/10.1016/j.atmosres.2017.07.021, 2017.
Haase, J., Ge, M., Vedel, H., and Calais, E.: Accuracy and Variability of GPS Tropospheric Delay Measurements of Water Vapor in the Western Mediterranean, J. Appl. Meteorol., 42, 1547–1568, https://doi.org/10.1175/1520-0450(2003)042<1547:AAVOGT>2.0.CO;2, 2003.
Hagemann, S., Bengtsson, L., and Gendt, G.: On the determination of atmospheric water vapor from GPS measurements, J. Geophys. Res., 108, 2002JD003235, https://doi.org/10.1029/2002JD003235, 2003.
Heinkelmann, R., Willis, P., Deng, Z., Dick, G., Nilsson, T., Soja, B., Zus, F., Wickert, J., and Schuh, H.: Multi-technique comparison of atmospheric parameters at the DORIS co-location sites during CONT14, Adv. Space Res., 58, 2758–2773, https://doi.org/10.1016/j.asr.2016.09.023, 2016.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Huang, X., Ding, K., Liu, J., Wang, Z., Tang, R., Xue, L., Wang, H., Zhang, Q., Tan, Z., Fu, C., Davis, S. J., Andreae, M. O., and Ding, A.: Smoke-weather interaction affects extreme wildfires in diverse coastal regions, Science, 379, 457–461, https://doi.org/10.1126/science.add9843, 2023.
IPCC: Climate Change 2023: Synthesis Report, Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Lee, H. and Romero, J. (Core Writing Team), IPCC, Geneva, Switzerland, 184 pp., https://doi.org/10.59327/IPCC/AR6-9789291691647, 2023.
Jiang, W., Yuan, P., Chen, H., Cai, J., Li, Z., Chao, N., and Sneeuw, N.: Annual variations of monsoon and drought detected by GPS: A case study in Yunnan, China, Sci. Rep., 7, 5874, https://doi.org/10.1038/s41598-017-06095-1, 2017.
Jin, S. and Luo, O.: Variability and climatology of PWV from global 13-year GPS observations, IEEE Trans. Geosci. Remote, 47, 1918–1924, https://doi.org/10.1109/TGRS.2008.2010401, 2009.
Jin, S., Park, J., Cho, J., and Park, P.: Seasonal variability of GPS-derived zenith tropospheric delay (1994–2006) and climate implications, J. Geophys. Res., 112, 2006JD007772, https://doi.org/10.1029/2006JD007772, 2007.
John, V. O. and Soden, B. J.: Temperature and humidity biases in global climate models and their impact on climate feedbacks, Geophys. Res. Lett., 34, 2007GL030429, https://doi.org/10.1029/2007GL030429, 2007.
Jones, J., Guerova, G., Douša, J., Dick, G., De Haan, S., Pottiaux, E., Bock, O., Pacione, R., and Van Malderen, R.: Advanced GNSS tropospheric products for monitoring severe weather events and climate: COST Action ES1206 Final Action Dissemination report, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-030-13901-8, 2020.
Khorshidi, M. S., Dennison, P. E., Nikoo, M. R., AghaKouchak, A., Luce, C. H., and Sadegh, M.: Increasing concurrence of wildfire drivers tripled megafire critical danger days in Southern California between 1982 and 2018, Environ. Res. Lett., 15, 104002, https://doi.org/10.1088/1748-9326/abae9e, 2020.
Kwon, H. T., Iwabuchi, T., and Lim, G. H.: Comparison of precipitable water derived from ground-based GPS measurements with radiosonde observations over the Korean Peninsula, J. Meteorol. Soc. Jpn., 85, 733–746, https://doi.org/10.2151/jmsj.85.733, 2007.
Labbouz, L., Van Baelen, J., and Duroure, C.: Investigation of the links between water vapor field evolution and rain rate based on 5 years of measurements at a midlatitude site, Geophys. Res. Lett., 42, 9538–9545, https://doi.org/10.1002/2015GL066048, 2015.
Labib, B., Yan, J., Barriot, J.-P., Zhang, F., and Feng, P.: Monitoring zenith total delays over the three different climatic zones from IGS GPS final products: A comparison between the use of the VMF1 and GMF mapping functions, Geod. Geodyn., 10, 93–99, https://doi.org/10.1016/j.geog.2018.11.005, 2019.
