Articles | Volume 17, issue 11
https://doi.org/10.5194/essd-17-5811-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-5811-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Countrywide digital surface models and vegetation height models from historical aerial images
Land Change Science, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
Livia Piermattei
Land Change Science, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
Department of Geography, University of Zurich, 8057 Zurich, Switzerland
Lars T. Waser
Land Change Science, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
Christian Ginzler
Land Change Science, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
Related authors
Aaron Cremona, Matthias Huss, Johannes Marian Landmann, Mauro Marty, Marijn van der Meer, Christian Ginzler, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2025-2929, https://doi.org/10.5194/egusphere-2025-2929, 2025
Short summary
Short summary
Our study provides daily mass balance estimates for every Swiss glacier from 2010–2024 using modelling, remote sensing observations, and machine learning. Over the period, Swiss glaciers lost nearly a quarter of their ice volume. The approach enables investigating the spatio-temporal variability of glacier mass balance in relation to the driving climatic factors.
Leon J. Bührle, Mauro Marty, Lucie A. Eberhard, Andreas Stoffel, Elisabeth D. Hafner, and Yves Bühler
The Cryosphere, 17, 3383–3408, https://doi.org/10.5194/tc-17-3383-2023, https://doi.org/10.5194/tc-17-3383-2023, 2023
Short summary
Short summary
Information on the snow depth distribution is crucial for numerous applications in high-mountain regions. However, only specific measurements can accurately map the present variability of snow depths within complex terrain. In this study, we show the reliable processing of images from aeroplane to large (> 100 km2) detailed and accurate snow depth maps around Davos (CH). We use these maps to describe the existing snow depth distribution, other special features and potential applications.
Lucie A. Eberhard, Pascal Sirguey, Aubrey Miller, Mauro Marty, Konrad Schindler, Andreas Stoffel, and Yves Bühler
The Cryosphere, 15, 69–94, https://doi.org/10.5194/tc-15-69-2021, https://doi.org/10.5194/tc-15-69-2021, 2021
Short summary
Short summary
In spring 2018 in the alpine Dischma valley (Switzerland), we tested different industrial photogrammetric platforms for snow depth mapping. These platforms were high-resolution satellites, an airplane, unmanned aerial systems and a terrestrial system. Therefore, this study gives a general overview of the accuracy and precision of the different photogrammetric platforms available in space and on earth and their use for snow depth mapping.
Aaron Cremona, Matthias Huss, Johannes Marian Landmann, Mauro Marty, Marijn van der Meer, Christian Ginzler, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2025-2929, https://doi.org/10.5194/egusphere-2025-2929, 2025
Short summary
Short summary
Our study provides daily mass balance estimates for every Swiss glacier from 2010–2024 using modelling, remote sensing observations, and machine learning. Over the period, Swiss glaciers lost nearly a quarter of their ice volume. The approach enables investigating the spatio-temporal variability of glacier mass balance in relation to the driving climatic factors.
Lars T. Waser, Nataliia Rehush, Hannes Horneber, Raffael Bienz, Krzysztof Stereńczak, and Mirela Beloiu Schwenke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-7-2025, 291–297, https://doi.org/10.5194/isprs-archives-XLVIII-M-7-2025-291-2025, https://doi.org/10.5194/isprs-archives-XLVIII-M-7-2025-291-2025, 2025
Andrea Manconi, Gwendolyn Dasser, Mylène Jacquemart, Nicolas Oestreicher, Livia Piermattei, and Tazio Strozzi
Abstr. Int. Cartogr. Assoc., 9, 41, https://doi.org/10.5194/ica-abs-9-41-2025, https://doi.org/10.5194/ica-abs-9-41-2025, 2025
Juditha Aga, Livia Piermattei, Luc Girod, Kristoffer Aalstad, Trond Eiken, Andreas Kääb, and Sebastian Westermann
Earth Surf. Dynam., 12, 1049–1070, https://doi.org/10.5194/esurf-12-1049-2024, https://doi.org/10.5194/esurf-12-1049-2024, 2024
Short summary
Short summary
Coastal rock cliffs on Svalbard are considered to be fairly stable; however, long-term trends in coastal-retreat rates remain unknown. This study examines changes in the coastline position along Brøggerhalvøya, Svalbard, using aerial images from 1970, 1990, 2010, and 2021. Our analysis shows that coastal-retreat rates accelerate during the period 2010–2021, which coincides with increasing storminess and retreating sea ice.
