Articles | Volume 17, issue 11
https://doi.org/10.5194/essd-17-5783-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-5783-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Winter precipitation measurements in New England: results from the Global Precipitation Measurement Ground Validation campaign in Connecticut
Brian C. Filipiak
CORRESPONDING AUTHOR
School of Civil and Environmental Engineering, University of Connecticut, Storrs, CT, USA
Eversource Energy Center, University of Connecticut, Storrs, CT, USA
David B. Wolff
NASA Goddard Space Flight Center, Wallops Flight Facility, Wallops Island, VA, USA
Aaron Spaulding
Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA
Ali Tokay
Goddard Earth Sciences Technology and Research, University of Maryland Baltimore County, Baltimore, MD, USA
NASA Goddard Space Flight Center, Greenbelt, MD, USA
Charles N. Helms
NASA Goddard Space Flight Center, Greenbelt, MD, USA
Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, MD, USA
Adrian M. Loftus
NASA Goddard Space Flight Center, Greenbelt, MD, USA
Alexey V. Chibisov
NASA Goddard Space Flight Center, Wallops Flight Facility, Wallops Island, VA, USA
Carl Schirtzinger
NASA Goddard Space Flight Center, Wallops Flight Facility, Wallops Island, VA, USA
Mick J. Boulanger
NASA Goddard Space Flight Center, Wallops Flight Facility, Wallops Island, VA, USA
Science Systems and Applications, Inc., Lanham, MD, USA
Charanjit S. Pabla
NASA Goddard Space Flight Center, Wallops Flight Facility, Wallops Island, VA, USA
Science Systems and Applications, Inc., Lanham, MD, USA
Larry Bliven
NASA Goddard Space Flight Center, Wallops Flight Facility, Wallops Island, VA, USA
EunYeol Kim
Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, USA
Francesc Junyent
Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, USA
V. Chandrasekar
Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, USA
Hein Thant
Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, USA
Branislav M. Notaros
Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, USA
Gustavo Britto Hupsel de Azevedo
Department of Mechanical and Aero-Space Engineering, Oklahoma State University, Stillwater, OK, USA
Diego Cerrai
School of Civil and Environmental Engineering, University of Connecticut, Storrs, CT, USA
Eversource Energy Center, University of Connecticut, Storrs, CT, USA
Related authors
No articles found.
Marc Schneebeli, Andreas Leuenberger, Philipp J. Schmid, Jacopo Grazioli, Heather Corden, Alexis Berne, Patrick Kennedy, Jim George, Francesc Junyent, and V. Chandrasekar
Atmos. Meas. Tech., 18, 5157–5176, https://doi.org/10.5194/amt-18-5157-2025, https://doi.org/10.5194/amt-18-5157-2025, 2025
Short summary
Short summary
A new technique for the end-to-end calibration of weather radars is introduced. Highly precise artificial radar targets are generated with a radar target simulator and serve as a calibration reference for weather radar observables like reflectivity and Doppler velocity. The system allows investigating and correcting any biases associated with weather radar observations.
Laura M. Tomkins, Sandra E. Yuter, Matthew A. Miller, Mariko Oue, and Charles N. Helms
Atmos. Chem. Phys., 25, 9999–10026, https://doi.org/10.5194/acp-25-9999-2025, https://doi.org/10.5194/acp-25-9999-2025, 2025
Short summary
Short summary
This study investigates how radar-detected snow bands relate to snowfall rates during winter storms in the northeastern United States. Using over a decade of data, we found that snow bands are not consistently linked to heavy snowfall at the surface, as snow particles are often dispersed by wind before reaching the ground. These findings highlight limitations of using radar reflectivity for predicting snow rates and suggest focusing on radar echo duration to better understand snowfall patterns.
Raja Zubair Zahoor Qadiri and Diego Cerrai
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-462, https://doi.org/10.5194/essd-2025-462, 2025
Manuscript not accepted for further review
Short summary
Short summary
Wildfire information is often scattered. We created an open database of individual wildfires across the contiguous United States and Alaska from 2012 to 2023. Using hot spot detections from the Suomi National Polar-orbiting Partnership satellite, we grouped detections into single events and mapped each wildfire's boundary, location, and start and end dates. Checks against independent records show good agreement. The dataset supports studies of trends, risk, emissions, air quality, and planning.
