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Abstract. This work presents a comprehensive global GNSS climate data record derived from 5085 stations,
spanning up to a 22-year period 2000-2021. The dataset was generated using the state-of-the-art processing
methodologies and precise products from the International GNSS Service (IGS) Repro-3 initiative. It includes
high-quality hourly estimates of Zenith Total Delay (ZTD) and Precipitable Water Vapour (PWYV), offering im-
proved accuracy and spatiotemporal coverage. A rigorous data screening and quality assessment framework
was implemented, including formal error detection, offset identification, and extensive cross-validation with
ERAS reanalysis dataset, radiosonde profiles, and Very Long Baseline Interferometry measurements. Collec-
tively, these efforts ensured the consistency, accuracy, and homogeneity of the dataset. In addition, diurnal,
monthly, and annual variations in ZTD and PWYV have been analysed to evaluate and demonstrate its feasi-
bility for monitoring climate variability, atmospheric circulation, and weather extremes. The insights provided
by the dataset address critical data gaps in global climate observing systems and provide a robust foundation
for advancing climate research and applications. Representing a significant milestone in GNSS climatology, this
dataset serves as a vital resource for the scientific community, supporting improved understanding of atmospheric
processes and more effective responses to climate-related challenges. The generated dataset is now available at:
https://doi.org/10.1594/PANGAEA.982476 (Wang et al., 2025a) and https://www.gnss.studio/Login (Wang et

al., 2025b).

1 Introduction

We are currently experiencing an alarming rise in global tem-
peratures and an accelerated progression of climate change,
manifesting in increasingly severe and frequent weather and
climate extremes across the planet (Seneviratne et al., 2021).
The repercussions of these events are profound, causing sig-
nificant adverse socioeconomic consequences and posing
substantial challenges to the sustainable development of hu-
man society. It is estimated that around 3.5 billion people are
highly vulnerable to climate change, with over 1.5 billion al-
ready affected by weather and climate extremes (Asian Dis-
aster Reduction Centre, 2015). Additionally, economic losses
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attributed to these extreme events now exceed USD 1.3 tril-
lion annually (IPCC, 2023). Overall, the growing body of ev-
idence on observed impacts and the escalating trend of disas-
ters highlight a rapidly diminishing window of opportunity to
enable progress towards constructing climate-resilient com-
munities. Despite global efforts spanning several decades,
considerable spatial and temporal data gaps remain in the ex-
isting climate observing networks. It is therefore important to
generate long-term, homogeneous datasets for Essential Cli-
mate Variables (ECVs) to deepen our comprehension of the
intrinsic nature of weather and climate extremes and enhance
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comprehensive climate services for the benefit of current and
future generations (Bojinski et al., 2014).

Among the various atmospheric parameters, water vapour,
recognised as an ECV, plays a significant role in studying
global climate change and atmospheric variability (Dessler
et al., 2008; Solomon et al., 2010; Labbouz et al., 2015; Ye
et al., 2015). Substantial evidence also demonstrates that the
dynamic movement of water vapour directly drives meteoro-
logical fluctuations (Li et al., 2023c). Consequently, access
to accurate and timely water vapour data is crucial for en-
hancing the robustness of climate models and improving as-
sessment of climate risks. Since the 1940s, radiosondes have
been deployed to monitor atmospheric conditions and derive
accurate water vapour measurements (Brettle and Galvin,
2003; Durre et al., 2006). However, these sounding balloons,
typically launched twice daily from sparsely distributed sta-
tions around the globe, offer observations with limited spa-
tiotemporal resolution (Li et al., 2003; Benjamin et al., 2004;
Liu et al., 2013). In addition to radiosondes, water vapour ra-
diometers and satellite-based instruments have been adopted
to measure atmospheric water vapour content (England et
al., 1993; Buehler et al., 2008). While widely adopted, these
technologies face certain challenges, including high opera-
tional costs, limited temporal and vertical resolution, low
precision, and susceptibility to weather conditions (Elliott,
1995; Gui et al., 2017). Given the limitations, there is a strong
rationale for adopting an emerging technology, i.e., Global
Navigation Satellite Systems (GNSS), for additional remote
sensing of atmospheric water vapour.

Initially designed for positioning, navigation, and timing,
GNSS technology, like the Global Positioning System (GPS)
has broadened its applications to include atmospheric mon-
itoring since the 1990s (Elgered et al., 1991; Bevis et al.,
1992; Duan et al., 1996). In ground-based GNSS atmo-
spheric monitoring, GNSS receivers function as atmospheric
sensors by tracking changes in the arrival times of the signals
as they traverse the atmosphere. Variations in water vapour,
pressure, and temperature in the troposphere significantly af-
fect the speed and trajectory of these GNSS signals, causing
propagation delays. By measuring and analysing these sig-
nal delays from satellites to GNSS receivers, atmospheric pa-
rameters, like zenith total delay (ZTD) and precipitable water
vapour (PWYV), can be estimated (Rocken et al., 1993, 1995;
Nilsson and Elgered, 2008; Wang et al., 2017). When used
together with conventional techniques, the distinct advan-
tages of GNSS atmospheric data, including high-accuracy,
high spatiotemporal resolution, long-term stability, broad-
coverage and all-weather capability, unequivocally enhance
the potential for advancing weather and climate research
and improving response to climate risks (Gradinarsky et al.,
2002; Jin et al., 2007; Choy et al., 2011; Jones et al., 2020;
Li et al., 2020, 2023a, b).

In recent years, the innovative utilisation of GNSS-derived
ZTD and PWV estimates has spurred the development of
statistical (including artificial intelligence-empowered) and
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numerical approaches for nowcasting and very short-range
forecasting of weather extremes, such as heavy precipita-
tion and tropical cyclones (Zhao et al., 2018, 2022; Benev-
ides et al., 2019; Rohm et al., 2019; Manandhar et al., 2019;
Zhang et al., 2022; Li et al., 2022b, c). Beyond these mete-
orological applications, GNSS atmospheric parameters have
also significantly enriched climate studies (Hagemann et al.,
2003; Bock et al., 2007; Zhao et al., 2020; Ma et al., 2021;
Li et al., 2022a, d). Notably, Foster et al. (2000) demon-
strated that PWYV effectively captured the water vapour vari-
ability induced by the 1997-1998 El Nifio event. Gradi-
narsky et al. (2002) reported a long-term linear increase
in PWV of 0.1-0.2mmyr~! across Scandinavia from 1993
to 2000. Nyeki et al. (2005) highlighted that GNSS-derived
PWYV could track all-weather water vapour trends, unlike
solar precision filter radiometers (sun-photometric), which
can operate only under clear-sky conditions. By contrast,
microwave radiometers can retrieve PWV under cloudy
and non-precipitating conditions (Westwater, 1978). Further
studies of trends in PWV series were conducted in Finland
and Sweden (Nilsson and Elgered, 2008) from 1996 to 2006,
in Switzerland (Morland et al., 2009) from 1996 to 2007, and
in South Korea (Sohn and Cho, 2010) from 2000 to 2009.
Additionally, Wang et al. (2018) applied singular spectrum
analysis (Wang et al., 2016a, b) to extract nonlinear trends
in PWYV series, demonstrating its potential for depicting the
evolution of droughts and floods. Several other studies have
also explored seasonal variations in GNSS atmospheric pa-
rameters, their responses to climate change, and their feasi-
bility in monitoring climate extremes (Jin et al., 2007; Jin
and Luo, 2009; Wang and Zhang, 2009; Ning et al., 2013;
Jiang et al., 2017; Li et al., 2024). Collectively, these studies
underscore the key role of GNSS atmospheric parameters in
advancing weather and climate research.

However, despite recent advances, the potential of GNSS
atmospheric monitoring remains largely under-utilised in the
climate community. This is primarily due to the lack of robust
long-term GNSS climate datasets, whereas climate applica-
tions typically require the use of datasets spanning several
decades (e.g., 30-year climatological normal; WMO, 2007;
Arguez and Vose, 2011). In this context, many datasets used
in the aforementioned studies span only around 10 years,
even if this is partly because the limited record length at
many sites, such durations is still insufficient for uncovering
the climate change signals embedded in these parameters.

Therefore, given the continuous enhancement of multi-
constellation, multi-frequency GNSS capabilities, the avail-
ability of new data streams, and the extensive accumulation
of GNSS data since the 1990s, this juncture presents a prime
opportunity to generate a long-term, homogeneous GNSS
climate dataset, thereby fully leveraging the capabilities of
GNSS atmospheric monitoring for climate applications.

Numerous international academic organisations and many
governmental stakeholders have embarked on initiatives to
generate accurate GNSS atmospheric parameters, aiming to
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advance atmospheric and climate studies. For example, the
Troposphere Working Group (TWG) of the International
GNSS Service (IGS) exemplifies such efforts by producing
the “final” tropospheric estimates. These parameters are pro-
cessed by the United States Naval Observatory (USNO) util-
ising the “final” satellite, orbit, and Earth Orientation Param-
eters (EOP) combination products, typically made available
around three weeks after observation (Byram et al., 2011).
However, the determined ZTD time series may still exhibit
inhomogeneities due to updates in reference frames and mod-
els, variations in mapping function implementations, adjust-
ments in elevation cut-off angles, modifications to processing
strategies, and changes in hardware (such as antennas and
radomes). For climate-related research, maintaining the ho-
mogeneity of ZTD and PWYV time series is essential, as reli-
able climate change monitoring relies on the utilisation of ro-
bust and consistent datasets (Vey et al., 2009; Van Malderen
etal., 2014; Ning et al., 2016). Therefore, to address this, it is
important to reprocess long-term historical GNSS data using
consistent processing strategies, including uniform mapping
functions, elevation cut-off angles, and models, like phase
centre variation. In response, the IGS analysis centres have
undertaken two significant reprocessing campaigns, utilis-
ing the most recent models, updated processing strategies,
and the latest satellite orbits, clock corrections, and EOP
estimates. The second IGS reprocessing campaign (known
as “Repro-2") produced reprocessed tropospheric parameters
covering ZTD data spanning 1994 to 2013 at about 300 sta-
tions in the IGS network. Beyond IGS, other institutes, such
as the Geodetic Observatory Pecny (GOP), have conducted
similar efforts. GOP, for example, reprocessed GNSS data
at stations in the Regional Reference Frame sub-commission
for Europe Permanent Network (EPN) from 1996 (30 sites)
to 2014 (300 sites) (Dousa et al., 2017), producing a com-
bined ZTD dataset for EPN stations using data from five
analysis centres (Pacione et al., 2017). From another as-
pect, although an enhanced integrated water vapour dataset
from more than 10000 global GNSS stations was deter-
mined in Yuan et al. (2023), the dataset is limited only to
the year 2020. Therefore, while these reprocessed GNSS
datasets provide valuable insights into trends and variations
in water vapour, their utility is constrained by the relatively
low site density and inadequate temporal coverage, neces-
sitating further expansion and extended data acquisition en-
deavours.

