Articles | Volume 17, issue 11
https://doi.org/10.5194/essd-17-5833-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-5833-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Monitoring the Earth's deformation with the SPOTGINS series
Alvaro Santamaría-Gómez
CORRESPONDING AUTHOR
Geosciences Environnement Toulouse, Université Paul Sabatier, CNES, CNRS, IRD, UPS, Toulouse, France
Centre National d'Etudes Spatiales, Toulouse, France
Jean-Paul Boy
Institut Terre-Environnement Strasbourg, Université de Strasbourg, ENGEES, Strasbourg, France
Florent Feriol
Geosciences Environnement Toulouse, Université Paul Sabatier, CNES, CNRS, IRD, UPS, Toulouse, France
Médéric Gravelle
Littoral Environnement et Sociétés (LIENSs), CNRS, La Rochelle University, La Rochelle, France
Sylvain Loyer
Localisation & Orbitographie, Collecte Localisation Satellite, Ramonville Saint-Agne, France
Samuel Nahmani
Université Paris Cité, Institut de physique du globe de Paris, CNRS, IGN, Paris, France
Université Gustave Eiffel, ENSG, IGN, Paris, France
Joëlle Nicolas
Laboratoire Géomatique et Foncier, Cnam, Le Mans, France
José Luis García Pallero
ETSI en Topografía, Geodesia y Cartografía, Universidad Politécnica de Madrid, Madrid, Spain
Aurélie Panetier
Université Paris Cité, Institut de physique du globe de Paris, CNRS, IGN, Paris, France
Université Gustave Eiffel, ENSG, IGN, Paris, France
Arnaud Pollet
Université Paris Cité, Institut de physique du globe de Paris, CNRS, IGN, Paris, France
Université Gustave Eiffel, ENSG, IGN, Paris, France
Pierre Sakic
Université Paris Cité, Institut de physique du globe de Paris, CNRS, IGN, Paris, France
Guy Wöppelmann
Littoral Environnement et Sociétés (LIENSs), CNRS, La Rochelle University, La Rochelle, France
Related authors
No articles found.
Marie-Françoise Lalancette, Guy Wöppelmann, Sylvain Lucas, Roger Bayer, Jean-Daniel Bernard, Jean-Paul Boy, Nicolas Florsch, Jacques Hinderer, Nicolas Le Moigne, Muriel Llubes, Bernard Luck, and Didier Rouxel
Earth Syst. Sci. Data, 17, 5859–5870, https://doi.org/10.5194/essd-17-5859-2025, https://doi.org/10.5194/essd-17-5859-2025, 2025
Short summary
Short summary
This study presents 25 years of carefully processed gravity measurements from western France, offering a unique dataset to support investigations of long-term land motion and sea level change. The data are consistent with satellite-based observations and are made available for use in future geophysical and climate-related research.
Md Jamal Uddin Khan, Inge Van Den Beld, Guy Wöppelmann, Laurent Testut, Alexa Latapy, and Nicolas Pouvreau
Earth Syst. Sci. Data, 15, 5739–5753, https://doi.org/10.5194/essd-15-5739-2023, https://doi.org/10.5194/essd-15-5739-2023, 2023
Short summary
Short summary
Established in the southwest of France in 1875, the Socoa tide gauge is part of the national sea level monitoring network in France. Through a data archaeology exercise, a large part of the records of this gauge in paper format have been rescued and digitized. The digitized data were processed and quality controlled to produce a uniform hourly sea level time series covering 1875 to the present day. This new dataset is important for climate research on sea level rise, tides, and storm surges.
Médéric Gravelle, Guy Wöppelmann, Kevin Gobron, Zuheir Altamimi, Mikaël Guichard, Thomas Herring, and Paul Rebischung
Earth Syst. Sci. Data, 15, 497–509, https://doi.org/10.5194/essd-15-497-2023, https://doi.org/10.5194/essd-15-497-2023, 2023
Short summary
Short summary
We produced a reanalysis of GNSS data near tide gauges worldwide within the International GNSS Service. It implements advances in data modelling and corrections, extending the record length by about 7 years. A 28 % reduction in station velocity uncertainties is achieved over the previous solution. These estimates of vertical land motion at the coast supplement data from satellite altimetry or tide gauges for an improved understanding of sea level changes and their impacts along coastal areas.