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024, https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
Moritz Altmann, Madlene Pfeiffer, Florian Haas, Jakob Rom, Fabian Fleischer, Tobias Heckmann, Livia Piermattei, Michael Wimmer, Lukas Braun, Manuel Stark, Sarah Betz-Nutz, and Michael Becht
Earth Surf. Dynam., 12, 399–431, https://doi.org/10.5194/esurf-12-399-2024, https://doi.org/10.5194/esurf-12-399-2024, 2024
Short summary
Short summary
We show a long-term erosion monitoring of several sections on Little Ice Age lateral moraines with derived sediment yield from historical and current digital elevation modelling (DEM)-based differences. The first study period shows a clearly higher range of variability of sediment yield within the sites than the later periods. In most cases, a decreasing trend of geomorphic activity was observed.
Florian Zellweger, Eric Sulmoni, Johanna T. Malle, Andri Baltensweiler, Tobias Jonas, Niklaus E. Zimmermann, Christian Ginzler, Dirk Nikolaus Karger, Pieter De Frenne, David Frey, and Clare Webster
Biogeosciences, 21, 605–623, https://doi.org/10.5194/bg-21-605-2024, https://doi.org/10.5194/bg-21-605-2024, 2024
Short summary
Short summary
The microclimatic conditions experienced by organisms living close to the ground are not well represented in currently used climate datasets derived from weather stations. Therefore, we measured and mapped ground microclimate temperatures at 10 m spatial resolution across Switzerland using a novel radiation model. Our results reveal a high variability in microclimates across different habitats and will help to better understand climate and land use impacts on biodiversity and ecosystems.
Leon J. Bührle, Mauro Marty, Lucie A. Eberhard, Andreas Stoffel, Elisabeth D. Hafner, and Yves Bühler
The Cryosphere, 17, 3383–3408, https://doi.org/10.5194/tc-17-3383-2023, https://doi.org/10.5194/tc-17-3383-2023, 2023
Short summary
Short summary
Information on the snow depth distribution is crucial for numerous applications in high-mountain regions. However, only specific measurements can accurately map the present variability of snow depths within complex terrain. In this study, we show the reliable processing of images from aeroplane to large (> 100 km2) detailed and accurate snow depth maps around Davos (CH). We use these maps to describe the existing snow depth distribution, other special features and potential applications.
Robert Pazúr, Nica Huber, Dominique Weber, Christian Ginzler, and Bronwyn Price
Earth Syst. Sci. Data, 14, 295–305, https://doi.org/10.5194/essd-14-295-2022, https://doi.org/10.5194/essd-14-295-2022, 2022
Short summary
Short summary
We mapped the distribution of cropland and permanent grassland across Switzerland, where the agricultural land is considerably spatially heterogeneous due to strong variability in topography and climate, thus presenting challenges to mapping. The resulting map has high accuracy in lowlands as well as in mountainous areas. Thus, we believe that the presented mapping approach and resulting map will provide a solid ground for further research in agricultural land cover and landscape structure.
Lucie A. Eberhard, Pascal Sirguey, Aubrey Miller, Mauro Marty, Konrad Schindler, Andreas Stoffel, and Yves Bühler
The Cryosphere, 15, 69–94, https://doi.org/10.5194/tc-15-69-2021, https://doi.org/10.5194/tc-15-69-2021, 2021
Short summary
Short summary
In spring 2018 in the alpine Dischma valley (Switzerland), we tested different industrial photogrammetric platforms for snow depth mapping. These platforms were high-resolution satellites, an airplane, unmanned aerial systems and a terrestrial system. Therefore, this study gives a general overview of the accuracy and precision of the different photogrammetric platforms available in space and on earth and their use for snow depth mapping.