Zhenhai Zhang, Vesta Afzali Gorooh, Duncan Axisa, Chandrasekar Radhakrishnan, Eun Yeol Kim, Venkatachalam Chandrasekar, and Luca Delle Monache
Atmos. Meas. Tech., 18, 1981–2003, https://doi.org/10.5194/amt-18-1981-2025, https://doi.org/10.5194/amt-18-1981-2025, 2025
Short summary
Short summary
Water is a precious resource, and it is essential to monitor and predict the current and future occurrence of precipitation-producing clouds. We investigate the cloud characteristics related to precipitation using several cloud cases in the United Arab Emirates with data from aircraft measurements, satellite observations, and weather radar observations. This study provides scientific support for the development of an applicable framework to examine cloud precipitation processes.
Wei-Yu Chang, Yung-Chuan Yang, Chen-Yu Hung, Kwonil Kim, Gyuwon Lee, and Ali Tokay
Atmos. Chem. Phys., 24, 11955–11979, https://doi.org/10.5194/acp-24-11955-2024, https://doi.org/10.5194/acp-24-11955-2024, 2024
Short summary
Short summary
Snow density is derived by collocated Micro-Rain Radar (MRR) and Parsivel (ICE-POP 2017/2018). We apply the particle size distribution from Parsivel to a T-matrix backscattering simulation and compare with ZHH from MRR. Bulk density and bulk water fractions are derived from comparing simulated and calculated ZHH. Retrieved bulk density is validated by comparing snowfall rate measurements from Pluvio and the Precipitation Imaging Package. Snowfall rate consistency confirms the algorithm.
Charles Nelson Helms, Stephen Joseph Munchak, Ali Tokay, and Claire Pettersen
Atmos. Meas. Tech., 15, 6545–6561, https://doi.org/10.5194/amt-15-6545-2022, https://doi.org/10.5194/amt-15-6545-2022, 2022
Short summary
Short summary
This study compares the techniques used to measure snowflake shape by three instruments: PIP, MASC, and 2DVD. Our findings indicate that the MASC technique produces reliable shape measurements; the 2DVD technique performs better than expected considering the instrument was designed to measure raindrops; and the PIP technique does not produce reliable snowflake shape measurements. We also demonstrate that the PIP images can be reprocessed to correct the shape measurement issues.
Gustavo Britto Hupsel de Azevedo, Bill Doyle, Christopher A. Fiebrich, and David Schvartzman
Atmos. Meas. Tech., 15, 5599–5618, https://doi.org/10.5194/amt-15-5599-2022, https://doi.org/10.5194/amt-15-5599-2022, 2022
Short summary
Short summary
Strong changes in pressure, temperature, and humidity occur when small scientific aircraft ascend through the atmosphere to measure carbon dioxide. These strong changes can produce errors in the carbon dioxide measurements. To avoid these errors, we present a low-cost and simple correction method. This low-complexity method allows more researchers to study atmospheric carbon dioxide, reducing entry barriers in this field.
H. Wedegedara, C. Witharana, D. Joshi, D. Cerrai, and R. Fahey
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-M-2-2022, 217–224, https://doi.org/10.5194/isprs-archives-XLVI-M-2-2022-217-2022, https://doi.org/10.5194/isprs-archives-XLVI-M-2-2022-217-2022, 2022
S. Joseph Munchak, Robert S. Schrom, Charles N. Helms, and Ali Tokay
Atmos. Meas. Tech., 15, 1439–1464, https://doi.org/10.5194/amt-15-1439-2022, https://doi.org/10.5194/amt-15-1439-2022, 2022
Short summary
Short summary
The ability to measure snowfall with weather radar has greatly advanced with the development of techniques that utilize dual-polarization measurements, which provide information about the snow particle shape and orientation, and multi-frequency measurements, which provide information about size and density. This study combines these techniques with the NASA D3R radar, which provides dual-frequency polarimetric measurements, with data that were observed during the 2018 Winter Olympics.
Nicholas J. Kedzuf, J. Christine Chiu, V. Chandrasekar, Sounak Biswas, Shashank S. Joshil, Yinghui Lu, Peter Jan van Leeuwen, Christopher Westbrook, Yann Blanchard, and Sebastian O'Shea
Atmos. Meas. Tech., 14, 6885–6904, https://doi.org/10.5194/amt-14-6885-2021, https://doi.org/10.5194/amt-14-6885-2021, 2021
Short summary
Short summary
Ice clouds play a key role in our climate system due to their strong controls on precipitation and the radiation budget. However, it is difficult to characterize co-existing ice species using radar observations. We present a new method that separates the radar signals of pristine ice embedded in snow aggregates and retrieves their respective abundances and sizes for the first time. The ability to provide their quantitative microphysical properties will open up many research opportunities.