Davide Zanchettin, Sara Bruni, Fabio Raicich, Piero Lionello, Fanny Adloff, Alexey Androsov, Fabrizio Antonioli, Vincenzo Artale, Eugenio Carminati, Christian Ferrarin, Vera Fofonova, Robert J. Nicholls, Sara Rubinetti, Angelo Rubino, Gianmaria Sannino, Giorgio Spada, Rémi Thiéblemont, Michael Tsimplis, Georg Umgiesser, Stefano Vignudelli, Guy Wöppelmann, and Susanna Zerbini
Nat. Hazards Earth Syst. Sci., 21, 2643–2678, https://doi.org/10.5194/nhess-21-2643-2021, https://doi.org/10.5194/nhess-21-2643-2021, 2021
Short summary
Short summary
Relative sea level in Venice rose by about 2.5 mm/year in the past 150 years due to the combined effect of subsidence and mean sea-level rise. We estimate the likely range of mean sea-level rise in Venice by 2100 due to climate changes to be between about 10 and 110 cm, with an improbable yet possible high-end scenario of about 170 cm. Projections of subsidence are not available, but historical evidence demonstrates that they can increase the hazard posed by climatically induced sea-level rise.
Lucia Pineau-Guillou, Pascal Lazure, and Guy Wöppelmann
Ocean Sci., 17, 17–34, https://doi.org/10.5194/os-17-17-2021, https://doi.org/10.5194/os-17-17-2021, 2021
Short summary
Short summary
We investigated the long-term changes of the principal tidal component M2 along North Atlantic coasts, from 1846 to 2018. We analysed 18 tide gauges. We found that M2 variations are consistent at all the stations in the North-East Atlantic, whereas some discrepancies appear in the North-West Atlantic. The similarity between the North Atlantic Oscillation and M2 variations in the North-East Atlantic suggests a possible influence of the large-scale atmospheric circulation on the tide.
Cited articles
Altamimi, Z., Métivier, L., Rebischung, P., Collilieux, X., Chanard, K., and Barnéoud, J.: ITRF2020 Plate Motion Model, Geophysical Research Letters, 50, e2023GL106373, https://doi.org/10.1029/2023GL106373, 2023.
Bar-Sever, Y. E.: A new model for GPS yaw attitude, Journal of Geodesy, 70, 714–723, https://doi.org/10.1007/BF00867149, 1996.
Blewitt, G., Hammond, W. C., and Kreemer, C.: Harnessing the GPS data explosion for interdisciplinary science, EOS, 99, https://doi.org/10.1029/2018EO104623, 2018.
Boehm, J., Werl, B., and Schuh, H.: Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data, J. Geophys. Res., 111, B02406, https://doi.org/10.1029/2005JB003629, 2006.
Chen, G. and Herring, T. A.: Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data, J. Geophys. Res., 102, 20489–20502, https://doi.org/10.1029/97JB01739, 1997.
Coetzer, G. L., Botha, R. C., Combrinck, W. L., and Fourie, S. C. J. S.: A new geodetic research data management system at the Hartebeesthoek Radio Astronomy Observatory, Zenodo [data set], https://doi.org/10.5281/zenodo.10996, 2014.
Digitaal Vlaanderen: GNSS data of Flemish Positioning Services (FLEPOS) network, Available from Royal Observatory of Belgium [data set], https://doi.org/10.24414/ROB-FLEPOS, 2023.
Epos-France: RENAG French national Geodetic Network, Epos-France [code], https://doi.org/10.15778/resif.rg, 2023.
Fernandes, R., Crocker, P., Carvalho, L., Geraldes, F., and Cardoso, R.: EPOS-GNSS Portuguese Node, SEGAL [data set], https://doi.org/10.25768/ubi-epos-gnss-pt, 2024.
GNS Science: GeoNet Aotearoa New Zealand Continuous GNSS Network RINEX Files, GNS Science [data set], https://doi.org/10.21420/RXKE-AZ44, 1995.
Hernández-Pajares, M., Juan, J. M., Sanz, J., Aragón-Àngel, À., García-Rigo, A., Salazar, D., and Escudero, M.: The ionosphere: effects, GPS modeling and the benefits for space geodetic techniques, Journal of Geodesy, 85, 887–907, https://doi.org/10.1007/s00190-011-0508-5, 2011.
INGV RING Working Group: Rete Integrata Nazionale GPS (RING), INGV RING Working Group, https://doi.org/10.13127/ring, 2016.
Jayachandran, P. T., Langley, R. B., MacDougall, J. W., Mushini, S. C., Pokhotelov, D., Hamza, A. M., Mann, I. R., Milling, D. K., Kale, Z. C., Chadwick, R., Kelly, T., Danskin, D. W., and Carrano, C. S.: Canadian High Arctic Ionospheric Network (CHAIN), Radio Sci., 44, RS0A03, https://doi.org/10.1029/2008RS004046, 2009.
Johnston, G., Riddell, A., and Hausler, G.: The International GNSS Service, in: Springer Handbook of Global Navigation Satellite Systems, edited by: Teunissen, P. J. G. and Montenbruck, O., Springer International Publishing, Cham, 967–982, https://doi.org/10.1007/978-3-319-42928-1_33, 2017.
Lantmäteriet: Swepos GNSS Network Data, Swepos at Lantmäteriet, the Swedish mapping, cadastral and land registration authority, Observation Data [data set], https://doi.org/10.23701/c5tc-ew52, 2021.