L'Heureux, M. L., Takahashi, K., Watkins, A. B., Barnston, A. G., Becker, E. J., Di Liberto, T. E., Gamble, F., Gottschalck, J., Halpert, M. S., Huang, B., Mosquera-Vásquez, K., and Wittenberg, A. T.: Observing and predicting the 2015/16 El Niño, B. Am. Meteorol. Soc., 98, 1363–1382, https://doi.org/10.1175/BAMS-D-16-0009.1, 2017.
Li, H., Wang, X., Wu, S., Zhang, K., Chen, X., Qiu, C., Zhang, S., Zhang, J., Xie, M., and Li, L.: Development of an improved model for prediction of short-term heavy precipitation based on GNSS-derived PWV, Remote Sens., 12, 4101, https://doi.org/10.3390/rs12244101, 2020.
Li, H., Jiang, C., Choy, S., Wang, X., Zhang, K., and Zhu, D.: A comprehensive study on factors affecting the calibration of potential evapotranspiration derived from the Thornthwaite model, Remote Sens., 14, 4644, https://doi.org/10.3390/rs14184644, 2022a.
Li, H., Wang, X., Choy, S., Wu, S., Jiang, C., Zhang, J., Qiu, C., Li, L., and Zhang, K.: A new cumulative anomaly-based model for the detection of heavy precipitation using GNSS-derived tropospheric products, IEEE T. Geosci. Remote, 60, 1–18, https://doi.org/10.1109/TGRS.2021.3137014, 2022b.
Li, H., Wang, X., Choy, S., Jiang, C., Wu, S., Zhang, J., Qiu, C., Zhou, K., Li, L., Fu, E., and Zhang, K.: Detecting heavy rainfall using anomaly-based percentile thresholds of predictors derived from GNSS-PWV, Atmos. Res., 265, 105912, https://doi.org/10.1016/j.atmosres.2021.105912, 2022c.
Li, H., Choy, S., Wang, X., Zhang, K., Jiang, C., Li, L., Liu, X., Hu, A., Wu, S., and Zhu, D.: Estimation of diurnal-provided potential evapotranspiration using GNSS and meteorological products, Atmos. Res., 280, 106424, https://doi.org/10.1016/j.atmosres.2022.106424, 2022d.
Li, H., Choy, S., Zaminpardaz, S., Carter, B., Sun, C., Purwar, S., Liang, H., Li, L., and Wang, X.: Investigating the inter-relationships among multiple atmospheric variables and their responses to precipitation, Atmosphere, 14, 571, https://doi.org/10.3390/atmos14030571, 2023a.
Li, H., Choy, S., Wang, X., Liang, H., Purwar, S., and Zhang, K.: Investigating the optimal spatial resolution for assimilating GNSS PWV into an NWP system to improve the accuracy of humidity field, IEEE J. Select. Top. Appl. Earth Obs. Remote Sens., 1–14, https://doi.org/10.1109/JSTARS.2023.3298489, 2023b.
Li, H., Choy, S., Wang, X., Liang, H., and Zhang, K.: Monitoring the migration of water vapor using ground-based GNSS tropospheric products, IEEE Geosci. Remote Sens. Lett., 20, 1–5, https://doi.org/10.1109/LGRS.2023.3282362, 2023c.
Li, H., Choy, S., Zaminpardaz, S., Wang, X., Liang, H., and Zhang, K.: Flash drought monitoring using diurnal-provided evaporative demand drought index, J. Hydrol., 633, 130961, https://doi.org/10.1016/j.jhydrol.2024.130961, 2024.
Li, Z., Muller, J., and Cross, P.: Comparison of precipitable water vapor derived from radiosonde, GPS, and moderate-resolution imaging spectroradiometer measurements, J. Geophys. Res., 108, 2003JD003372, https://doi.org/10.1029/2003JD003372, 2003.
Liu, Z., Wong, M. S., Nichol, J., and Chan, P. W.: A multi-sensor study of water vapour from radiosonde, MODIS and AERONET: a case study of Hong Kong, Int. J. Climatol., 33, 109–120, https://doi.org/10.1002/joc.3412, 2013.