In this work, we reprocessed historical GPS observations
from over 5000 stations, spanning up to a 22-year period
2000-2021. The goal is to fulfil the requirements of climate
studies for homogeneous, long-term atmospheric parame-
ters across a broad network. This reprocessing campaign,
led by the GNSS data processing for Positioning, Atmo-
sphere, and Climate research centre (GPAC) and hereinafter
referred to as “GPAC-Repro”, adopted precise satellite or-
bit, clock, and EOP products from the third IGS data repro-
cessing campaign (IGS Repro-3), in conjunction with state-
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of-the-art strategies and models to further ensure the quality
and consistency of the dataset. The ZTD estimates derived
from the GPS data were converted to PWV using tempera-
ture and pressure data from the ?fth generation of European
ReAnalysis (ERAS) atmospheric reanalysis (Hersbach et al.,
2020). Then, a rigorous quality assessment of the determined
ZTD and PWYV estimates was conducted by comparing them
with their counterparts from ERAS, radiosonde, and Very
Long-Baseline Interferometry (VLBI). Additionally, to elu-
cidate the characteristics of the new dataset and facilitate its
use in climate studies, we also calculated the maximum and
minimum, as well as daily, monthly, and annual mean val-
ues of PWV and ZTD for each station over the entire study
period. Overall, this newly reprocessed, long-term, homoge-
neous GNSS climate dataset is one of the most comprehen-
sive GNSS atmospheric datasets available. It represents a sig-
nificant advancement in the innovative field of GNSS clima-
tology, providing a valuable resource for scientific commu-
nities engaged in climate studies.

2 Data and methods

2.1 Data acquisition and analysis

This reprocessing campaign initially utilised GPS observa-
tions from 5180 globally distributed stations, covering up to
a 22-year period 2000-2021. The data were sourced from
four archive centres, including the Crustal Dynamics Data In-
formation System (CDDIS, ftp://gdc.cddis.eosdis.nasa.gov/
gnss/data/daily, last access: 13 February 2025), the Scripps
Orbit and Permanent Array Centre (SOPAC, http://garner.
ucsd.edu/pub/rinex, last access: 13 February 2025), Geo-
science Australia (GA, ftp://ftp.data.gnss.ga.gov.au, last ac-
cess: 17 March 2025), and the Hong Kong Geodetic Sur-
vey Section of the Survey and Mapping Office (SMO, ftp://
ftp.geodetic.gov.hk/rinex2, last access: 17 March 2025). The
daily observations were stored in the standard Receiver IN-
dependent EXchange (RINEX) format, which contains dual-
frequency carrier phase and code measurements, typically
recorded at a 30s sampling interval. Following a rigorous
data screening process, 95 sites were excluded due to iden-
tified issues with the atmospheric results, leading to a final
dataset comprising 5085 stations. The detailed exclusion cri-
teria and screening procedures are described in Sect. 3. Fig-
ure 1 illustrates the geographical distribution of the GNSS
stations included in the GPAC-Repro campaign, all of which
successfully passed the quality control checks. In addition to
the distribution, further analysis of the data record duration
and integrity across the 5085 sites is presented in Fig. 2.
Specifically, Fig. 2a provides an overview of the length
of data records for each station, represented by colour-coded
symbols. The durations range from 3 months to 22 years, of-
fering a detailed perspective on the temporal coverage of the
determined dataset. Statistically, over 30 % of the stations
have records exceeding 15 years, 25.4 % and 23.9 % of the
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Figure 1. Geographical distribution of 5085 GNSS sites (a). Zoomed-in figures of regions with high station density, including the United

States (b), Europe (c), Australia (d), and Japan (e).

stations have records spanning 10-15 years and 5-10 years,
respectively, while 20.5 % of the sites have records shorter
than 5 years. Figure 2b, on the other hand, presents data in-
tegrity, with stations colour-coded based on their integrity
percentage. This metric highlights the availability and con-
tinuity of the dataset across all stations, providing valuable
insights into the quality of the dataset for subsequent anal-
yses. Together, these figures emphasise the robust temporal
and spatial characteristics of the generated dataset.

2.2 Data processing

This campaign adhered to the highest international stan-
dards recommended by the IGS (http://acc.igs.org/repro3/
repro3.html, last access: 1 October 2024). Advanced mod-
elling and correction techniques were implemented using
Bernese GNSS Software Version 5.2 (Dach et al., 2015),
incorporating the latest updates to enhance accuracy. Key
updates include the International Earth Rotation and Refer-
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ence Systems Service (IERS) linear pole model and the high-
frequency (sub-daily) Earth Orientation Parameters (EOP)
tide model. Table 1 provides a summary of the modelling
features and corrections applied in the campaign.

Note that, for this reprocessing effort, only GPS obser-
vations were utilised to avoid potential shifts in the ZTD
series during a transition to multi-GNSS systems (Nguyen
et al., 2021). Consistent with the recommendations of the
IGS Repro-3, the 2010 IERS conventions were followed for
modelling solid Earth tides, solid Earth pole tides, as well
as ocean pole tides. Ocean tidal loading (OTL) effects were
accounted for using the FES2014b model. Note that the at-
mospheric tidal loading (ATL) and non-tidal loading (NTL)
effects were excluded due to the insufficient accuracy of cur-
rent models (EPN, 2022) and their negligible impact on ZTD
values (Pacione et al., 2017). According to the IERS 2010
conventions, NTL effects exhibit minimal variability over
standard integration periods, and their inclusion in final solu-
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Figure 2. Recorded length (a) and data integrity (b) of the generated GNSS climate dataset across the 5085 stations.

tions is generally discouraged (Petit and Luzum, 2010). Our
experiments confirmed that incorporating the ATL and NTL
models had an insignificant effect on ZTD estimates, yield-
ing a mean root mean square (RMS) error of just 0.15 mm,
well below typical ZTD uncertainty levels. The antenna cor-
rection model (igsR3_2077.atx) was also adopted in this
work. In addition, the Vienna Mapping Function (VMFI)
was used as the a priori hydrostatic delay model and map-
ping function, with a 3° cut-off angle. Please note that the
use of a low cut-off elevation angle of 3° is based on find-
ings from previous literature, which indicated that including
low-elevation observations reduces the correlation between
tropospheric parameters and station height, thereby improv-
ing the accuracy of ZTD estimates and the reliability of long-
term trends (Dach et al., 2015; Dousa et al., 2017; Bai et al.,
2023). Moreover, this also ensures consistency with strategy
adopted by CODE in the IGS Repro-3, whose orbit, clock,
and ERP products are used in our study as illustrated ear-
lier (Dach et al., 2021). Remaining tropospheric delays, as
well as horizontal gradients in the North-South and East—
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West directions, were estimated utilising Precise Point Posi-
tioning (PPP) mode at intervals of 1 and 24 h, respectively.
One critical challenge in ZTD estimation is the day bound-
ary problem, which occurs when GNSS data are processed
independently on a daily basis (Byram et al., 2011). To ad-
dress this, we adopted a 27h time window, that comprises
24h from the current day and an additional 3h from the
subsequent day. This is consistent with the strategy of the
United States Naval Observatory (USNO) for the IGS Fi-
nal Troposphere Product, which forms daily normal equa-
tions and improves the stability of tropospheric estimates
near day boundaries (Byram, 2017). These equations were
subsequently combined across three consecutive days to pro-
duce a 3 d solution (Dousa et al., 2017), from which ZTD es-
timates for the central date were extracted, thereby enhancing
the continuity and accuracy of the dataset.

Earth Syst. Sci. Data, 17, 5951-5982, 2025
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Table 1. Modelling features and corrections adopted in the GPAC-Repro campaign.

Item Strategy
Observations GPS L1 and L2 observations with a 300 s sampling rate
Orbit/Clock/ERP Products from CODE Repro-3 campaign (Dach et al., 2021)

Sub-daily EOP model

High frequency pole model (Desai and Sibois, 2016)

Gravity field model

EGM?2008 up to degree and order 12 (Pavlis et al., 2012)

Solid Earth Tides, Solid and Ocean
Pole Tides

IERS Conventions 2010 (Petit and Luzum, 2010)

Ocean Tide loading FES2014b ocean tide loading model (Lyard et al., 2006)

Atmospheric tides Not applied

Nontidal loadings Not applied

Ionosphere First-order effect was eliminated by forming the ionosphere-free linear combination, high

order ionosphere (HOI) effect was corrected using CODE global ionosphere model

Cut-off elevation angle

30

Antenna model

igsR3_2077 mode for receiver and satellite phase centre offsets and variations

Mapping function

VMF1 (Boehm et al., 2006)

Priori hydrostatic delay

VMF1 (Boehm et al., 2006)

Troposphere gradient models

The Chen-Herring gradient model (Chen and Herring, 1997)

Troposphere-estimated parameters

ZTD (1 h) and horizontal parameters (24 h)

Solution type

Precise Point Positioning (PPP)

Data Span

Long-arc solutions include the data from 3 d, combined on normal equation level, ZTD and
gradient parameters are extracted from the middle day

2.3 Retrieval of PWV

The retrieval of PWV from ZTD requires the inclusion of me-
teorological parameters, specifically temperature and pres-
sure, at the locations of GNSS sites. However, the absence of
meteorological sensors at most stations presents a significant
challenge in obtaining these parameters. To address this and
maintain consistency across the global network, this study
used atmospheric data from the high-quality ERAS dataset
to provide the necessary meteorological inputs. ERAS pro-
vides hourly atmospheric fields on 37 pressure levels at
0.25° x 0.25° resolution, available from 1940 to the present
(Hersbach et al., 2020).