Elizabeth A. Pillar-Little, Brian R. Greene, Francesca M. Lappin, Tyler M. Bell, Antonio R. Segales, Gustavo Britto Hupsel de Azevedo, William Doyle, Sai Teja Kanneganti, Daniel D. Tripp, and Phillip B. Chilson
Earth Syst. Sci. Data, 13, 269–280, https://doi.org/10.5194/essd-13-269-2021, https://doi.org/10.5194/essd-13-269-2021, 2021
Short summary
Short summary
During July 2018, researchers from OU participated in the LAPSE-RATE field campaign in San Luis Valley, Colorado. The OU team completed 180 flights using three RPASs over the course of 6 d of operation to collect vertical profiles of the thermodynamic and kinematic state of the ABL. This article describes sampling strategies, data collection, platform intercomparibility, data quality, and the dataset's possible applications to convective initiation, drainage flows, and ABL transitions.
Cited articles
Azevedo, G.: GPM Ground Validation Unmanned Aerial Weather Measurement System (WxUAS) UConn, NASA Global Hydrometeorology Resource Center DAAC [data set], Huntsville, Alabama, U.S.A. https://doi.org/10.5067/GPMGV/UCONN/WXUAS/DATA101, 2025.
Azevedo, G. B. H., Avery, A., and Schvartzman, D.: UAS-based low-altitude freezing precipitation observation system: development updates and initial field deployment results, 24th Conference on Aviation, Range and Aerospace Meteorology, 104th AMS Annual Meeting, Amer. Meteor. Soc., Baltimore, MD, J10.5, https://ams.confex.com/ams/104ANNUAL/mediafile/Manuscript/Paper435706/J10.5Azevedo435706.pdf (last access: 3 January 2025), 2024.
Azevedo, G. B. H., Avery, A., Schvartzman, D., Landolt, S., DiVito, S., Revard, B. and Jacob, J.: Considerations on UAS-Based In Situ Weather Sensing in Winter Precipitation Environments, Sensors, 25, 790, https://doi.org/10.3390/s25030790, 2025.
Billault-Roux, A.-C., Grazioli, J., Delanoë, J., Jorquera, S., Pauwels, N., Viltard, N., Martini, A., Mariage, V., Gac, C. L., Caudoux, C., Aubry, C., Bertrand, F., Schwarzenboeck, A., Jaffeux, L., Coutris, P., Febvre, G., Pichon, J. M., Dezitter, F., Gehring, J., and Berne, A: ICE GENESIS: Synergetic Aircraft and Ground-Based Remote Sensing and In Situ Measurements of Snowfall Microphysical Properties, Bulletin of the American Meteorological Society, 104, E367–E388, https://doi.org/10.1175/BAMS-D-21-0184.1, 2023.
Brandes, E., Ikeda, K., Zhang, G., Schönhuber, M., and Rasmussen, R. M.: A statistical and physical description of hydrometeor distributions in Colorado snow storms using a video disdrometer, J. Appl. Meteor. Climatol., 46, 634–650, https://doi.org/10.1175/JAM2489.1, 2007.
Britto Hupsel de Azevedo, G.: On the design of unmanned aerial weather measurement systems for wintry precipitation observations, Ph.D. Dissertation, University of Oklahoma, Norman, OK, https://www.proquest.com/dissertations-theses/on-design-unmanned-aerial-weather-measurement/docview/3160175816/se-2 (last access: 3 January 2025), 2024.
Casella, D., Panegrossi, G., Sanò, P., Marra, A. C., Dietrich, S., Johnson, B. T., and Kulie, M. S.: Evaluation of the GPM-DPR snowfall detection capability: Comparison with CloudSat-CPR, Atmospheric Research, 197, 64–75, https://doi.org/10.1016/j.atmosres.2017.06.018, 2017.
Cerrai, D., Wolff, D., Tokay, A., Helms, C., and Filipiak, B.: Global Precipitation Measurement Ground Validation Campaign at the University of Connecticut Collection. Data available online from the NASA EOSDIS Global Hydrometeorology Resource Center Distributed Active Archive Center [data set], Huntsville, Alabama, U.S.A, https://doi.org/10.5067/GPMGVUCONN/DATA101, 2025.
Changnon, S. A.: Catastrophic winter storms: An escalating problem, Climatic Change, 84, 131–139, https://doi.org/10.1007/s10584-007-9289-5, 2007.
Cifelli, R., Doesken, N., Kennedy, P., Carey, L. D., Rutledge, S. A., Gimmestad, C., and Depue, T.: The Community Collaborative Rain, Hail, and Snow Network: Informal education for scientists and citizens, Bull. Amer. Meteor. Soc., 86, 1069–1078, https://doi.org/10.1175/BAMS-86-8-1069, 2005.