Cited articles
Abegg, M., Bösch, R., Kükenbrink, D., and Morsdorf, F.: Tree volume estimation with terrestrial laser scanning – testing for bias in a 3D virtual environment, Agr. Fores. Meteorol., 331, 109348, https://doi.org/10.1016/j.agrformet.2023.109348, 2023.
Belart, J. M., Magnússon, E., Berthier, E., Gunnlaugsson, Á. Þ., Pálsson, F., Aðalgeirsdóttir, G., Jóhannesson, T., Thorsteinsson, T., and Björnsson, H.: Mass balance of 14 Icelandic glaciers, 1945–2017: spatial variations and links with climate, Front. Earth Sci., 8, 163, https://doi.org/10.3389/feart.2020.00163, 2020.
Berveglieri, A., Tommaselli, A. M. G., Imai, N. N., Ribeiro, E. A. W., Guimaraes, R. B., and Honkavaara, E.: Identification of successional stages and cover changes of tropical forest based on digital surface model analysis, IEEE J. Select. Top. Appl. Earth Obs. Remote Sens., 9, 5385–5397, https://doi.org/10.1109/JSTARS.2016.2606320, 2016.
Berveglieri, A., Imai, N. N., Tommaselli, A. M., Casagrande, B., and Honkavaara, E.: Successional stages and their evolution in tropical forests using multi-temporal photogrammetric surface models and superpixels, ISPRS J. Photogram. Remote Sens., 146, 548–558, https://doi.org/10.1016/j.isprsjprs.2018.11.002, 2018.
BFS – Bundesamt für Statistik: Arealstatistik Schweiz – Nomenklatur 2004, https://www.bfs.admin.ch/bfs/de/home/statistiken/raum-umwelt/nomenklaturen/arealstatistik.html (last access: 29 August 2024), 2024.
Bolles, K. C. and Forman, S. L.: Evaluating landscape degradation along climatic gradients during the 1930s dust bowl drought from panchromatic historical aerial photographs, United States Great Plains, Front. Earth Sci., 6, 153, https://doi.org/10.3389/feart.2018.00153, 2018.
Bożek, P., Janus, J., and Mitka, B.: Analysis of changes in forest structure using point clouds from historical aerial photographs, Remote Sens., 11, 2259, https://doi.org/10.3390/rs11192259, 2019.
Cusicanqui, D., Rabatel, A., Vincent, C., Bodin, X., Thibert, E., and Francou, B.: Interpretation of volume and flux changes of the Laurichard rock glacier between 1952 and 2019, French Alps, J. Geophys. Res.-Earth, 126, e2021JF006161, https://doi.org/10.1029/2021JF006161, 2021.
Denzinger, F., Machguth, H., Barandun, M., Berthier, E., Girod, L., Kronenberg, M., Usubaliev, R., and Hoelzle, M.: Geodetic mass balance of Abramov Glacier from 1975 to 2015, J. Glaciol., 67, 331–342, https://doi.org/10.1017/jog.2020.108, 2021.
DeVenecia, K., Walker, S., and Bingcai, Z.: New Approaches to Generating and Processing High Resolution Elevation Data with Imagery, PhotogrammetricWeek '07, Wichmann Verlag, Heidelberg, 297–308 pp., https://phowo.ifp.uni-stuttgart.de/publications/phowo07/330DeVenecia.pdf (last access: 19 October 2025), 2007.
Fleischer, F., Haas, F., Piermattei, L., Pfeiffer, M., Heckmann, T., Altmann, M., Rom, J., Stark, M., Wimmer, M. H., Pfeifer, N., and Becht, M.: Multi-decadal (1953–2017) rock glacier kinematics analysed by high-resolution topographic data in the upper Kaunertal, Austria, The Cryosphere, 15, 5345–5369, https://doi.org/10.5194/tc-15-5345-2021, 2021.