The process begins by calculating the Zenith Wet De-
lay (ZWD), which is derived by subtracting the Zenith Hy-
drostatic Delay (ZHD) from the ZTDs obtained from GNSS
data.

ZWD = ZTD — ZHD 1

Earth Syst. Sci. Data, 17, 5951-5982, 2025

The ZHD is computed using numerical integration over
ERAS pressure profiles (Haase et al., 2003):

Pal"ll

1
ZHD = 10~% Ry / — .dP (2)
g(2)

where k; =77.60KhPa~! is the refractivity coefficient,
Rq =287.05J K~ kg~! represents the gas constant for dry
air, and P,y denotes the pressure at the GNSS antenna
height. The local gravitational acceleration at geometric
height z (in km), denoted as g(z), was determined as follows
(NOAA, 1976):

R, \?
g(Z)=gs<RS+Z> 3)

where gg represents the local gravitational acceleration at
mean sea level at latitude ¢, and Ry denotes the effective ra-
dius of the Earth at latitude ¢. These parameters were deter-
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mined using (WMO, 2018):

gs ~9.80620 - (1 — 0.0026442 - cos(2¢)
4+5.8.1075. cos2(2<p)) 4)

Ry = 6378.137/ (1.006803 —0.006706 - Sin2(<p)> . (5)

Note that the ERAS5 provides 37 pressure levels ranging from
1000 to 1 hPa. Since atmospheric contributions above 1 hPa
were excluded in ZHD calculations based on ERAS profiles
using Eq. (2), an additional equation was used to determined
ZHD contributions above the highest pressure level of ERAS,
i.e., above 1 hPa. This additional contribution was then inte-
grated into the ZHD calculations to ensure a more compre-
hensive analysis (Haase et al., 2003).

k1 Ry P RyT RyT
AZHD%ldl{l aTi [ aTh

2
2 } ©)
81 (Rs+z1) 81 (Rs +2z1)81

Another important issue needs to address is that, for sites lo-
cated above or below the lowest pressure level of the ERAS
dataset, interpolation or extrapolation methods were used
to estimate pressure, humidity, and temperature. Details of
these procedures and the conversion of GNSS altitudes (ref-
erenced to the ellipsoid) to altitudes relative to mean sea
level can be found in our previous studies (Wang et al.,
2016¢, 2017). Once the ZWD is determined by subtracting
the ERA5-derived ZHD from GNSS-derived ZTD, it is con-
verted to PWV using the following equation (Bevis et al.,
1992).

10°

PWV = = P
Ru-[ke — fki + 2|

ZWD (7)

where Ry, =461.5JK~!kg™! is the gas constant for water
vapour, ky =70.4KhPa~! and k3 =3.739 x 10° K> hPa~!
are refractivity coefficients. Ty, denotes the water vapour-
weighted mean temperature, calculated as:

toa P
| 7.
Tm — Zant (8)

toa

[ Fed:

Zant

where z,p and “toa” represent the height of GNSS an-
tenna and the top of the atmosphere, respectively; Py is the
partial pressure of water vapour, and T refers to the ab-
solute temperature. Using the aforementioned procedures,
PWYV values can be effectively retrieved from the deter-
mined ZTD estimates. Note that, in this study, PWV values
are reported in mm, numerically equivalent to kgm™2, i.e.,
1 mm = 1 kg m~2, for readability and consistency.
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Analysing coordinate repetability

Examining variations in ZTD
estimates and their formal errors

Detecting outliers by comparing
GNSS-PWYV with ERAS-PWV

Figure 3. Flowchart of the multi-step data screening approach.

3 Data screening

To achieve highly-quality GNSS atmospheric parameters, the
adoption of the state-of-the-art processing strategies is es-
sential. However, outliers may still occur due to observa-
tional errors or short gaps caused by equipment malfunc-
tions or suboptimal observational conditions (Stepniak et al.,
2018). Additionally, systematic biases may arise from incor-
rect records of receiver or antenna types. To ensure the ac-
curacy of ZTD estimates and the resulting PWYV values, a
rigorous data screening procedure is indispensable for iden-
tifying and addressing problematic stations and outliers. This
study introduces a comprehensive, multi-step data screening
method for outlier identification. The procedure systemati-
cally analyses coordinate repeatability, examines variations
in ZTD values and their formal errors, and detects outliers
by comparing GNSS-PWYV with reference PWV estimates
from the ERAS dataset. Figure 3 illustrates the flowchart of
this multi-step data screening approach.

3.1 Screening based on coordinate repeatability

The screening process begins with an analysis of coordinate
repeatability, a key indicator of the reliability of GNSS solu-
tions. For each station, the standard deviation (SD) of daily
coordinates in the North, East, and vertical directions were
calculated over the entire period. Stations with an SD exceed-
ing 100 m in any direction were excluded, resulting in the re-
moval of 60 stations. Such large deviations were often associ-
ated with local antenna relocations or duplicate station names
(Yuan et al., 2023). Next, discrepancies between daily coor-
dinate values and corresponding weekly combined solutions
were assessed. Residuals surpassing thresholds of 15 mm in
the North and East directions and 30 mm in the vertical direc-
tion led to the exclusion of associated daily solutions (Dousa
et al., 2017). Therefore, ZTD estimates associated with these
flagged days were removed, resulting in a data reduction of
0.008 %, i.e., 34 852 hourly data samples.
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3.2 Screening based on GPS-ZTD results only

Following the coordinate repeatability evaluation, ZTD val-
ues underwent further screening utilising range checks and
outlier detection, following the standardised approach out-
lined in Bock (2020). As the first step, ZTDs outside the
range of 1-3m (Bock et al., 2014) and those with formal
errors (0,q) exceeding 10 mm were excluded. Please note
that formal errors in the ZTD estimates are an important in-
dicator of the quality of GNSS atmospheric parameters and
are therefore widely used in screening. For context, it shows
that 99.996 % of formal errors are < 10mm in this work.
More details about the analysis of formal errors are provided
in Sect. 4.1. Subsequent outlier detection was conducted
for each station using thresholds determined via the Inter-
Quartile Range (IQR) method based on a 15d sliding win-
dow. Specifically, daily ZTD threshold limits were calculated
using [Q1 —3 X IQR, Q3+3 xIQR], where IQR = 03— 01,
and Q1 and Q3 represent the 25th and 75th percentiles, re-
spectively, of all ZTD estimates within a 15 d sliding window
centred on the target date (Yuan et al., 2023). Additionally,
the upper limit for o,g was determined as 2.5 times the me-
dian value, calculated over the same 15d period. Based on
these criteria, ZTDs and their formal error exceeding station-
specific thresholds were flagged and removed, resulting in
the removal of 0.3486 % of the ZTDs.

While this step ensures a refined ZTD dataset for PWV
retrieval without requiring external reference models, e.g.,
ERAS, it still has several limitations, particularly in detecting
inconsistencies within ZTD time series. To address this, at-
mospheric parameters from co-located stations were further
assessed for consistency. Note that, to ensure the robustness
of the analysis and minimise the influence of spatial sepa-
ration, co-located stations were defined as having horizon-
tal and vertical separations of no more than 1000 and 50 m,
respectively. Additionally, each pair of co-located stations
was required to have at least 8760 paired ZTD data sam-
ples, equivalent to one year of hourly observations. Given
their close proximity and shared atmospheric conditions, co-
located stations are expected to showcase a high level of
agreement in their ZTD estimates. Figure 4 illustrates the SD
and bias in ZTD at 390 co-located stations.

It was found that the majority of station pairs (352 pairs)
exhibited SD below 10 mm, with biases confined within
+5mm, indicating strong consistency in their ZTD esti-
mates. However, 29 pairs showed SDs ranging from 10 and
20 mm, and 9 pairs exceeded 20 mm.

After a detailed evaluation, discrepancies in ZTD between
co-located GNSS sites are often attributed to height differ-
ences. It should be noted that no vertical correction was ap-
plied in this study, as the co-location comparison serves only
as a preliminary step to identify potential problematic sta-
tions and to provide a general indication of the quality of
ZTD estimates. In addition, in this network, 93 % of station
pairs have a height difference within 10 m, corresponding to
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an expected ZTD difference of ~2mm. A vertical correc-
tion procedure may also introduce errors of comparable or
larger magnitude under certain conditions like in complex
atmospheric conditions or over rugged topography. Never-
theless, for local analyses where height differences are non-
negligible, we recommend applying vertical corrections fol-
lowing methods described in Bock et al. (2022) or exploring
alternative approaches. Consistent with these considerations,
our dataset shows the following. As illustrated by three co-
located GNSS stations in Texas, USA (30.68° N, 104.01° W)
in Fig. 5, the ZTD values at MGO3, located 40 m lower
than MGO2, showed a positive deviation of approximately
10 mm compared to those obtained at MGO?2. In contrast, the
ZTD differences between MDO1 and MGO2, with a vertical
difference of 2 m, remained within +£5 mm, with an SD of
2.77 mm and a bias of 0.03 mm.

Another common source of discrepancies, as mentioned
before, is errors in recording receiver or antenna types, often
due to human errors. As illustrated by two pairs of co-located
GNSS stations, i.e., PUB1 vs. PUB2 and PUB5 vs. PUB6, in
Colorado, USA (38.29°N, 104.35°W) in Fig. 6, a signifi-
cant deviation with a SD of 27.42 mm was observed between
the two sets of ZTD values at PUB1 and PUB2. This issue
was resolved in 2008 following the replacement of PUB1
and PUB2 with PUBS5 and PUBG, respectively, as part of
an upgrade involving new antennas and radomes. A com-
parison with ERAS-derived ZTD revealed a notable posi-
tive bias of 23.1 mm at PUB2, whereas biases at PUBI,
PUBS, and PUB6 were —1.8, 2.4, and 1.2 mm, respectively.
Further investigation suggested that the antenna type for
PUB2 was recorded as ASH700829.3 instead of the cor-
rect ASH701945E_M, leading to the overestimation of ZTD.
Similar inconsistencies (biases exceeding 20 mm) were also
identified at four additional stations (LRA1, UTK1, UTK2,
and CLS6) when compared to co-located stations and the
ERAS dataset. The large discrepancies are likely stemmed
from equipment malfunctions or suboptimal observational
conditions, like strong multipath effects. In addition, equip-
ment changes can introduce offsets, leading to inconsisten-
cies at co-located sites and biasing long-term trend analyses
by masking short-term, site-specific effects when statistics
are aggregated over long periods. More details regarding the
offset detection procedure adopted in our study is described
in Sect. 4.3.