Lonitz, K. and Geer, A. J.: Effect of assimilating microwave imager observations in the presence of a model bias in marine stratocumulus, ResearchGate, https://doi.org/10.13140/RG.2.2.24624.97282, 2017.
Lyard, F., Lefevre, F., Letellier, T., and Francis, O.: Modelling the global ocean tides: modern insights from FES2004, Ocean Dynam., 56, 394–415, https://doi.org/10.1007/s10236-006-0086-x, 2006
Ma, X., Yao, Y., and Zhao, Q.: Regional GNSS-derived SPCI: Verification and improvement in Yunnan, China, Remote Sens., 13, 1918, https://doi.org/10.3390/rs13101918, 2021.
Manandhar, S., Dev, S., Lee, Y. H., Meng, Y. S., and Winkler, S.: A data-driven approach for accurate rainfall prediction, IEEE T. Geosci. Remote, 57, 9323–9331, https://doi.org/10.1109/TGRS.2019.2926110, 2019.
Masson-Delmotte, V., Zhai, P., Pirani, S., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M., and Scheel Monteiro, P. M.: IPCC, 2021: Summary for policymakers, in: Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, USA, https://doi.org/10.1017/9781009157896.001, 2021.
Menne, M. J. and Williams Jr., C. N.: Homogenization of temperature series via pairwise comparisons, J. Climate, 22, 1700–1717, https://doi.org/10.1175/2008jcli2263.1, 2009.
Mo, Z., Zeng, Z., Huang, L., Liu, L., Huang, L., Zhou, L., Ren, C., and He, H.: Investigation of Antarctic precipitable water vapor variability and trend from 18 year (2001 to 2018) data of four reanalyses based on radiosonde and GNSS observations, Remote Sens., 13, 3901, https://doi.org/10.3390/rs13193901, 2021.
Morland, J., Collaud Coen, M., Hocke, K., Jeannet, P., and Mätzler, C.: Tropospheric water vapour above Switzerland over the last 12 years, Atmos. Chem. Phys., 9, 5975–5988, https://doi.org/10.5194/acp-9-5975-2009, 2009.
Negusini, M., Petkov, B. H., Tornatore, V., Barindelli, S., Martelli, L., Sarti, P., and Tomasi, C.: Water vapour assessment using GNSS and radiosondes over Polar regions and estimation of climatological trends from long-term time series analysis, Remote Sens., 13, 4871, https://doi.org/10.3390/rs13234871, 2021.
Nguyen, K. N., Quarello, A., Bock, O., and Lebarbier, E.: Sensitivity of change-point detection and trend estimates to GNSS IWV time series properties, Atmosphere, 12, 1102, https://doi.org/10.3390/atmos12091102, 2021.
Nguyen, K. N., Bock, O., and Lebarbier, E.: A statistical method for the attribution of change-points in segmented Integrated Water Vapor difference time series, Int. J. Climatol., 44, 2069–2086, https://doi.org/10.1002/joc.8441, 2024.
Nguyen, K. N., Bock, O., and Lebarbier, E.: PMLseg: a R package for the segmentation of univariate time series based on Penalized Maximum Likelihood, Github [code], https://github.com/khanhninhnguyen/PMLSeg/tree/main (last access: 18 September 2025), 2025.
Niell, A. E., Coster, A. J., Solheim, F. S., Mendes, V. B., Toor, P. C., Langley, R. B., and Upham, C. A.: Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBI, J. Atmos. Ocean. Tech., 18, 830–850, https://doi.org/10.1175/1520-0426(2001)018<0830:COMOAW>2.0.CO;2, 2001.
Nilsson, T. and Elgered, G.: Long-term trends in the atmospheric water vapor content estimated from ground-based GPS data, J. Geophys. Res., 113, 2008JD010110, https://doi.org/10.1029/2008JD010110, 2008.
Ning, T., Haas, R., Elgered, G., and Willén, U.: Multi-technique comparisons of 10 years of wet delay estimates on the west coast of Sweden, J Geod., 86, 565–575, https://doi.org/10.1007/s00190-011-0527-2, 2012.
Ning, T., Elgered, G., Willén, U., and Johansson, J. M.: Evaluation of the atmospheric water vapor content in a regional climate model using ground-based GPS measurements, J. Geophys. Res.-Atmos., 118, 329–339, https://doi.org/10.1029/2012JD018053, 2013.