Geyman, E. C., van Pelt, W. J. J., Maloof, A. C., Faste Aas, H., and Kohler, J.: Historical glacier change on Svalbard predicts doubling of mass loss by 2100, Nature, 601, 374–379, https://doi.org/10.1038/s41586-021-04314-4, 2022.
Ginzler, C. and Hobi, M. L.: Countrywide stereo-image matching for updating digital surface models in the framework of the Swiss National Forest Inventory, Remote Sens., 7, 4343–4370, https://doi.org/10.3390/rs70404343, 2015.
Ginzler, C.: Variables on the sample plot captured by the stereo GIS application, in: Managing forest ecosystems, edited by: Fischer, C. and Traub, B., Vol. 35, Swiss National Forest Inventory – Methods and models of the fourth assessment, 111-124 pp., https://doi.org/10.1007/978-3-030-19293-8_6, 2019.
Ginzler, C., Price, B., Weber, D., Hobi, M., and Marty, M.: Dynamik der Vegetationshöhen im Schweizer Wald, Swiss Forest. J., 172, 310–317, https://doi.org/10.3188/szf.2021.0310, 2021.
Gomez, C., Hayakawa, Y., and Obanawa, H.: A study of Japanese landscapes using structure from motion derived DSMs and DEMs based on historical aerial photographs: New opportunities for vegetation monitoring and diachronic geomorphology, Geomorphology, 242, 11–20, https://doi.org/10.1016/j.geomorph.2015.02.021, 2015.
Heisig, H. and Simmen, J. L.: Re-engineering the past: countrywide geo-referencing of archival aerial imagery, J. Photogram. Remote Sens. Geoinf. Sci., 89, 487–503, https://doi.org/10.1007/s41064-021-00162-z, 2021.
Höhle, J. and Höhle, M.: Accuracy assessment of digital elevation models by means of robust statistical methods, ISPRS J. Photogram. Remote Sens., 64, 398–406, https://doi.org/10.1016/j.isprsjprs.2009.02.003, 2009.
Hufkens, K., de Haulleville, T., Kearsley, E., Jacobsen, K., Beeckman, H., Stoffelen, P., Vandelook, F., Meeus, S., Amara, M., Van Hirtum, L., and Van den Bulcke, J.: Historical aerial surveys map long-term changes of forest cover and structure in the Central Congo Basin, Remote Sens., 12, 638, https://doi.org/10.3390/rs12040638, 2020.
Hudak, A. T. and Wessman, C. A.: Textural analysis of historical aerial photography to characterise woody plant encroachment in South African Savanna, Remote Sens. Environ., 66, 317–330, https://doi.org/10.1016/S0034-4257(98)00078-9, 1998.
Kadmon, R. and Harari-Kremer, R.: Studying long-term vegetation dynamics using digital processing of historical aerial photographs, Remote Sens. Environ., 68, 164–176, https://doi.org/10.1016/S0034-4257(98)00109-6, 1999.
Knuth, F., Shean, D., Bhushan, S., Schwat, E., Alexandrov, O., McNeil, C., Dehecq, A., Florentine, C., and O'Neel, S.: Historical Structure from Motion (HSfM): Automated processing of historical aerial photographs for long-term topographic change analysis, Remote Sens. Environ. 285, 113379, https://doi.org/10.1016/j.rse.2022.113379, 2023.
Korsgaard, N. J., Nuth, C., Khan, S. A., Kjeldsen, K. K., Bjørk, A. A., Schomacker, A., and Kjær, K. H.: Digital elevation model and orthophotographs of Greenland based on aerial photographs from 1978–1987, Sci. Data, 3, 160032, https://doi.org/10.1038/sdata.2016.32, 2016.
Kulha, N., Pasanen, L., and Aakala, T.: How to calibrate historical aerial photographs: a change analysis of naturally dynamic boreal forest landscapes, Forests, 9, 631, https://doi.org/10.3390/f9100631, 2018.