Although assessing the internal consistency of ZTD esti-
mates from co-located GNSS sites is a valuable method for
identifying potentially problematic stations, its applicability
is greatly limited by the scarcity of co-located counterparts
for most stations. This constraint prevents a thorough assess-
ment across the entire network. Moreover, even when dis-
crepancies are observed between co-located stations, accu-
rately determining which station is problematic within the
pair remains challenging without sufficient external informa-
tion. Therefore, to address these limitations, additional qual-
ity control of the dataset is crucial. This can be achieved
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Figure 4. SD and bias in ZTD at 390 pairs of co-located GNSS stations.
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Figure 5. ZTD differences among three pairs of co-location stations in Texas, USA: MDO1-MGO?2 (blue), MDO1-MGO3 (red), and
MGO2-MGO3 (yellow).

https://doi.org/10.5194/essd-17-5951-2025 Earth Syst. Sci. Data, 17, 5951-5982, 2025



5960

60

-
=

[
=

N
P2

ZTD Differences (mm)
—}

|
[ 3
=

-40
2001 2003 2005 2007

X. Wang et al.: A global GNSS climate data record from 5085 stations spanning up to 22 years

® PUB2-PUB1 e PUB6-PUBS

2009 2011 2013 2015 2017

Time (year)

Figure 6. ZTD differences between co-location stations in Colorado, USA: PUB2-PUBI1 (blue), and PUB6-PUBS (red).

by comparing ZTD values with an independent reference
dataset, such as ERAS, to validate and enhance the overall
quality of the results.

3.3 Screening based on comparison with reference
PWYV data

In the final phase, the screened ZTD estimates were con-
verted to PWV values and further validated using ERAS-
derived PWVs as a reference. Before comparing with ERAS
dataset, we first performed an initial range check to re-
move unrealistic negative PWV values. The initial check
excluded 0.16 % of the estimates. These outliers were pre-
dominantly observed at high-latitude and high-altitude sta-
tions, like those in Antarctica, where the average elevation is
2500 m and mean PWYV values are typically below 2 mm. As
highlighted in Thomas et al. (2008), remotely-sensing PWV
estimates using GNSS atmospheric monitoring techniques
in Antarctica is challenging. Both the dry atmospheric con-
ditions and poor geometry of GNSS constellations, charac-
terised by satellites visible at low elevation angles, contribute
to reduced accuracy. Furthermore, the VMF1 mapping func-
tion and a priori tropospheric models are less reliable in po-
lar regions on account of the limited availability of meteoro-
logical data (Labib et al., 2019). Additionally, uncertainties
in ERAS5-derived ZHD estimates can impact the accuracy of
PWYVs in Antarctica, where the typically low PWYV levels are
highly sensitive to ZHD errors.

Following the removal of negative PWV values, a robust
outlier detection and elimination method was applied. This
method comprises two steps: (1) identifying nearby sites and
(2) establishing monthly, site-specific thresholds. First, for
each station, nearby stations were identified within 2° in lat-
itude and longitude and with a vertical separation less than
500 m. Next, for the target and each nearby station, we com-
puted the differences between the GNSS-PWVs and ERAS-
PWYVs. For each month, these differences were pooled to
estimate the distribution and define the monthly thresholds

Earth Syst. Sci. Data, 17, 5951-5982, 2025

of the target station using the aforementioned IQR-based
method, i.e., [Q1 —3 x IQR, O3+ 3 x IQR], where IQR =
03— 01, and Q1 and Q3 represent the 25th and 75th per-
centiles, respectively. The resulting monthly thresholds were
then applied to the PWV time series of the target station to
flag and remove outliers. This procedure was applied to all
stations, yielding site-specific thresholds that account for lo-
cal spatiotemporal variability, and repeated iteratively until
no additional outliers were identified. This method provides
more robust, locally representative thresholds than using only
the PWYV differences at the target station, which may fail to
detect problematic results when large system inconsistencies
exist, such as the PUB2 case in Sect. 3.1. To further illustrate
this method, the station SNGO was analysed as an exam-
ple. As shown in Fig. 7a, the nearby stations for SNGO are
identified. The differences between GPS-PWVs and ERAS-
PWYVs at SNGO and its nearby stations were then analysed
to establish monthly threshold limits, depicted as red lines
in Fig. 7b. Applying these thresholds to the PWV series re-
sulted in the identification and removal of 0.24 % of out-
liers (red points) that fell outside the defined range. Hence,
the final screening step excluded 0.29 % of the data points,
with a mean rejection rate of 0.37 % across all sites. How-
ever, it was discovered that 172 stations exhibited rejection
rates exceeding 1 %. A detailed examination flagged 34 prob-
lematic sites with considerable discrepancies between GPS-
PWYV and ERAS5-PWYV, as exemplified by AC30 shown in
Fig. 8. Notably, those sites flagged as “problematic” dur-
ing the co-location check were also identified through this
procedure, indicating the effectiveness of the ERAS dataset
as a reference for screening. After completing the rigorous
multi-step data screening process, the final dataset comprises
435.65M hourly PWV samples from 5085 sites, i.e., with
95 sites excluded as problematic and 1.09 M hourly samples
removed as outliers from the initial set of 5180 stations.
Additionally, it is crucial to note that although ERAS-
derived PWYV has been widely used as a reference in ZT-
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Figure 8. Time series of PWV differences for station AC30.

D/PWYV quality control, this practice implicitly assumes that
the ERAS dataset is sufficiently accurate, which may not al-
ways hold in all regions, especially where observational con-
straints are limited or atmospheric variability is high. More-
over, while we only adopt PWV for screening, we encourage
ZTD-level comparisons in future analyses, as they avoid ad-
ditional conversion uncertainties and potential GNSS-ERAS5
representativeness differences (Jones et al., 2020). Accord-
ingly, to accommodate various use cases, we provide two
versions of the PWV dataset: an unfiltered product that con-
tains all GNSS-derived PWYV estimates after internal quality
control, and an ERAS-screened product in which ERAS is
used only to flag and optionally remove gross outliers.

https://doi.org/10.5194/essd-17-5951-2025

4 Quality assessment

4.1 Formal errors in ZTD estimations

The formal errors of the estimated ZTD are a useful indi-
cator for analysing the quality of GNSS atmospheric pa-
rameters (Bock, 2020), as indicated in Sect. 3.2. In this re-
gard, the distribution and cumulative percentage of formal
errors across the 5085 GNSS sites employed in this study
are shown in Fig. 9. The majority of formal errors range be-
tween 0.5 and 2 mm, peaking at about 1 mm. The cumula-
tive percentage curve (red line) rises steeply, reaching 90 %
at 2mm and 99.73 % at 5 mm. The mean and median values
of these errors are 1.38 and 1.23 mm, respectively. Beyond
the X axis range shown in Fig. 9, as indicated in Sect. 3.2,
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Figure 9. Distribution and cumulative percentage of formal errors
across the 5085 GNSS stations.

this curve attains 99.996 % at 10 mm. Additionally, Fig. 10
depicts the annual distribution of average formal errors at
363 sites with ZTD estimates spanning 2000 to 2021. The
IQRs, representing the 25th to the 75th percentiles, are de-
picted by blue boxes, while the median and mean values are
indicated by red and black lines, respectively. The minimum
and maximum values, excluding outliers (black dots, repre-
senting values greater than 1.5 times the IQR), are depicted
by blue and green lines. The results indicate that most formal
errors are below 4 mm, with their mean values decreasing
from 2.2mm in 2000 to 1.3 mm in 2005, stabilising there-
after. This temporal trend reflects improvements in the qual-
ity of GPS data and satellite orbit and clock products over
the years. The presence of outliers (~ 2 % annually) high-
lights occasional deviations, yet overall precision has been
consistent over the two decades.

4.2 Cross-comparison of PWV with external references

The quality of PWVs was assessed through cross-
comparisons with external reference datasets. Three external
data sources, the ERAS dataset, sounding profiles and VLBI
data, were adopted due to their established accuracy in atmo-
spheric observation.

4.2.1 Comparison with the ERA5 dataset

To ensure a reliable comparison, for GNSS stations situated
above or below the lowest pressure level of ERAS, horizon-
tal interpolation and extrapolation procedures were utilised
to determine pressure, humidity, and temperature at the alti-
tude of the GNSS site based on four surrounding grid points.
Detailed descriptions of these methods are available in Wang
etal. (2016c, 2017). Using the pressure and specific humidity
profiles at GNSS sites, PWVs were computed using:

P, ant

1
pwv=— [ 9 4p ©)
pw J g(2)
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where py, = 1000kgm™ is the density of water vapour,
P and g are the pressure (in Pa) and specific humidity, re-
spectively. g(z) represents the local gravitational acceleration
at geometric height z (in km), determined using Eqs. (3)-(5).
The computed ERA5-PWVs were compared against GPS-
PWVs across 4419 sites with over 1 year of continuous ob-
servations, with Fig. 11a and b illustrating SD and the mean
of their differences, respectively.