Laurichesse, D., Mercier, F., Berthias, J.-P., Broca, P., and Cerri, L.: Integer Ambiguity Resolution on Undifferenced GPS Phase Measurements and Its Application to PPP and Satellite Precise Orbit Determination, Navigation, 56, 135–149, https://doi.org/10.1002/j.2161-4296.2009.tb01750.x, 2009.
LIENSs (LIttoral ENvironnement et Sociétés): SONEL EPOS-GNSS at tide gauges node, EPOS-ERIC [data set], https://doi.org/10.60888/EPOS-GNSS-SONEL-NODE, 2025.
Loyer, S., Perosanz, F., Mercier, F., Capdeville, H., and Marty, J.-C.: Zero-difference GPS ambiguity resolution at CNES–CLS IGS Analysis Center, Journal of Geodesy, 86, 991–1003, https://doi.org/10.1007/s00190-012-0559-2, 2012.
Lyard, F. H., Allain, D. J., Cancet, M., Carrère, L., and Picot, N.: FES2014 global ocean tide atlas: design and performance, Ocean Sci., 17, 615–649, https://doi.org/10.5194/os-17-615-2021, 2021.
Métivier, L., Collilieux, X., Lercier, D., Altamimi, Z., and Beauducel, F.: Global coseismic deformations, GNSS time series analysis, and earthquake scaling laws, Journal of Geophysical Research: Solid Earth, 119, 9095–9109, https://doi.org/10.1002/2014JB011280, 2014.
Michel, A., Santamaría-Gómez, A., Boy, J.-P., Perosanz, F., and Loyer, S.: Analysis of GNSS Displacements in Europe and Their Comparison with Hydrological Loading Models, Remote Sensing, 13, 4523, https://doi.org/10.3390/rs13224523, 2021.
Natural Resources Canada: Western Canada Deformation Array, International Federation of Digital Seismograph Networks [data set], https://doi.org/10.7914/zw3f-h051, 1991.
NCEDC: Northern California Earthquake Data Center, UC Berkeley Seismological Laboratory [data set], https://doi.org/10.7932/NCEDC, 2014.
Nicolas, J., Verdun, J., Boy, J.-P., Bonhomme, L., Asri, A., Corbeau, A., Berthier, A., Durand, F., and Clarke, P.: Improved Hydrological Loading Models in South America: Analysis of GPS Displacements Using M-SSA, Remote Sensing, 13, https://doi.org/10.3390/rs13091605, 2021.
Petit, G. and Luzum, B.: IERS Conventions, Frankfurt am Main, Verlag des Bundesamts für Kartographie und Geodäsie, 179 pp., https://doi.org/10.1007/978-3-642-32998-2_10, 2010.
Ramatschi, M., Bradke, M., Nischan, T., and Männel, B.: GNSS data of the global GFZ tracking network. V. 1, GFZ Data Services [data set], https://doi.org/10.5880/GFZ.1.1.2020.001, 2019.
Rebischung, P., Altamimi, Z., Métivier, L., Collilieux, X., Gobron, K., and Chanard, K.: Analysis of the IGS contribution to ITRF2020, Journal of Geodesy, 98, 49, https://doi.org/10.1007/s00190-024-01870-1, 2024.
Rénag: re3data.org: Registry of Research Data Repositories (2022), RENAG-DC [code], https://doi.org/10.17616/R31NJN5L, 2022.
Royal Observatory of Belgium: ROB GNSS Network Data, Royal Observatory of Belgium [data set], https://doi.org/10.24414/FST8-P256, 2018.
Santamaría-Gómez, A., Boy, J.-P., Feriol, F., Gravelle, M., Loyer, S., Nahmani, S., Nicolas, J., García Pallero, J. L., Panetier, A., Pollet, A., and Sakic, P.: SPOTGINS GNSS position and tropospheric delay series, SPOTGINS GNSS [data set], https://doi.org/10.24400/170160/20250414, 2025.
van der Marel, H.: Dutch Permanent GNSS Array (DPGA). Version 1, 4TU.ResearchData [data set], https://doi.org/10.4121/9cd4ed76-f374-4737-be01-0adc927550e2.v1, 2024.
Wu, J. T., Wu, S. C., Hajj, G. A., Bertiger, W. I., and Lichten, S. M.: Effects of antenna orientation on GPS carrier phase, Manuscr. Geodaet., 18, 91–98, 1993.
Short summary
Spotgins is a cooperative of several research groups producing a consistent and high-quality set of Global Navigation Satellite Systems (GNSS) daily position time series. Each group contributes to the global network using the same processing. The Spotgins series are valuable for the understanding of subtle deformations of the Earth's surface at the millimeter level that include tectonics, earthquakes, ground subsidence, post-glacial rebound, hydrological loading, and volcanic deformation.
Spotgins is a cooperative of several research groups producing a consistent and high-quality set...
Altmetrics
Final-revised paper
Preprint