Kupidura, P., Osińska-Skotak, K., Lesisz, K., and Podkowa, A.: The efficacy analysis of determining the wooded and shrubbed area based on archival aerial imagery using texture analysis, ISPRS Int. J. Geo-Inf., 8, 450, https://doi.org/10.3390/ijgi8100450, 2019.
Magnússon, E., Muñoz-Cobo Belart, J., Pálsson, F., Ágústsson, H., and Crochet, P.: Geodetic mass balance record with rigorous uncertainty estimates deduced from aerial photographs and lidar data – case study from Drangajökull ice cap, NW Iceland, The Cryosphere, 10, 159–177, https://doi.org/10.5194/tc-10-159-2016, 2016.
Marty, M., Piermattei, L., Ginzler, C., and Waser, L. T.: Countrywide DSM and VHM from historical aerial images, Envidat [data set], https://doi.org/10.16904/envidat.528, 2024.
Micheletti, N., Lane, S. N., and Chandler, J. H.: Application of archival aerial photogrammetry to quantify climate forcing of alpine landscapes, Photogram. Rec., 30, 143–165, https://doi.org/10.1111/phor.12099, 2015.
Morgan, J. L. and Gergel, S. E.: Quantifying historic landscape heterogeneity from aerial photographs using object-based analysis, Landscape Ecol., 25, 985–998, https://doi.org/10.1007/s10980-010-9474-1, 2010.
Muhammed, M. A., Hailu, B. T., Miehe, G., Wraase, L., Nauss, T., and Zeuss, D.: High-resolution digital elevation models and orthomosaics generated from historical aerial photographs (since the 1960s) of the Bale Mountains in Ethiopia, Earth Syst. Sci. Data, 15, 5535–5552, https://doi.org/10.5194/essd-15-5535-2023, 2023.
Nebiker, S., Lack, N., and Deuber, M.: Building change detection from historical aerial photographs using dense image matching and object-based image analysis, Remote Sens., 6, 8310–8336, https://doi.org/10.3390/rs6098310, 2014.
Nurminen, K., Litkey, P., Honkavaara, E., Vastaranta, M., Holopainen, M., Lyytikäinen-Saarenmaa, P., Kantola, T., and Lyytikäinen, M.: Automation aspects for the georeferencing of photogrammetric aerial image archives in forested scenes, Remote Sens., 7, 1565–1593, https://doi.org/10.3390/rs70201565, 2015.
Peppa, M. V., Mills, J. P., Fieber, K. D., Haynes, I., Turner, S., Turner, A., Douglas, M., and Bryan, P. G.: Archaeological feature detection from archive aerial photography with a SfM-MVS and image enhancement pipeline, Int. arch. Photogramm. Remote Sens. Spat. Inf. Sci., 42, 869–875, https://doi.org/10.5194/isprs-archives-XLII-2-869-2018, 2018.
Piermattei, L., Marty, M., Ginzler, C., Pöchtrager, M., Karel, W., Ressl, C., Pfeifer, N., and Hollaus, M.: Pléiades satellite images for deriving forest metrics in the Alpine region, Int. J. Appl. Earth Obs. Geoinf., 80, 240–256, https://doi.org/10.1016/j.jag.2019.04.008, 2019.
Piermattei, L., Heckmann, T., Betz-Nutz, S., Altmann, M., Rom, J., Fleischer, F., Stark, M., Haas, F., Ressl, C., Wimmer, M. H., and Pfeifer, N.: Evolution of an Alpine proglacial river during 7 decades of deglaciation, Earth Surf. Dynam., 11, 383–403, https://doi.org/10.5194/esurf-11-383-2023, 2023.
Price, B., Waser, L. T., Wang, Z., Marty, M., Ginzler, C., and Zellweger, F.: Predicting biomass dynamics at the national extent from digital aerial photogrammetry, Int. J. Appl. Earth Obs. Geoinf., 90, 102116, https://doi.org/10.1016/j.jag.2020.102116, 2020.