Remarkably, 96.04 % of stations exhibit SD values below
3mm, with median and mean SDs of 1.60 and 1.73 mm,
respectively. Furthermore, the mean differences at 96.33 %
of the stations fall within the range of [—1, 1] mm, with
a median of —0.06 mm and a mean of —0.08 mm, indicat-
ing minimal systematic bias. These results demonstrate a
strong global agreement between the two datasets. Latitude-
dependent discrepancies are evident, as depicted in Fig. 11c
and d. The average SD, calculated within 5° latitude bins
(red lines), increases from approximately 0.5 mm in polar re-
gions to nearly 3 mm near 15°S and 15° N. This trend aligns
with previous studies (Bock and Parracho, 2019; Chen et
al., 2021; Yu et al., 2021) that attribute such features to the
higher abundance and greater variability of water vapour in
low-latitude regions compared to high latitudes. Addition-
ally, many GNSS stations in the 15°S—15°N belt are situ-
ated on islands or coastlines, areas characterised by com-
plex atmospheric dynamics, including high humidity and
intense convection, contributing to localised anomalies in
PWYV values. In these areas, the accuracy of reanalysis data,
which depends heavily on satellite observations, is limited
in these regions due to sparse distribution of GNSS sites
over open oceans and frequent cloud cover that obstructs
satellite data (Lonitz and Geer, 2017). The interplay of lo-
calised atmospheric variability and observational limitations
further leads to the latitude-dependent differences in PWV.
Beyond latitude-related trends, regional variations are also
apparent, as shown in Fig. 12. In Australia, SD increases
from 1-1.5 mm in the south to 2.5-3.5 mm in the north. Sim-
ilar patterns are found in the Americas, with higher SD in
the east than in the west, and in Europe, where southern
regions exhibit larger SD than northern areas. Additionally,
ERAS-PWYV tends to overestimate GPS-PWYV in regions like
southern Australia, Europe, eastern North America, southern
Africa, southern South America, and northern Japan.

Another major source of these discrepancies arises from
representativeness errors inherent in ERAS, largely due to
its coarse spatial resolution. These errors are particularly
pronounced in areas with complex topography, like coastal
and mountainous area (Bock and Parracho, 2019). ERAS-
PWYV was calculated as the average of atmospheric param-
eters from four surrounding grid points, which often mis-
represents the actual atmospheric conditions at GNSS sites,
especially in areas with heterogeneous terrain or coastal en-
vironments. For example, in coastal areas, ERAS-PWYV av-
erages conditions over land and sea, whereas GPS-PWV re-
flects measurements over land. Similarly, in mountainous ar-
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Figure 10. Annual distribution of average formal errors at 363 sites with ZTD values over the period 2000-2021.

eas, ERAS-PWYV often fails to capture localised atmospheric
conditions, such as those along slopes or in valleys, due to
elevation differences and topographical complexity. These
discrepancies are evident in regions like Hawaii, where el-
evations span from sea level to the summit of Mauna Kea
(4207 m), and the Andes, with elevations ranging from val-
leys below sea level to peaks exceeding 6000 m. Specifically,
in Hawaii, SD ranges from 1.36 to 3.64 mm, with an aver-
age of 2.75 mm, while in the Andes, SD varies from 0.65 to
4.74 mm, with an average of 2.32 mm. Stations at mountain
summits typically show smaller discrepancies in comparison
to those at slopes, foothills or coastal areas. This is likely
due to the lower atmospheric content and reduced variabil-
ity at higher altitudes, making it easier for reanalysis models
like ERAS to represent atmospheric conditions. Conversely,
orographic effects in slopes and foothills induce greater at-
mospheric variability, complicating the ability of ERAS to
capture these nuances. Given these findings, incorporating
GNSS atmospheric parameters into reanalysis models offers
a promising pathway to further improving the accuracy and
spatial resolution of ERAS, particularly in regions with com-
plex topography and atmospheric variability.

4.2.2 Comparison with co-located VLBI

VLBI, known for its highly directive antennas, is a well-
established technique for retrieving water vapour with high
precision, making it a valuable tool for independently val-
idating other techniques (Niell et al., 2001). Early compar-
isons of atmospheric parameters derived from GNSS and
VLBI were limited in duration and geographic coverage
(Ning et al., 2012). For example, Behrend et al. (2014) re-
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ported an RMS difference of 6.10mm in ZWD estimates
from VLBI and GNSS in Spain over a 9.5h period. Choy
et al. (2015) discovered a SD of 3.5 mm in PWYV differences
between GNSS and VLBI at Hobart, Australia. Subsequent
comparisons conducted during continuous VLBI campaigns
(Snajdrova et al., 2006; Teke et al., 2011, 2013; Pollet et al.,
2014; Heinkelmann et al., 2016; Puente et al., 2021) showed
good agreement between ZTDs from co-located GNSS and
VLBI stations. Beyond these short-term campaigns, Steigen-
berger et al. (2007) analysed ZWD data from 24 stations over
the period 1994-2004 and found SD below 10 mm at most
sites. To validate the performance of the reprocessed data,
PWVs were compared with those from 22 VLBI sites, us-
ing IVS-combined ZWDs and weather parameters. A total
of 43 VLBI-GNSS station pairs were identified based on cri-
teria of horizontal distances below 1 km, height differences
within £50 m, and at least 1000 paired samples. To address
potential biases due to height differences between VLBI and
GNSS sites, a height correction procedure was applied using
atmospheric parameters at the VLBI site and ERAS5-derived
atmospheric data at the GNSS site:

1 (gc+av)
pw  2-8(2)

where Pg and Py represent pressure at the GNSS and VLBI
stations, respectively, and gg and ¢, denote specific humid-
ity at these sites. Table 2 summarises the number of paired
PWYV samples, ranging from 1232 to 33 886, with an average
of 11435 per pair. Generally, PWV values from VLBI and
GPS show strong agreement: 41 out of 43 stations exhibit
mean differences (GPS-PWV minus VLBI-PWYV) within the
range of [—0.5, 0.5] mm, and 42 sites have SD values below

APWYV = (Pc— Py) (10)
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1.5 mm. However, the VLBI site FORTLEZA and GNSS site
FORT displayed the largest deviations, with a mean differ-
ence of 1.6 mm and a SD of 2.4 mm. This notable discrep-
ancy has been documented in earlier studies. For example,
Steigenberger et al. (2007) reported a ZWD bias of 7.2 mm
and an RMS of 14.1 mm, while Schuh et al. (2005) observed
a bias of 13.5mm with a SD of 9.6 mm when comparing
GPS-ZTD to VLBI-ZTD at site FORTLEZA. These studies
attributed the large deviations to great atmospheric variability
near the equator. In contrast, the comparison between VLBI
site FORTLEZA and GNSS site BRFT revealed only a minor
bias of —0.2mm and a SD of 1.5 mm. This suggests that the
large discrepancy between FORTLEZA and FORT may be
due to site-specific biases at station FORT, potentially caused
by environmental factors or hardware issues, which warrant
further investigation in future studies.

4.2.3 Comparison with radiosonde observations

Since the 1930s, radiosonde observations have provided es-
sential insights into the distribution and variability of wa-
ter vapour, establishing them as a benchmark for validating
other sensing techniques. In this study, GPS-PWV was com-
pared with their counterparts from the Integrated Global Ra-
diosonde Archive (IGRA) Version 2 (Durre et al., 2016). Co-
located GNSS and radiosonde stations were identified using
criteria similar to those described earlier: (1) the horizontal
distance and vertical separation must not exceed 50 km and
100 m, respectively; (2) the paired PWV series must span at
least one full year with a data integrity rate of over 85 %;
and (3) each date must include at least one observation dur-
ing both daytime (08:00-18:00 LT, local time) and nighttime
(18:00-20:00 LT); otherwise, PWV estimates from that date
were excluded from the analysis. It is worth noting that we
adopt a different collocation limit here than for the GNSS—
GNSS and GNSS-VLBI comparisons as radiosonde-derived
PWYV is obtained along a balloon ascent that typically drifts
tens of kilometres over 1-2h. Imposing a very small hori-
zontal limit would add little value for representativeness and
would severely constrain coverage (e.g., with the same hori-
zontal limit, only 22 GNSS-radiosonde pairs would remain).
To balance representativeness and sampling, we therefore use
a horizontal limit of 50 km. Under these criteria, we identi-
fied 402 GNSS-radiosonde pairs, with the number of paired
PWYV samples ranging from 888 to 23749 (with an aver-
age of 7283 samples), equivalent to ~ 10 years of obser-
vations per station. In some instances, multiple GNSS sta-
tions were co-located with a single radiosonde site, resulting
in 130 unique radiosonde stations across the whole dataset,
63 of which had multiple co-located GNSS stations. A typ-
ical example is that the radiosonde station USM00072493
had 40 co-located GNSS sites using the aforementioned cri-
teria. PWV estimates from sounding profiles were computed
for comparison by interpolating or extrapolating weather pa-
rameters (pressure, temperature, humidity) to GNSS antenna
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height, followed by integrating specific humidity over pres-
sure as described in Eq. (9).

As shown in Fig. 13, the comparison between the two sets
of PWYV revealed that the mean differences across 402 paired
sites range from —4.34 to 2.50 mm, with an overall mean of
—0.34 mm. The SD values of these differences vary between
0.44 and 3.86 mm, averaging 1.83 mm. Notably, 88.06 %
of the sites exhibit mean differences within the range of
[—1, 1] mm, and 90.80 % have SD below 3 mm, with 3 mm
being a commonly used threshold for PWV accuracy in cli-
mate applications (Offiler et al., 2010), demonstrating close
agreement between the two sets of PWV. According to fur-
ther investigation, spatial distribution significantly influences
the discrepancies. Stations in tropical regions, especially
coastal and island sites, exhibit higher SD values, reflect-
ing complex topographic and atmospheric conditions. This
finding is similar to that obtained from the comparison of
GPS with ERAS. In addition, analysis of the mean differ-
ences reveals distinct regional patterns. For example, GPS-
PWVs tend to underestimate PWVs from sounding profiles
in Australia, New Zealand, and Hong Kong (with the mean
difference of —0.76 mm). In Europe, negative PWV differ-
ences predominate, while in North America, they are primar-
ily concentrated in the east, with positive differences more
common in the west. Moreover, temporal analysis of discrep-
ancies suggests larger SD values during daytime at 81.3 % of
sites, especially in tropical areas. This may stem from solar
heating of radiosonde sensors, resulting in biases in relative
humidity measurements. Furthermore, these day—night vari-
ations exhibit regional dependence. For example, in Europe,
PWYV differences are typically negative during the daytime
(underestimation) but shift to positive at nighttime (overes-
timation). North America showed primarily negative night-
time differences, with more varied trends during the day. As
per previous studies, the region-dependent differences in sys-
tematic biases are possibly attributed to diverse atmospheric
conditions and differences in radiosonde sensor types.