Chandrasekar, V., Schwaller, M., Vega, M., Carswell, J., Mishra, K. V., Steinberg, A., Nguyen, C., Le, M., Hardin, J., Junyent, F., and George, J.: Dual-frequency dual-polarized Doppler radar (D3R) system for GPM ground validation: Update and recent field observations. Extended Abstracts, Int. Geoscience and Remote Sensing Symp., Munich, Germany, IEEE, 346–349, https://doi.org/10.1109/IGARSS.2012.6351567, 2012.
Chandrasekar, V., Kim, E., and Junyent, F.: GPM Ground Validation Dual-frequency Dual-polarized Doppler Radar (D3R) UConn, NASA Global Hydrometeorology Resource Center DAAC [data set], Huntsville, Alabama, U.S.A. https://doi.org/10.5067/GPMGV/UCONN/D3R/DATA101, 2025.
Chang, W.-Y., Yang, Y.-C., Hung, C.-Y., Kim, K., Lee, G., and Tokay, A.: Estimating the snow density using collocated Parsivel and Micro-Rain Radar measurements: a preliminary study from ICE-POP 2017/2018, Atmos. Chem. Phys., 24, 11955–11979, https://doi.org/10.5194/acp-24-11955-2024, 2024.
Chobanyan, E., Šekeljić, N. J., Manić, A. B., Ilić, M. M., Bringi, V. N., and Notaroš, B. M.: Efficient and Accurate Computational Electromagnetics Approach to Precipitation Particle Scattering Analysis Based on Higher-Order Method of Moments Integral Equation Modeling, J. Atmos. Oceanic Technol., 32, 1745–1758, https://doi.org/10.1175/JTECH-D-15-0037.1, 2015.
Davis, R. E., Dolan, R., and Demme, G.: Synoptic climatology of Atlantic coast northeasters, Int. J. Climatol., 13, 171–189, 1993.
Doesken, N. J. and Robinson, D. A.: The challenge of snow measurements. Historical Climate Variability and Impacts in North America, edited by: Dupigny-Giroux, L.-A. and Mock, C. J., Springer, 251–273, https://doi.org/10.1007/978-90-481-2828-015, 2009.
Elmore, K., Flamig, Z., Lakshmanan, V., Kaney, B., Farmer, V., Reeves, H., and Rothfusz, L.: mPING: Crowd-sourcing weather reports for research, Bull. Amer. Meteor. Soc., 95, 1335–1342, https://doi.org/10.1175/BAMS-D-13-00014.1, 2014.
Filipiak, B., Raykoff, B., and Cerrai, D.: GPM Ground Validation All-in-One-2 (AIO2) UConn, NASA Global Hydrometeorology Resource Center DAAC [data set], Huntsville, Alabama, U.S.A., https://doi.org/10.5067/GPMGV/UCONN/AIO2/DATA101, 2025a.
Filipiak, B., Cerrai, D., and Wolff, D.: GPM Ground Validation R. M. Young Marine Anemometer UConn, the NASA Global Hydrometeorology Resource Center DAAC [data set], Huntsville, Alabama, U.S.A. https://doi.org/10.5067/GPMGV/UCONN/ANEMOMETER/DATA101, 2025b.
Garrett, T. J., Fallgatter, C., Shkurko, K., and Howlett, D.: Fall speed measurement and high-resolution multi-angle photography of hydrometeors in free fall, Atmos. Meas. Tech., 5, 2625–2633, https://doi.org/10.5194/amt-5-2625-2012, 2012.
Global Hydrometeorology Resource Center: 2027-03-14 – Global Hydrometeorology Resource Center – CoreTrustSeal Requirements 2020–2022, DataverseNL V1 [data set], https://doi.org/10.34894/A8ADKU, 2024.
Greeney, C. M., Gifford M. D., and Salyards M. L.: Winter Test of Production All-Weather Precipitation Accumulation Gauge for ASOS 2003–2004. Ninth Symp. on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS), Amer. Meteor. Soc., San Diego, CA, 8.3, https://ams.confex.com/ams/Annual2005/techprogram/paper_82895.htm (last access: 9 September 2024), 2005.
Gultepe, I., Agelin-Chaab, M., Komar, J., Elfstrom, G., Boudala, F., and Zhou, B.: A meteorological supersite for aviation and cold weather applications, Pure Appl. Geophys., 176, 1977–2015, https://doi.org/10.1007/s00024-018-1880-3, 2019.
Helms, C. N., Munchak, S. J., Tokay, A., and Pettersen, C.: A comparative evaluation of snowflake particle shape estimation techniques used by the Precipitation Imaging Package (PIP), Multi-Angle Snowflake Camera (MASC), and Two-Dimensional Video Disdrometer (2DVD), Atmos. Meas. Tech., 15, 6545–6561, https://doi.org/10.5194/amt-15-6545-2022, 2022.