Ning, T., Wickert, J., Deng, Z., Heise, S., Dick, G., Vey, S., and Schöne, T.: Homogenized time series of the atmospheric water vapor content obtained from the GNSS reprocessed data, J. Climate, 29, 2443–2456, https://doi.org/10.1175/JCLI-D-15-0158.1, 2016.
NOAA: US standard atmosphere, National Oceanic and Atmospheric Administration, https://www.ngdc.noaa.gov/stp/space-weather/online-publications/miscellaneous/us-standard-atmosphere-1976/us-standard-atmosphere_st76-1562_noaa.pdf (last access: 13 May 2024), 1976.
Nyeki, S., Vuilleumier, L., Morland, J., Bokoye, A., Viatte, P., Mätzler, C., and Kämpfer, N.: A 10-year integrated atmospheric water vapor record using precision filter radiometers at two high-alpine sites, Geophys. Res. Lett., 32, 2005GL024079, https://doi.org/10.1029/2005GL024079, 2005.
Offiler, D., Jones, J., Bennit, G., and Vedel, H.: EIG EUMETNET GNSS Water Vapour Programme (E-GVAP-II). Product Requirements Document, MetOffice, http://egvap.dmi.dk/support/formats/egvap_prd_v10.pdf (last access: 13 September 2025), 2010.
O'Gorman, P. A. and Muller, C. J.: How closely do changes in surface and column water vapor follow Clausius-Clapeyron scaling in climate change simulations?, Environ. Res. Lett., 5, 025207, https://doi.org/10.1088/1748-9326/5/2/025207, 2010.
Pacione, R., Pace, B., Vedel, H., De Haan, S., Lanotte, R., and Vespe, F.: Combination methods of tropospheric time series, Adv. Space Res., 47, 323–335, https://doi.org/10.1016/j.asr.2010.07.021, 2011.
Pacione, R., Araszkiewicz, A., Brockmann, E., and Dousa, J.: EPN-Repro2: A reference GNSS tropospheric data set over Europe, Atmos. Meas. Tech., 10, 1689–1705, https://doi.org/10.5194/amt-10-1689-2017, 2017.
Park, C. G., Roh, K. M., and Cho, J. H.: Radiosonde sensors bias in precipitable water vapor from comparisons with global positioning system measurements, J. Astron. Space Sci., 29, 295–303, https://doi.org/10.5140/JASS.2012.29.3.295, 2012.
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K.: The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), J. Geophys. Res.-Solid, 117, https://doi.org/10.1029/2011JB008916, 2012.
Peterson, W., Robert, M., and Bond, N.: The warm blob-conditions in the northeastern Pacific Ocean, PICES Press, 36–38, https://dev.pices.int/publications/pices-press/volume23/issue1/PPJanuary2015.pdf (last access: 12 March 2025), 2015.
Petit, G. and Luzum, B.: IERS conventions, in: IERS technical note, International Earth Rotation and Reference Systems Service, 179 pp., https://iers-conventions.obspm.fr/content/tn36.pdf (last access: 19 September 2025), 2010.
Pollet, A., Coulot, D., Bock, O., and Nahmani, S.: Comparison of individual and combined zenith tropospheric delay estimations during CONT08 campaign, J. Geod., 88, 1095–1112, https://doi.org/10.1007/s00190-014-0745-5, 2014.
Puente, V., Azcue, E., Gomez-Espada, Y., and Garcia-Espada, S.: Comparison of common VLBI and GNSS estimates in CONT17 campaign, J. Geod., 95, 120, https://doi.org/10.1007/s00190-021-01565-x, 2021.
Quarello, A., Bock, O., and Lebarbier, E.: GNSSseg, a statistical method for the segmentation of daily GNSS IWV time series, Remote Sens., 14, 3379, https://doi.org/10.3390/rs14143379, 2022.
Rocken, C., Ware, R., Van Hove, T., Solheim, F., Alber, C., Johnson, J., Bevis, M., and Businger, S.: Sensing atmospheric water vapor with the global positioning system, Geophys. Res. Lett., 20, 2631–2634, https://doi.org/10.1029/93GL02935, 1993.