In addition to the general analysis, eight radiosonde sta-
tions were identified, each with 10 co-located GNSS sites,
providing a great opportunity to investigate the factors driv-
ing PWV differences between the two sensing techniques.
For these sites, apart from the aforementioned metrics, the
median, mean, and IQRs of these statistics were determined,
as shown in Fig. 14.

It was found that, over the entire observation period in-
cluding both daytime and nighttime, five out of the eight sta-
tions exhibit IQRs below 0.5 mm, indicating strong agree-
ment between PWVs determined from sounding data and
those from multiple co-located GNSS sites. However, three
sites (USM00072293, NZM00093417, and USM00091285)
demonstrate IQRs exceeding 0.5 mm, mainly due to large
horizontal separations (10-50 km) or significant topographic
variability, as seen at USM00091285 in Hawaii. Day-night
comparisons revealed generally larger IQR values during the
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Table 2. Number of paired PWV samples at co-located GNSS and VLBI stations.

VLBI site (ID) GNSS Observation period No. of Horizontal  Vertical Bias SD
site samples distance  distance
BADARY (7382) BADG 8 Sep 2011 22 Jun 2018 3085 96.0 —10.2 0.7 09
TIGOCONC (7640) CONT 3 Jan 2006 30 May 2014 11877 24.6 2.5 04 14
CONZ 11 Jun 2002 30 May 2014 20157 119.9 9.7 05 1.5
GILCREEK (7225) FAIR 28 Jan 2002 28 Dec 2005 5481 93.1 —13.1 =02 09
FORTLEZA (7297) FORT 3 Jan 2002 7 Apr 2006 2885 53.4 —-3.6 1.6 24
BRFT 6 Oct 2005 16 Mar 2018 13698 58.0 —-14 -02 15
HARTRAO (7232) HRAC 17 Nov 2005 4 Jan 2017 4166 84.9 —-8.9 02 13
HRAO 22 Jan 2002 3 Oct 2017 6171 163.5 -15 —-01 14
HARTRAOI15 (7378) HRAC 11 Oct 2012 8 Sep 2017 5223 185.2 —2.2 03 1.5
HRAO 11 Oct 2012 13 Jul 2018 6704 274.3 5.1 0.0 1.1
HOBART (7242) HOB2 24 Jan 2002 11 Dec 2017 6562 192.4 24 -02 12
HOBARTI12 (7374) HOB2 7 Oct 2010 20 Jun 2017 7924 107.1 01 —-03 12
KATHI12M (7375) KAT1 4 Aug 2011 13 Jul 2018 9215 113.9 -5.0 04 13
KAT?2 4 Aug 2011 13 Jul 2018 9418 45.7 -5.0 04 14
KOKEE (7298) KOKR 20 Oct 2016 13 Jul 2018 2229 387.2 —13 04 14
KOKC 20 Oct 2005 5Jan 015 15230 26.5 —10.4 0 13
KOKV 26 Sep 2008 13 Jul 2018 15533 453 —-9.2 0.1 1.2
KOKB 4 Apr 2002 13 Jul 2018 24958 45.8 —-9.2 0.0 13
MATERA (7243) MATE 19 Feb2002 25 May 2018 9833 57.5 =77 -0.1 1.1
MAT1 11 Jun 2002 25 May 2018 12584 68.1 -88 —-0.1 1.2
MEDICINA (7230) MEDI 28 Jan 2002 22 Jun 2018 4252 60.4 —-17.1 =02 1.1
NYALES20 (7331) NYA2 15 Feb 2007 13 Jul 018 2919 272.4 -5.9 0o 07
NYAC 3 Nov 2005 30 Apr 2014 11413 105.8 —8.2 0.1 0.8
NYAL1 3 Jan 2002 13 Jul 2018 24909 105.8 -3.1 0.1 0.7
NYAL 3 Jan 2002 13 Jul 2018 25058 111.6 -88 —-02 0.7
ONSALAG60 (7213) ONS1 14 Dec 2015 24 Apr 2018 1232 122.1 —14.8 0.1 0.8
SHANGHAI (7227) SHAO 17 Jan 2002 17 Apr 2018 2606 91.7 -74 —-0.1 13
SVETLOE (7380) SVTL 9 Dec 2004 13 Jul 2018 7526 81.8 —-94 0.1 09
TSUKUB32 (7345) TSK2 12 May 2003 28 Dec 2016 10349 307.0 —148 -03 1.0
TSKB 22 Jan 2002 28 Dec 2016 11136 303.0 —-17.5 =04 1.1
WARKI12M (7377) WARK 28 Feb 2011 8 Jun 2018 3671 61.3 —16.6 02 1.2
WESTFORD (7209) SAO01 1 Jun 2004 3 Sep 2014 8677 622.7 254 0.1 09
WETTZELL (7224) WTZT 3 Jan 2002 13 May 2005 6274 138.7 —-3.2 0.0 0.8
WTZJ 11 Jun 2002 31 Aug 2010 16098 140.2 -32 =02 07
WTZS 29 Jul 2005 13 Jul 2018 23939 89.0 —-5.7 0.1 0.7
WTZZ 3 Jan 2002 13 Jul 2018 32438 137.8 —-3.2 0.0 0.7
WTZA 3 Jan 2002 13 Jul 2018 33501 136.8 -32 =02 0.8
WTZR 3 Jan 2002 13 Jul 2018 33886 139.1 —-3.1 0.1 0.7
YARRAI12M (7376) YAR2 26 May 2011 13 Jul 2018 9214 146.4 —6.9 03 1.1
YARR 26 May 2011 13 Jul 2018 9401 144.6 —6.9 02 1.1
YAR3 26 May 2011 13 Jul 2018 9482 164.9 —-5.8 02 1.0
YEBES (7386) YEBE 20 Oct 2008 13 Jul 2018 3830 151.6 —16.3 05 1.1
ZELENCHK (7381) ZECK 1 Aug 2006 22 Jun 2018 6985 65.2 —8.8 05 14
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Figure 13. SD and mean differences between GPS-PWYV and radiosonde-PWV.

daytime, likely attributable to diurnal PWV fluctuations or
systematic biases in either radiosonde or GPS measurements.

Over the years, numerous studies have evaluated the per-
formance of GPS-PWYV using radiosonde data as a refer-
ence (Kwon et al., 2007; Pacione et al., 2011; Mo et al.,
2021). Although conclusions vary across regions, our results
show strong alignment with previous results and, in some
cases, surpass them in performance. For example, Choy et
al. (2015) reported mean SD of approximately 4 mm across
six stations (2008-2012) employed in Australia, whereas
this study achieved SD of 1.00-1.85 mm, with a mean of
1.03 mm. Regarding mean differences, Choy et al. (2015)
found radiosonde overestimation at four of the six sites,
while our findings indicate consistent radiosonde overesti-
mation across all 24 station pairs. Park et al. (2012) anal-
ysed GPS-PWYV and radiosonde-PWYV in South Korea, not-
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ing a daytime dry bias in radiosonde measurements, consis-
tent with our results for five GNSS stations co-located with
the KSM00047122 radiosonde station in the same region.
In polar regions, our results (mean differences ranging from
—0.23 to —0.66 mm across the Arctic) align closely with
Negusini et al. (2021), who reported a mean difference of
—0.51 mm at the CAS1 site in Antarctica. Both studies used
reprocessed products with the latest model (this study used
IGS Repro3 products, while Negusini et al. (2021) used IGS
Repro2 products). In Europe, our study found a mean dif-
ference of —0.29 mm and an SD of 1.4 mm across 51 sta-
tion pairs over the time period 2000-2022, which compares
to Pacione et al. (2017), who reported a mean difference of
0.6 mm using 183 sites over the study period 1996-2014.
Both studies agree that radiosonde-ZTD (PWV) generally
underestimates GPS-ZTD (PWV). Overall, despite extensive

Earth Syst. Sci. Data, 17, 5951-5982, 2025
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Figure 14. IQR, median, and mean values of PWV differences at 8 radiosonde and their co-located GNSS stations.

inter-comparisons, systematic errors in both GPS and ra-
diosonde measurements continue to hinder definitive con-
clusions about their absolute accuracy, even for the same
region and period. Variations in processing strategies, co-
location criteria, as well as temporal variability (Buehler et
al., 2012; Guerova et al., 2016) highlight the pressing need
for standardised methodologies to ensure consistent and re-
producible results across inter-comparisons.

4.3 Offset detection

Despite the fact that GNSS reprocessing eliminates change-
points caused by inconsistencies in data processing strate-
gies, the determined PWV time series may still include off-
sets introduced by receiver, antenna or radome replacements,
and observation environment changes. Hence, a consistency
check remains necessary. To detect these offsets, this study

Earth Syst. Sci. Data, 17, 5951-5982, 2025

adopted the penalised maximal ¢ test modified for first-order
autoregressive noise in time series (PMTred) method, as de-
scribed in Wang et al. (2007) and Wang (2008), using the
ERAS dataset as an external reference.

A total of 2485 sites with observation periods exceeding
10 years and data missing rates below 20 % were selected.
For each station, the time series of monthly mean PWV dif-
ferences between GPS and ERAS data was subjected to the
PMTred test. Standardised log files for each site recorded
all station-related changes. Initially, a 95 % confidence level,
as the critical value (CV), was applied to identify all poten-
tial changepoints. If a detected changepoint corresponded to
a recorded change within a six-month time period (before
or after) in the log file, it was identified as a documented
changepoint. For unrecorded changes, a stricter 99.9 % con-
fidence level was utilised, and changepoints exceeding the
threshold were also recorded (Ning et al., 2016). Based on
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Table 3. Classification and performance of the detected change-
points.