Hicks, A. and Notaroš, B. M.: Method for Classification of Snowflakes Based on Images by a Multi-Angle Snowflake Camera Using Convolutional Neural Networks, J. Atmos. Oceanic Technol., 36, 2267–2282, https://doi.org/10.1175/JTECH-D-19-0055.1, 2019.
Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D., Kojima, M., Oki, R., Nakamura, K., and Iguchi, T.: The Global Precipitation Measurement mission, Bull. Amer. Meteor. Soc., 95, 701–722, https://doi.org/10.1175/BAMS-D-13-00164.1, 2014.
Houze Jr, R. A., McMurdie, L. A., Petersen, W. A., Schwaller, M. R., Baccus, W., Lundquist, J. D., Mass, C. F., Nijssen, B., Rutledge, S. A., Hudak, D. R., and Tanelli, S.: The Olympic Mountains Experiment (OLYMPEX), Bull. Amer. Meteor. Soc., 98, 2167–2188, https://doi.org/10.1175/BAMS-D-16-0182.1, 2017.
Huang, G.-J., Kleinkort, C., Bringi, V. N., and Notaros, B. M.: Winter precipitation particle size distribution measurement by Multi-Angle Snowflake Camera, Atmos. Res., 198, 81–96, https://doi.org/10.1016/j.atmosres.2017.08.005, 2017.
Hurwitz, M. M., Baxter, S., Brown, B., Carman, J., Dale, J., Draper, C., Horsfall, F., Abel, M. R., Gerth, J., Kapnick, S., and Olheiser, C.: Six priorities for investment in snow research and product development, Bull. Amer. Meteor. Soc., 101, E2025–E2029, https://doi.org/10.1175/BAMS-D-20-0218.1, 2020.
Inglis, B., Tokay, A., Helms, C. N., Wolff, D. B., and Cerrai, D.: Radar Snowfall Estimation in Southern New England, 1st Symposium on Cloud Physics, 104th AMS Annual Meeting, Amer. Meteor. Soc., Baltimore, MD, P952, https://ui.adsabs.harvard.edu/abs/2024AMS...10436252I (last access: 6 August 2025), 2024.
Iowa Environmental Mesonet: ASOS Network, https://mesonet.agron.iastate.edu/request/download.phtml (last access: 13 July 2024), 2025
Kim, K., Bang, W., Chang, E.-C., Tapiador, F. J., Tsai, C.-L., Jung, E., and Lee, G.: Impact of wind pattern and complex topography on snow microphysics during International Collaborative Experiment for PyeongChang 2018 Olympic and Paralympic winter games (ICE-POP 2018), Atmos. Chem. Phys., 21, 11955–11978, https://doi.org/10.5194/acp-21-11955-2021, 2021.
Kleinkort, C., Huang, G.-J., Bringi, V. N., and Notaroš, B. M.: Visual Hull Method for Realistic 3D Particle Shape Reconstruction Based on High-Resolution Photographs of Snowflakes in Free Fall from Multiple Views, J. Atmos. Oceanic Technol., 34, 679–702, https://doi.org/10.1175/JTECH-D-16-0099.1, 2017.
Kristovich, D. A., Clark, R. D., Frame, J., Geerts, B., Knupp, K. R., Kosiba, K. A., Laird, N. F., Metz, N. D., Minder, J. R., Sikora, T. D., and Steenburgh, W. J.: The Ontario Winter Lake-Effect Systems field campaign: Scientific and educational adventures to further our knowledge and prediction of lake-effect storms, Bull. Amer. Meteor. Soc., 98, 315–332, https://doi.org/10.1175/BAMS-D-15-00034.1, 2017.
Kulie, M. S., Bennartz, R., Greenwald, T., Chen, Y., and Weng, F.: Uncertainties in microwave optical properties of frozen precipitation: Implications for remote sensing and data assimilation, J. Atmos. Sci., 67, 3471–3487, https://doi.org/10.1175/2010JAS3520.1, 2010.
Lazo, J. K., Hosterman, H. R., Sprague-Hilderbrand, J. M., and Adkins, J. E.: Impact-based decision support services and the socioeconomic impacts of winter storms, Bull. Amer. Meteor. Soc., 101, E626–E639, https://doi.org/10.1175/BAMS-D-18-0153.1, 2020.
Loeffler-Mang, M. and Joss, J.: An optical disdrometer for measuring size and velocity of hydrometeors, J. Atmos. Oceanic Technol., 17, 130–139, https://doi.org/10.1175/1520-0426(2000)017%3C0130:AODFMS%3E2.0.CO;2, 2000.