Rocken, C., Hove, T. V., Johnson, J., Solheim, F., Ware, R., Bevis, M., Chiswell, S., and Businger, S.: GPS/STORM-GPS sensing of atmospheric water vapor for meteorology, J. Atmos. Ocean. Tech., 12, 468–478, https://doi.org/10.1175/1520-0426(1995)012<0468:GSOAWV>2.0.CO;2, 1995.
Rohm, W., Guzikowski, J., Wilgan, K., and Kryza, M.: 4DVAR assimilation of GNSS zenith path delays and precipitable water into a numerical weather prediction model WRF, Atmos. Meas. Tech., 12, 345–361, https://doi.org/10.5194/amt-12-345-2019, 2019.
Schuh, H., Boehm, J., Engelhardt, G., MacMillan, D., Lanotte, R., Tomasi, P., Negusini, M., Vereshchagina, I., Gubanov, V., and Haas, R.: Determination of tropospheric parameters within the new IVS Pilot Project, in: A window on the future of geodesy, 128, edited by: Sansò, F., Springer-Verlag, Berlin, Heidelberg, 125–130, https://doi.org/10.1007/3-540-27432-4_22, 2005.
Seneviratne, S. I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di Luca, A., Ghosh, S., Iskandar, I., Kossin, J., Lewis, S., Otto, F., Pinto, I., Satoh, M., Vicente-Serrano, S. M., Wehner, M., and Zhou, B: Weather and climate extreme events in a changing climate, in: Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, USA, 1513–1766, https://doi.org/10.1017/9781009157896.013, 2021.
Sherwood, S. C., Ingram, W., Tsushima, Y., Satoh, M., Roberts, M., Vidale, P. L., and O'Gorman, P. A.: Relative humidity changes in a warmer climate, J. Geophys. Res., 115, 2009JD012585, https://doi.org/10.1029/2009JD012585, 2010.
Snajdrova, K., Boehm, J., Willis, P., Haas, R., and Schuh, H.: Multi-technique comparison of tropospheric zenith delays derived during the CONT02 campaign, J. Geod., 79, 613–623, https://doi.org/10.1007/s00190-005-0010-z, 2006.
Sohn, D. H. and Cho, J. H.: Trend analysis of GPS precipitable water vapor above South Korea over the last 10 years, J. Astron. Space Sci., 27, 231–238, https://doi.org/10.5140/JASS.2010.27.3.231, 2010.
Solomon, S., Rosenlof, K. H., Portmann, R. W., Daniel, J. S., Davis, S. M., Sanford, T. J., and Plattner, G.-K.: Contributions of stratospheric water vapor to decadal changes in the rate of global warming, Science, 327, 1219–1223, https://doi.org/10.1126/science.1182488, 2010.
Steigenberger, P., Tesmer, V., Krügel, M., Thaller, D., Schmid, R., Vey, S., and Rothacher, M.: Comparisons of homogeneously reprocessed GPS and VLBI long time-series of troposphere zenith delays and gradients, J. Geod., 81, 503–514, https://doi.org/10.1007/s00190-006-0124-y, 2007.
Stepniak, K., Bock, O., and Wielgosz, P.: Reduction of ZTD outliers through improved GNSS data processing and screening strategies, Atmos. Meas. Tech., 11, 1347–1361, https://doi.org/10.5194/amt-11-1347-2018, 2018.
Teke, K., Böhm, J., Nilsson, T., Schuh, H., Steigenberger, P., Dach, R., Heinkelmann, R., Willis, P., Haas, R., García-Espada, S., Hobiger, T., Ichikawa, R., and Shimizu, S.: Multi-technique comparison of troposphere zenith delays and gradients during CONT08, J. Geod., 85, 395–413, https://doi.org/10.1007/s00190-010-0434-y, 2011.
Teke, K., Nilsson, T., Böhm, J., Hobiger, T., Steigenberger, P., García-Espada, S., Haas, R., and Willis, P.: Troposphere delays from space geodetic techniques, water vapor radiometers, and numerical weather models over a series of continuous VLBI campaigns, J. Geod., 87, 981–1001, https://doi.org/10.1007/s00190-013-0662-z, 2013.