Risbøl, O., Briese, C., Doneus, M., and Nesbakken, A.: Monitoring cultural heritage by comparing DEMs derived from historical aerial photographs and airborne laser scanning, J. Cult. Herit., 16, 202–209, https://doi.org/10.1016/j.culher.2014.04.002, 2015.
Schwat, E., Istanbulluoglu, E., Horner-Devine, A., Anderson, S., Knuth, F., and Shean, D.: Multi-decadal erosion rates from glacierized watersheds on Mount Baker, Washington, USA, reveal topographic, climatic, and lithologic controls on sediment yields, Geomorphology, 438, 108805, https://doi.org/10.1016/j.geomorph.2023.108805, 2023.
swisstopo: swissALTI3D version 2017, https://backend.swisstopo.admin.ch/fileservice/sdweb-docs-prod-swisstopoch-files/files/2023/11/14/cf4990a1-6bfb-4331-b990-a894d686266e.pdf (last access: 29 August 2024), 2017.
swisstopo: Geodetic points, https://opendata.swiss/en/dataset/lagefixpunkte-lfp1-landesvermessung (last access: 29 August 2024), 2023.
swisstopo: Aerial photographs, https://www.swisstopo.admin.ch/en/analogue-aerial-photographs (last access: 29 August 2024), 2024a.
swisstopo: National Map , https://www.swisstopo.admin.ch/en/national-map-1-25000 (last access: 29 August 2024), 2024b.
swisstopo: swissALTI3D technical information, https://www.swisstopo.admin.ch/en/height-model-swissalti3d (last access: 29 August 2024), 2024c.
swisstopo: The topographic Landscape Model TLM, https://www.swisstopo.admin.ch/en/information-topographic-landscape-model (last access: 29 August 2024), 2024d.
Vastaranta, M., Niemi, M., Wulder, M. A., White, J. C., Nurminen, K., Litkey, P., Honkavaara, E., Holopainen, M., and Hyyppä, J.: Forest stand age classification using time series of photogrammetrically derived digital surface models, Scand. J. Forest Res., 31, 194–205, https://doi.org/10.1080/02827581.2015.1060256, 2016.
Véga, C. and St-Onge, B.: Height growth reconstruction of a boreal forest canopy over a period of 58 years using a combination of photogrammetric and lidar models, Remote Sens. Environ., 112, 1784–1794, https://doi.org/10.1016/j.rse.2007.09.002, 2008.
Wang, Z., Ginzler, C., Eben, B., Rehush, N., and Waser, L. T.: Assessing changes in mountain treeline ecotones over 30 years using CNNs and historical aerial images, Remote Sens., 14, 2135, https://doi.org/10.3390/rs14092135, 2022.
Waser, L. T., Baltsavias, E., Ecker, K., Eisenbeiss, H., Ginzler, C., Küchler, M., Thee, P., and Zhang, L.: High-resolution digital surface models (DSMs) for modelling fractional shrub/tree cover in a mire environment, Int. J. Remote Sens., 29, 1261–1276, https://doi.org/10.1080/01431160701736422, 2008a.
Waser, L. T., Baltsavias, E., Ecker, K., Eisenbeiss, H., Feldmeyer-Christe, E., Ginzler, C., and Zhang, L.: Assessing changes of forest area and shrub encroachment in a mire ecosystem using digital surface models and CIR aerial images, Remote Sens. Environ., 112, 1956–1968, https://doi.org/10.1016/j.rse.2007.09.015, 2008b.
Short summary
Millions of aerial photographs represent an enormous resource for geoscientists. In this study, we used freely available historical stereo images covering Switzerland (1979–2006) to derive four countrywide digital elevation models (DSMs) at a 1 m spatial resolution. Our DSMs achieved sub-metric accuracy compared to reference data and high image matching completeness, demonstrating the feasibility of capturing surface change at a high spatial resolution over different land cover classes.
Millions of aerial photographs represent an enormous resource for geoscientists. In this study,...
Altmetrics
Final-revised paper
Preprint