Loeffler-Mang, M. and Blahak, U.: Estimation of the equivalent radar reflectivity factor from measured snow size spectra, J. Appl. Meteor., 40, 843–849, https://doi.org/10.1175/1520-0450(2001)040%3C0843:EOTERR%3E2.0.CO;2, 2001.
Loftus, A.: GPM Ground Validation Ceilometer UConn, NASA Global Hydrometeorology Resource Center DAAC [data set], Huntsville, Alabama, U.S.A., https://doi.org/10.5067/GPMGV/UCONN/CEILO/DATA101, 2025.
Loftus, A. M., Tsay, S.-C., Pantina, P., Nguyen, C., Gabriel, P. M., Nguyen, X. A., Sayer, A. M., Tao, W.-K., and Matsui, T.: Coupled aerosol-cloud systems over northern Vietnam during 7-SEAS/BASELInE: A radar and modeling perspective, Aerosol Air Qual. Res., 16, 2768–2785, https://doi.org/10.4209/aaqr.2015.11.0631, 2016.
Loftus, A., Tsay, S.-C., Wolff, D., Cerrai, D., and Filipiak, B.: ACHIEVE W-Band Cloud Radar IMPACTS, NASA Global Hydrometeorology Resource Center DAAC [data set], Huntsville, Alabama, U.S.A. https://doi.org/10.5067/IMPACTS/WBAND/DATA101, 2024.
Key, C., Hicks, A., and Notaroš, B. M.: Advanced Deep Learning–Based Supervised Classification of Multi-Angle Snowflake Camera Images. J. Atmos. Oceanic Technol., 38, 1399–1414, https://doi.org/10.1175/JTECH-D-20-0189.1, 2021.
King, F., Pettersen, C., Bliven, L. F., Cerrai, D., Chibisov, A., Cooper, S. J., L'Ecuyer, T., Kulie, M. S., Leskinen, M., Mateling, M., and McMurdie, L.: A comprehensive Northern Hemisphere particle microphysics data set from the precipitation imaging package, Earth and Space Science, 11, e2024EA003538, https://doi.org/10.1029/2024EA003538, 2024.
King, F., Pettersen, C., Dolan, B., Shates, J., and Posselt, D.: Primary Modes of Northern Hemisphere Snowfall Particle Size Distributions, Journal of the Atmospheric Sciences, 81, 2093–2113, https://doi.org/10.1175/JAS-D-24-0076.1, 2024.
Maahn, M. and Kollias, P.: Improved Micro Rain Radar snow measurements using Doppler spectra post-processing, Atmos. Meas. Tech., 5, 2661–2673, https://doi.org/10.5194/amt-5-2661-2012, 2012.
Maglaras, G. J., Waldstreicher, J. S., Kocin, P. J., Gigi, A. F., and Marine, R. A.: Winter weather forecasting throughout the eastern United States. Part I: An overview, Wea. Forecasting, 10, 5–20, https://doi.org/10.1175/1520-0434(1995)010<0005:WWFTTE>2.0.CO;2., 1995.
Martinaitis, S. M., Cocks, S. B., Qi, Y., Kaney, B. T., Zhang, J., and Howard, K.: Understanding winter precipitation impacts on automated gauge observations within a real-time system, J. Hydrometeor., 16, 2345–2363, https://doi.org/10.1175/JHM-D-15-0020.1, 2015.
McMurdie, L. A., Heymsfield, G. M., Yorks, J. E., Braun, S. A., Skofronick-Jackson, G., Rauber, R. M., Yuter, S., Colle, B., McFarquhar, G. M., Poellot, M., and Novak, D. R.: Chasing snowstorms: The Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) campaign, Bull. Amer. Meteor. Soc., 103, E1243–E1269, https://doi.org/10.1175/BAMS-D-20-0246.1, 2022.
METEK MRR-2: Micro Rain Radar MRR | MRR-2, https://metek.de/product/mrr-2/, last access: 12 June 2024.
METEK MRR-PRO: Micro Rain Radar MRR | MRR-PRO, https://metek.de/product/mrr-pro/, last access: 12 June 2024.
Milani, L. and Kidd, C.: The State of Precipitation Measurements at Mid-to-High Latitudes, Atmosphere, 14, https://doi.org/10.3390/atmos14111677, 2023.
Miller, J. E.: Cyclogenesis in the Atlantic coastal region of the United States, J. Meteor., 3, 31–44, https://doi.org/10.1175/1520-0469(1946)003%3C0031:CITACR%3E2.0.CO;2, 1946.