Thomas, I., King, M., and Clarke, P.: Tropospheric water vapour over Antarctica from 12 years of globally reprocessed GPS data, in: AGU Fall Meeting Abstracts, G41A-0597, 2008.
Van Malderen, R., Brenot, H., Pottiaux, E., Beirle, S., Hermans, C., De Mazière, M., Wagner, T., De Backer, H., and Bruyninx, C.: A multi-site intercomparison of integrated water vapour observations for climate change analysis, Atmos. Meas. Tech., 7, 2487–2512, https://doi.org/10.5194/amt-7-2487-2014, 2014.
Van Malderen, R., Pottiaux, E., Klos, A., Domonkos, P., Elias, M., Ning, T., Bock, O., Guijarro, J., Alshawaf, F., Hoseini, M., Quarello, A., Lebarbier, E., Chimani, B., Tornatore, V., Zengin Kazancı, S., and Bogusz, J.: Homogenizing GPS integrated water vapor time series: Benchmarking break detection methods on synthetic data sets, Earth Space Sci., 7, e2020EA001121, https://doi.org/10.1029/2020EA001121, 2020.
Vey, S., Dietrich, R., Fritsche, M., Rülke, A., Steigenberger, P., and Rothacher, M.: On the homogeneity and interpretation of precipitable water time series derived from global GPS observations, J. Geophys. Res., 114, 2008JD010415, https://doi.org/10.1029/2008JD010415, 2009.
Voosen, P.: Global temperatures in 2020 tied record highs, Science, 371, 334–335, https://doi.org/10.1126/science.371.6527.334, 2021.
Wang, J. and Zhang, L.: Climate applications of a global, 2-hourly atmospheric precipitable water dataset derived from IGS tropospheric products, J. Geod., 83, 209–217, https://doi.org/10.1007/s00190-008-0238-5, 2009.
Wang, X.: Accounting for Autocorrelation in detecting mean shifts in climate data series using the penalized maximal t or F Test, J. Appl. Meteorol. Clim., 47, 2423–2444, https://doi.org/10.1175/2008JAMC1741.1, 2008.
Wang, X., Wen, Q., and Wu, Y.: Penalized maximal t test for detecting undocumented mean change in climate data series, J. Appl. Meteorol. Clim., 46, 916–931, https://doi.org/10.1175/JAM2504.1, 2007.
Wang, X., Cheng, Y., Wu, S., and Zhang, K.: An effective toolkit for the interpolation and gross error detection of GPS time series, Surv. Rev., 48, 202–211, https://doi.org/10.1179/1752270615Y.0000000023, 2016a.
Wang, X., Cheng, Y., Wu, S., and Zhang, K.: An enhanced singular spectrum analysis method for constructing nonsecular model of GPS site movement, J. Geophys. Res.-Solid, 121, 2193–2211, https://doi.org/10.1002/2015JB012573, 2016b.
Wang, X., Zhang, K., Wu, S., Fan, S., and Cheng, Y.: Water vapor-weighted mean temperature and its impact on the determination of precipitable water vapor and its linear trend, J. Geophys. Res.-Atmos., 121, 833–852, https://doi.org/10.1002/2015JD024181, 2016c.
Wang, X., Zhang, K., Wu, S., He, C., Cheng, Y., and Li, X.: Determination of zenith hydrostatic delay and its impact on GNSS-derived integrated water vapor, Atmos. Meas. Tech., 10, 2807–2820, https://doi.org/10.5194/amt-10-2807-2017, 2017.
Wang, X., Zhang, K., Wu, S., Li, Z., Cheng, Y., Li, L., and Yuan, H.: The correlation between GNSS-derived precipitable water vapor and sea surface temperature and its responses to El Niño–Southern Oscillation, Remote Sens. Environ., 216, 1–12, https://doi.org/10.1016/j.rse.2018.06.029, 2018.
Wang, X., Li, H., Choy, S., Huang, Q., Cai, W., Rea, A., Zhang, H., Elneser, L., and Kuleshov, Y.: A comprehensive 22-year global GNSS climate data record from 5085 stations, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.982476, 2025a.
Wang, X., Li, H., and Choy, S.: GNSS data processing for positioning, atmosphere, and climate research centre, https://www.gnss.studio/Login (last access: 27 September 2025), 2025b.