Change type Changepoints Mean RMS

(mm) (mm)
Only receiver change 386 0.008 0.954
Only antenna change 137 0.152  1.022
Both receiver and antenna changes 157 —0.044 1.032
Firmware upgrades 557 0.157 0.892
Other factors 1190 0.182 0.873
All 2427 0.133  0.909

this approach, results revealed that 1416 of the 2485 stations
exhibited a total of 2427 changepoints in their PWV differ-
ence time series, while the remaining 1069 stations showed
no changepoints. The detailed classification, counts, and per-
formance of changepoints are listed in Table 3. Among these,
1190 changepoints were undocumented, potentially due to
unrecorded hardware changes or environmental factors. Of
the documented hardware changes, 386 were linked to re-
ceiver replacements, 137 to antenna changes, 157 to simul-
taneous receiver and antenna changes, and 557 to firmware
upgrades.

For clarity, the detected changepoints are provided as flags
alongside the PWYV series, and the archived PWV time se-
ries are not modified based on these detections. Although
ERAS is used as a reference to aid detection, it is not the
actual “truth”, as previous studies suggest that both reanaly-
sis and GNSS data may contain inhomogeneities (Bock and
Parracho, 2019; Zhang et al., 2019; Yuan et al., 2025). More-
over, in this study, we did not perform a separate changepoint
search on ZTD, ZHD or T;,. Since PWYV is derived from
these parameters, any discontinuity in them can induce a cor-
responding offset in PWV, and we will further examine these
in detail in future updates. Additionally, to strengthen robust-
ness, our future releases will also cross-compare multiple de-
tection methods (Van Malderen et al., 2020; Quarello et al.,
2022; Nguyen et al., 2025) and adopt relative-homogeneity
checks based on multiple pairwise comparisons (Caussinus
and Mestre, 2004; Menne and Williams, 2009; Nguyen et
al., 2024).

5 Further analysis

After comprehensively illustrating the characteristics and as-
sessing the quality of the dataset, this work further advances
by offering a preliminary analysis, focusing on its innova-
tive applications in the climate community. Specifically, the
maximum, minimum, and diurnal, monthly and annual mean
values of PWV and ZTD estimates are determined and anal-
ysed.
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5.1 Analysis of maxima and minima of PWV and ZTD

In this study, we first identified the hourly maxima and min-
ima of PWYV and ZTD for each site over the whole period,
as shown in Fig. 15. Generally, as per the statistics, PWV
minima across all stations range from 0 to 43.6 mm, while
maxima span 3.2 to 88.5 mm. For ZTDs, minima vary from
1.21 to 2.57 m, and maxima range from 1.32 to 2.80 m.

By taking a closer examination, some further insights
can be revealed. Figure 15a, i.e., the PWV minima, illus-
trates the different patterns along latitudinal gradient. Specif-
ically, PWV minima tend to increase toward the equator,
with higher values observed in low-latitude regions (30° N—
30°S) and near-zero values in mid- to high-latitude areas
(30-90°N and 30-90°S). However, PWV minima exhibit
no clear trend with longitude. This finding is also evident,
albeit less pronounced, in Fig. 15b, which displays PWV
maxima. The observed variations are influenced by factors
like latitude, altitude, as well as weather and climate condi-
tions. For example, as reported in Yuan et al. (2023), PWV
maxima exhibit complex geographical patterns. The lowest
PWYV maximum value of 3.2 mm occurs at the AMUN sta-
tion in Antarctica (89.99° S, 139.15°E), a region with persis-
tently low temperatures and year-round ice and snow cover,
which limits the capacity to hold water vapour, resulting
in low PWV. Additionally, AMUN sits at an elevation of
about 2816 m, where lower atmospheric pressure further de-
creases water vapour. In contrast, the highest PWV maxi-
mum value of 88.5mm is recorded at the G212 station in
Okinawa (26.21° N, 127.66° E), a subtropical location with a
warm, humid climate affected by moist air from the Pacific
Ocean. During rainy/monsoon seasons and typhoon events,
this area experiences particularly higher water vapour con-
tent, which is exactly the case in this study. Furthermore,
in contrast to the AMUN station, the lower elevation of the
G212 station (38 m) results in higher atmospheric pressure
and denser air, enabling it to retain more water vapour.

Figure 15c and d presents the minima and maxima of ZTD,
which exhibit similar but distinct patterns, in comparison to
Fig. 15a and b, due to the aforementioned influencing fac-
tors. Although PWYV can be obtained from ZTD through a
conversion factor dependent on meteorological parameters,
i.e., temperature, this factor varies by station. In other words,
although a typical station presents a direct relationship be-
tween ZTD and PWYV, the global characteristics of ZTD and
PWYV maxima and minima differ significantly. For example,
the lowest PWYV values occur at different stations, however,
the lowest ZTD maximum and minimum both appear at the
LLST station in the Andes Mountains (25.17° S, 68.52° W)
at an altitude of 5272 m. This high elevation leads to reduced
atmospheric pressure and, consequently, lower ZTD values.
Moreover, the dry air at high altitudes decreases the wet de-
lay, an important component of ZTD, compounded by thin-
ner atmospheric layers and fewer air molecules, which also
contribute to lower ZTD values.
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Figure 15. Maxima and minima of PWV and ZTD for each station over the whole period.

In general, the geographical characteristics of the max-
ima and minima of PWV and ZTD are affected by factors
including latitude, altitude, and regional meteorological and
climate conditions. Hence, when applying the parameters in
weather and climate research, careful consideration of these
factors is essential for accurate analysis and interpretation.

5.2 Analysis of diurnal and monthly mean PWV and
ZTD

Although hourly PWV and ZTD values are widely utilised
in various atmospheric and meteorological research, expand-
ing the applicability of the dataset, especially for climate re-
search, which depends on parameters reflecting long-term at-
mospheric conditions, require additional processing. In this
study, the daily and monthly mean values of PWV and ZTD
were calculated to facilitate comprehensive, long-term as-
sessments. To minimise the impact of missing data on the
analysis, we applied a strict inclusion criterion: Daily means
were computed only when at least 21 hourly estimates were
available, i.e., corresponding to at least 87.5 % daily integrity
(21 out of 24 h). Monthly means were computed only when a
minimum of 650 valid hourly samples were available within
the calendar month. As months comprise 672h (28 d), 696 h
(29d), 720h (30d), or 744 h (31 d), the fixed 650 h threshold
corresponds to integrity levels of 96.7 %, 93.4 %, 90.3 %, or
87.4 %, respectively, nominally approximate 90 %.

To demonstrate the characteristics of the determined daily
and monthly mean of ZTD and PWYV, as well as to com-
pare their variations, Fig. 16 depicts the time series of daily
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and monthly mean PWV and ZTD values at the NYAL and
PALM stations as typical examples over the whole study pe-
riod 2000-2021. In this figure, red and blue circles denote
the daily and monthly mean values, respectively.

Daily mean values exhibit more pronounced variations and
a wider range of extreme values, as they are prone to impact
from typical weather extremes and atmospheric conditions.
In contrast, monthly mean values, as aggregates of daily data,
tend to smooth out these extremes (noises) and reduce short-
term fluctuations, leading to a more stable trend. From an-
other perspective, the temporal resolution of daily means is
reduced by a factor of 24 compared to hourly estimates, but
it is still over 30 times higher than that of monthly averages.
Therefore, with a larger volume of data, daily means are bet-
ter suited for analysing short-term meteorological phenom-
ena, while monthly means, by providing a clearer picture of
month-to-season variations, more accurately capture general
climate features and are more ideal for studying long-term
trends, climate variability, and abnormal climate patterns. In
general, hourly, daily, and monthly data each play an essen-
tial role in atmospheric studies. Understanding data charac-
teristics across these time scales is crucial for effective utili-
sation of this information in various applications.

Following a similar approach as in Sect. 4, we also as-
sessed the quality of the determined daily and monthly mean
PWVs by using the ERAS dataset as an external refer-
ence. Specifically, we evaluated the performance of daily and
monthly mean values of PWV by comparing them against
the ERAS dataset across all the sites adopted in this study.
Figure 17 presents the bias and RMS results over the pe-
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Figure 16. Time series of daily and monthly mean PWV and ZTD values at the NYAL and PALM sites over the study period.

riod 2001-2021. Note that the bias values are calculated by
subtracting the PWVs obtained from the ERAS dataset from
those derived from GPS observations.

The RMS quantifies the overall agreement between the
datasets by measuring the magnitude of error, independent of
direction. As illustrated in Fig. 17a and b, the RMS exhibits
a certain degree of latitude dependence, with higher val-
ues concentrated in low-latitude areas, specifically between
30°N and 30°S. This pattern can be attributed to the rela-
tively larger PWV values and more pronounced variations in
equatorial regions, as discussed in Sect. 5.1. Additionally, the
sparse coverage of GNSS sites in these regions likely exacer-
bates this effect, as the limited number of data available con-
strains the robustness of data screening and quality control
processes. In contrast, RMS values at sites in high-latitude
regions are close to zero. Furthermore, a detailed compari-
son of Fig. 17a and b indicates that monthly RMS values are
generally smaller than daily RMS values, suggesting closer
alignment between monthly means of the two datasets. This
is largely attributed to the smoothing effect, narrower data
range, and reduced data volume associated with monthly
means. Regarding bias analysis, which captures the system-
atic offset or average deviation between two datasets, a sim-
ilar latitude-dependent pattern is observed. However, since
bias indicates the direction of deviation, an additional find-
ing is that most positive bias values are found at sites in
low-latitude regions, indicating that PW Vs derived from GPS
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data are generally higher than those from the ERAS, consis-
tent with findings in Yu et al. (2021). Note that this pattern is
not absolute, as some low-latitude stations also exhibit neg-
ative bias values, probably due to factors like local climate
conditions, latitude, and data processing differences.

To add depth to the analysis, we examined the monthly
characteristics of PWV values. Specifically, we calculated
the average values of the monthly mean PWV for each month
across all sites over the 16-year period 2006-2021, providing
a climatological perspective across this span. The selection of
the period is to mitigate the impact of missing data in the ear-
lier years, i.e. 2001-2005 and ensures the quality of the de-
termined 16-year climatological monthly mean PWVs. Fig-
ure 18 presents the rendered images of these average monthly
mean PWVs for each month, derived from 590 GNSS sta-
tions located on the West Coast of the United States. This
study region was chosen due to its relatively dense GNSS
network, which enhances the accuracy and robustness of the
16-year climatological monthly mean PWYV representations.
Notwithstanding, this figure is mainly intended for regional-
scale visualisation and qualitative analysis, given the uneven
station spacing, they should not be interpreted at fine spatial
scales.