Minder, J. R., Bassill, N., Fabry, F., French, J. R., Friedrich, K., Gultepe, I., Gyakum, J., Kingsmill, D. E., Kosiba, K., Lachapelle, M., and Michelson, D.: P-type Processes and Predictability: The Winter Precipitation Type Research Multiscale Experiment (WINTRE-MIX), Bull. Amer. Meteor. Soc., https://doi.org/10.1175/BAMS-D-22-0095.1, 2023.
Newman, A. J., Kucera, P. A., and Bliven, L. F.: Presenting the Snowflake Video Imager (SVI), J. Atmos. Oceanic Technol., 26, 167–179, https://doi.org/10.1175/2008JTECHA1148.1, 2009.
NOAA: Automated Surface Observing System user's guide, https://www.weather.gov/media/asos/aum-toc.pdf (last access: 12 December 2023), 1998.
NOAA National Centers for Environmental Information (NCEI): U.S. Billion-Dollar Weather and Climate Disasters, NCEI, https://doi.org/10.25921/stkw-7w73, 2023.
Northeast Regional Climate Center: NOWData, https://www.nrcc.cornell.edu/wxstation/nowdata.html (last access: 7 August 2024), 2025
Notaroš, B. M.: Meteorological Electromagnetics: Optical and Radar Measurements, Modeling, and Characterization of Snowflakes and Snow”, IEEE Antennas and Propagation Magazine, 63, 14–27, 2021.
Novak, D. R., Perfater, S. E., Demuth, J. L., Bieda III, S. W., Carbin, G., Craven, J., Erickson, M. J., Jeglum, M. E., Kastman, J., Nelson, J. A., and Rudack, D. E.: Innovations in Winter Storm Forecasting and Decision Support Services, Bull. Amer. Meteor. Soc., 104, E715–E735, https://doi.org/10.1175/BAMS-D-22-0065.1, 2023.
Petersen, W., L'Ecuyer, T., and Moisseev, D.: The NASA CloudSat/GPM Light Precipitation Validation Experiment (LPVEX), Earth Obs., 23, 4–8, 2011.
Petersen, W., Wolff, D., Chandrasekar, V., Roberts, J., and Case, J.: NASA Observations and Modeling during ICE-POP, KMA ICE-POP Meeting, Seoul, Republic of Korea, 27–30 November 2018, https://ntrs.nasa.gov/api/citations/20190001414/downloads/20190001414.pdf?attachment=true (last access: 2 October 2024), 2018.
Pettersen, C., Bliven, L. F., von Lerber, A., Wood, N. B., Kulie, M. S., Mateling, M. E., Moisseev, D. N., Munchak, S. J., Petersen, W. A., and Wolff, D. B.: The Precipitation Imaging Package: Assessment of microphysical and bulk characteristics of snow, Atmosphere, 11, 785, https://doi.org/10.3390/atmos11080785, 2020.
Pettersen, C., Bliven, L. F., Kulie, M. S., Wood, N. B., Shates, J. A., Anderson, J., Mateling, M. E., Petersen, W. A., von Lerber, A., and Wolff, D. B.: The Precipitation Imaging Package: Phase partitioning capabilities, Remote Sens., 13, 2183, https://doi.org/10.3390/rs13112183, 2021.
Ralph, F. M., Rauber, R. M., Jewett, B. F., Kingsmill, D. E., Pisano, P., Pugner, P., Rasmussen, R. M., Reynolds, D. W., Schlatter, T. W., Stewart, R. E., and Tracton, S.: Improving short-term (0–48 h) cool-season quantitative precipitation forecasting: Recommendations from a USWRP workshop, Bull. Amer. Meteor. Soc., 86, 1619–1632, https://doi.org/10.1175/BAMS-86-11-1619, 2015.
Rasmussen, R., Baker, B., Kochendorfer, J., Meyers, T., Landolt, S., Fischer, A. P., Black, J., Thériault, J. M., Kucera, P., Gochis, D., and Smith, C.: How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed, Bull. Amer. Meteor. Soc., 93, 811–829, https://doi.org/10.1175/BAMS-D-11-00052.1, 2012.
Shates, J. A., Pettersen, C., L'Ecuyer, T. S., and Kulie, M. S.: KAZR-CloudSat Analysis of Snowing Profiles at the North Slope of Alaska: Implications of the Satellite Radar Blind Zone, Journal of Geophysical Research: Atmospheres, 130, e2024JD042700, https://doi.org/10.1029/2024JD042700, 2025.
Skofronick-Jackson, G., Hudak, D., Petersen, W., Nesbitt, S. W., Chandrasekar, V., Durden, S., Gleicher, K. J., Huang, G. J., Joe, P., Kollias, P., and Reed, K. A.: Global Precipitation Measurement Cold Season Precipitation Experiment (GCPEx): For measurement's sake let it snow, Bull. Amer. Meteor. Soc., 96, 1719–1741, https://doi.org/10.1175/BAMS-D-13-00262.1, 2015.