Westwater, E. R.: The accuracy of water vapor and cloud liquid determination by dual-frequency ground-based microwave radiometry, Radio Sci., 13, 677–685, https://doi.org/10.1175/JAM2504.1, 1978.
WMO: The role of climatological normals in a changing climate, WMO/TD-No. 1377, WCDMP-No. 61, World Meteorological Organization, Geneva, Switzerland, https://library.wmo.int/records/item/52499-the-role-of-climatological-normals-in-a-changing-climate (last access: 9 March 2025), 2007.
WMO: Guide to meteorological instruments and methods of observation 2018 Edition, WMO-No. 8, World Meteorological Organization, Geneva, Switzerland, https://community.wmo.int/en/activity-areas/imop/wmo-no_8 (last access: 13 May 2024), 2018.
Ye, H., Fetzer, E., Wong, S., Behrangi, A., Yang, D., and Lambrigtson, B.: Increasing atmospheric water vapor and higher daily precipitation intensity over northern Eurasia, Geophys. Res. Lett., 42, 9404–9410, https://doi.org/10.1002/2015GL066104, 2015.
Yu, C., Li, Z., and Blewitt, G.: Global comparisons of ERA5 and the operational HRES tropospheric delay and water vapor products with GPS and MODIS, Earth Space Sci., 8, e2020EA001417, https://doi.org/10.1029/2020EA001417, 2021.
Yuan, P., Blewitt, G., Kreemer, C., Hammond, W. C., Argus, D., Yin, X., Van Malderen, R., Mayer, M., Jiang, W., Awange, J., and Kutterer, H.: An enhanced integrated water vapour dataset from more than 10 000 global ground-based GPS stations in 2020, Earth Syst. Sci. Data, 15, 723–743, https://doi.org/10.5194/essd-15-723-2023, 2023.
Yuan, P., Blewitt, G., Kreemer, C., Jiang, W., Liu, T., He, L., Shan, Q., Balidakis, K., Schuh, H., Wickert, J., and Deng, Z.: A global assessment of diurnal discontinuities in ERA5 tropospheric Zenith Total Delays using 10 Years of GNSS data, Geophysical Research Letters, 52, e2024GL113140, https://doi.org/10.1029/2024GL113140, 2025.
Zhang, K., Li, H., Wang, X., Zhu, D., He, Q., Li, L., Hu, A., Zhen, N., and Li, H.: Recent progresses and future prospectives of ground-based GNSS water vapor sounding, Acta Geodaet. Cartogr. Sin., 51, 1172–1191, 2022.
Zhang, Y., Cai, C., Chen, B., and Dai, W.: Consistency evaluation of precipitable water vapor derived from ERA5, ERA-Interim, GNSS, and radiosondes over China, Radio Science, 54, 561–571, https://doi.org/10.1029/2018RS006789, 2019.
Zhao, Q., Yao, Y., and Yao, W.: GPS-based PWV for precipitation forecasting and its application to a typhoon event, J. Atmos. Sol.-Terr. Phy., 167, 124–133, https://doi.org/10.1016/j.jastp.2017.11.013, 2018.
Zhao, Q., Ma, X., Yao, W., Liu, Y., and Yao, Y.: A drought monitoring method based on precipitable water vapor and precipitation, J. Climate, 33, 10727–10741, https://doi.org/10.1175/JCLI-D-19-0971.1, 2020.
Zhao, Q., Liu, Y., Yao, W., and Yao, Y.: Hourly rainfall forecast model using supervised learning algorithm, IEEE T. Geosci. Remote, 60, 1–9, https://doi.org/10.1109/TGRS.2021.3054582, 2022.
Short summary
This work presents a comprehensive Global Navigation Satellite Systems (GNSS) climate dataset, covering up to 22 years and over 5085 globaly-distributed stations. The data enables the monitoring of atmospheric humidity and circulation, which is crucial for understanding the mechanisms of climate change and climate extremes. Through rigorous quality control, assessment and comparison with trusted sources, the dataset supports better weather forecasting, climate monitoring, and risk assessment.
This work presents a comprehensive Global Navigation Satellite Systems (GNSS) climate dataset,...
Altmetrics
Final-revised paper
Preprint