It can be found that the highest PWV values typically oc-
cur in July and August, while lower PWVs are observed
in December, January, and February. As the study region is
in the northern hemisphere, these months correspond to the
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Figure 18. Rendered images of the 16-year climatological monthly mean PWYV values for each month, derived from 590 GNSS sites located
on the West Coast of the United States.
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summer and winter seasons, respectively, highlighting clear
seasonal variation features in PWV. Specifically, the higher
PWYV estimates observed in summer are largely due to ele-
vated temperatures, which increase the moisture-holding ca-
pacity of the atmosphere. As per the empirical Clausius—
Clapeyron equation, a 1K increase in temperature can re-
sult in an approximate 7 % increase in PWYV, indicating
that warmer air in summer can retain more water vapour
(O’Gorman and Muller, 2010). Additionally, during summer,
higher temperatures and stronger solar radiation boost evap-
oration from surface water sources, while prevailing winds
carry this moist air inland, further raising atmospheric water
vapour levels. The combination of these factors directly con-
tributes to the pronounced seasonal increase in PWV during
summer months.

5.3 Analysis of annual mean PWV estimates

In addition to examining PWV estimates at hourly, daily
and monthly scales, this study extends the analysis to annual
mean PWV values, as annual averages of ECVs are com-
monly used in climate studies, especially for analysing long-
term trends (Coldewey-Egbers et al., 2022; John and Soden,
2007; Masson-Delmotte et al., 2021; Sherwood et al., 2010).
Following the established guidelines for calculating diurnal
and monthly mean PWYV, only GNSS stations with consistent
PWYV data over the period 2006-2021 were adopted to main-
tain the quality of the annual mean values. Figure 19 depicts
rendered images of the annual mean PWYV for each year over
the 16-year period, calculated from 590 GNSS sites located
on the West Coast of the United States. As with the monthly
fields, the rendering is also qualitative at sub-regional scales.
Users seeking local detail in future applications should re-
strict analyses to smaller areas with denser network cover-
age.

Three main phenomena can be observed from the statis-
tical analysis of the calculated annual mean PWYV, together
with the visual examination of Fig. 19. First, an overall anal-
ysis reveals that the long-term trend of PWV shows a gen-
eral increase over the whole 16-year period, aligning closely
with the recorded temperature rise in the region (Masson-
Delmotte et al., 2021). This phenomenon can be explained
by the same principles linking temperature and water vapour
discussed in Sect. 5.2.

Secondly, it was found that the highest annual PWV for an
individual GNSS site was observed at the p501 site in 2015,
with a value of 18.8 mm. Moreover, the highest mean PWV
across all analysed stations also occurred in 2015, reaching
13.41 mm. This peak likely represents the co-occurrences of
the strong 2015/2016 EI Nifio (L’Heureux et al., 2017) and
the North Pacific marine heatwave known as “the Blob”, a
significant mass of relatively warm water in the northeast Pa-
cific Ocean off the coast of the United States (Bond et al.,
2015; Di Lorenzo and Mantua, 2016; Peterson et al., 2015).
Together, these phenomena generated positive temperature
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anomalies exceeding 2.5 °C, with the warm ocean surface
heating the overlying atmosphere. For example, according
to the statistics from the National Oceanic and Atmospheric
Administration (NOAA), in 2015, the annual mean temper-
atures in States in the study region such as California, Ore-
gon, and Washington were elevated compared to normal con-
ditions, with values of 17.0, 12.2, and 11.1 °C, respectively.
Moreover, the increase in sea surface temperature also led to
higher evaporation rate, resulting in enhanced atmospheric
moisture and increased water vapour.

Lastly, at the opposite end of the spectrum, the lowest
annual PWV recorded for a single station was 4.5mm at
the LEWTI station in 2008. Despite this, the lowest mean
PWYV across all stations was observed in 2020, with the
value of 11.96 mm. As per Voosen (2021), based on aver-
age readings from thousands of in-situ weather stations and
ocean probes, the planet in 2020 was approximately 1.25 °C
warmer than in preindustrial times, matching record-high
temperatures. While an increase in temperature typically cor-
responds to higher water vapour content, the anomalously
low PWYV can be attributed to climate extremes in this re-
gion. For example, unprecedented high temperatures were
recorded across many parts of the region in 2020, leading to
prolonged heatwaves and exceptionally low humidity. Typi-
cally, in the Santa Ynez Valley of southern California, sev-
eral sites set all-time temperature records, with the highest
reaching 48.3 °C (Duine et al., 2022). In August 2020, Death
Valley, California, reported a temperature of 54.4°C, the
highest globally recorded since 1931 (Blunden and Boyer,
2021). Additionally, in September 2020, Oregon and Cal-
ifornia experienced a series of wildfires, burning 1.2 mil-
lion acres and contributing to significant low-humidity con-
ditions (Abatzoglou et al., 2021; Khorshidi et al., 2020).
During these extremes, near-surface specific humidity levels
in the western Oregon Cascades dropped to just 3.3 gm™>.
From an atmospheric physics perspective, the smoke plumes
from these wildfires increased aerosol optical depth, which,
through complex interactions between aerosols, radiation,
and the boundary layer, intensified local thermal circulations.
This, in turn, also led to stronger winds and reduced humidity
levels (Huang et al., 2023). Overall, while it is crucial to use
a wide range of ECVs to effectively monitor climate change,
these findings provide preliminary evidence that the annual
mean estimates of GNSS atmospheric parameters can serve
as a valuable and complementary tool for more comprehen-
sive assessments of climate changes and associated climate
risks.

6 Data availability
The global GNSS climate data record, including hourly ZTD
and PWYV estimates, described in this work is now available

at: https://doi.org/10.1594/PANGAEA.982476 (Wang et al.,
2025a). The datasets have also been made available through
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Figure 19. Rendered images of the annual mean PWYV values for each year over the 16-year period 20062021, calculated from 590 GNSS

sites located on the West Coast of the United States.

the GPAC data portal: https://www.gnss.studio/Login (Wang
et al., 2025b), with its data download interface shown in
Fig. 20.

7 Summary and outlook

This study has produced a global GNSS climate data record
to help address data gaps in existing climate observing
networks. Spanning up to a 22-year period from 2000
to 2021, the dataset includes hourly ZTD and PWV es-
timates from 5085 sites, providing broad spatiotemporal
coverage and good overall accuracy globally. Advanced
data reprocessing strategies, aligned with the IGS stan-
dards, were used to promote the consistency and accuracy of
the generated atmospheric parameters, enhancing their suit-
ability for climate applications. The quality of the dataset
was evaluated via a rigorous quality assessment framework
and cross-comparisons with various external references, in-
cluding ERAS reanalysis dataset, sounding profiles, and

Earth Syst. Sci. Data, 17, 5951-5982, 2025

VLBI measurements. Generally good agreement across these
datasets was demonstrated, with consistent water vapour esti-
mates across diverse geographic and climate conditions. The
dataset represents a critical step in GNSS climatology, of-
fering valuable insights into the spatiotemporal variability
of atmospheric water vapour. Further analyses of diurnal,
monthly, seasonal, and annual variations in ZTD and PWV
highlighted their importance in understanding climate vari-
ability, including responses to weather extremes and long-
term climate trends.

Despite these advancements, several key challenges and
opportunities for improvement remain. First, while this study
mainly employed GPS observations, integrating multi-GNSS
systems such as Galileo, GLONASS, and BeiDou could im-
prove satellite visibility and geometry, and may enhance
spatiotemporal availability and robustness, particularly in
under-represented regions like polar areas and oceans. How-
ever, as noted in Sect. 2.2, introducing additional constella-
tions can impose inter-system biases and calibration com-
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Figure 20. Download interface of the reprocessed GNSS climate data record.

plexities that may induce shifts in the time series. In other
words, the net benefit is context-dependent and not yet set-
tled. Given this, our ongoing research is conducting a new
reprocessing campaign that will incorporate multi-GNSS ob-
servations using the latest Bernese V5.4 and updated tropo-
spheric models like VMF3, while managing inter-system and
inter-frequency biases, harmonising antenna calibrations and
metadata, and ensuring cross-system consistency. Second, al-
though the generated dataset covers up to 22 years and can
support climate applications, it does not yet meet the “30-
year” timescale typically required for climatology, largely
because most GNSS stations lack sufficiently long historical
observations as stated earlier. Accordingly, we aim to con-
tinuously process new data streams to extend the record be-
yond 30 years and provide a more complete dataset. Thirdly,
the refinement of data retrieval techniques is necessary to ad-
dress challenges posed by complex topographies and high-
altitude regions, thereby improving robustness in these envi-
ronments. In particular, the ZHD estimation choice adopted
in this study may influence PWV at some certain sites and
times, in our next reprocessing, we will document and bench-
mark the differences between approaches. Additionally, the
incorporation of GNSS atmospheric parameters into global
reanalysis datasets and climate models is also expected to
bridge existing gaps in Earth observation networks and sig-
nificantly advance climate applications. Lastly, emerging
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digital innovation techniques, such as artificial intelligence
and digital-twin techniques, are considered promising for ex-
tracting deeper insights from the dataset. Collaborative ef-
forts with international stakeholders, such as the World Mete-
orological Organization (WMO), IGS, and International As-
sociation of Geodesy (IAG), are expected to further enable
the impact of the dataset and ensure its alignment with global
research priorities.

Overall, the generated dataset represents a meaningful step
toward fully harnessing the transformative potential of GNSS
atmospheric monitoring techniques for advancing climate
and atmospheric studies. By addressing critical challenges
and leveraging cutting-edge methods, this dataset provides a
reference for GNSS climatology, offering a foundation for
future research and operational applications across this inter-
disciplinary field. These contributions may enhance our un-
derstanding of atmospheric dynamics, supporting sustainable
development and facilitating informed decision-making.
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