Skofronick-Jackson, G., Petersen, W. A., Berg, W., Kidd, C., Stocker, E. F., Kirschbaum, D. B., Kakar, R., Braun, S. A., Huffman, G. J., Iguchi, T., and Kirstetter, P. E.: The Global Precipitation Measurement (GPM) mission for science and society, Bull. Amer. Meteor. Soc., 98, 1679–1695, https://doi.org/10.1175/BAMS-D-15-00306.1, 2017.
Thant, H.: GPM Ground Validation SMAS UConn, NASA Global Hydrometeorology Resource Center DAAC [data set], Huntsville, Alabama, U.S.A., https://doi.org/10.5067/GPMGV/UCONN/SMAS/DATA101, 2025a.
Thant, H.: GPM Ground Validation MASC UConn, NASA Global Hydrometeorology Resource Center DAAC [data set], Huntsville, Alabama, U.S.A., https://doi.org/10.5067/GPMGV/UCONN/MASC/DATA101, 2025b.
Thant, H., Huang, G.-J., Bringi, V. N., and Notaros, B. M.: Snowflake Measurement and Analysis System (SMAS). Proc. of the 2022 IEEE Int. Symp. on Antennas and Propagation, Institute of Electrical and Electronics Engineers, Denver, USA, 523–524, https://doi.org/10.1109/AP-S/USNC-URSI47032.2022.9886325, 2022.
Thant, H., Wolff, D. B., Bringi, V. N., and Notaros, B. M.: Wallops Flight Facility 2021–2022 Winter Snow Events: A Case Study Using Surface Instrumentation and Radars, Proc. of the 2023 IEEE Int. Symp. on Antennas and Propagation, Institute of Electrical and Electronics Engineers, Portland, USA, 1707–1708, https://doi.org/10.1109/USNC-URSI52151.2023.10237857, 2023a.
Thant, H., Zhizhin, M., and Notaros, B. M.: Machine Learning Classification of Snowflakes to Enhance Microphysical and Scattering Characterization of Snow, Proc. of the 2023 IEEE Int. Symp. on Antennas and Propagation, Institute of Electrical and Electronics Engineers, Portland, USA, 283–284, doi10.1109/USNC-URSI52151.2023.10237821, 2023b.
Tokay, A. and Wolff, D.: GPM Ground Validation Pluvio UConn, NASA Global Hydrometeorology Resource Center DAAC [data set], Huntsville, Alabama, U.S.A., https://doi.org/10.5067/GPMGV/UCONN/PLUVIO/DATA101, 2025a.
Tokay, A. and Wolff, D.: GPM Ground Validation Parsivel UConn, NASA Global Hydrometeorology Resource Center DAAC [data set], Huntsville, Alabama, U.S.A. https://doi.org/10.5067/GPMGV/UCONN/PARSIVEL/DATA101, 2025b.
Tokay, A. and Wolff, D.: GPM Ground Validation Tipping Buckets UConn, NASA Global Hydrometeorology Resource Center DAAC [data set], Huntsville, Alabama, U.S.A., https://doi.org/10.5067/GPMGV/UCONN/TIPPINGBUCKET, 2025c.
Tokay, A., Bashor, P. G., and McDowell, V. L.: Comparison of Rain Gauge Measurements in the Mid-Atlantic Region, J. Hydrometeor., 11, 553–565, https://doi.org/10.1175/2009JHM1137.1, 2010.
Tokay, A., Helms, C. N., Kim K., Gatlin, P. N., and Wolff, D. B.: Evaluation of SWER(Ze) Relationships by Precipitation Imaging Package (PIP) during ICE-POP 2018, J. Hydrometeor., 24, 691–708, https://doi.org/10.1175/JHM-D-22-0101.1, 2023.
White, S. G., Winans, L. J., and Fore, J. V.: Development of the All-Weather Precipitation Accumulation Gauge for ASOS. Preprints, Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Amer. Meteor. Soc., Seattle, WA, 7.3. http://ams.confex.com/ams/pdfpapers/69273.pdf (last access: 2 October 2024), 2004.
Williams, C. R.: Retrieving Raindrop Size Distribution Parameters and Vertical Air Motion from Micro Rain Radar Observations, 40th Radar Conference, Amer. Meteor. Soc., Minneapolis, MN, 28 August–1 September 2023, 11B.6, https://ams.confex.com/ams/40RADAR/meetingapp.cgi/Paper/426285 (last access: 1 March 2025), 2023.
Williams, C., Tokay, A., Pabla, C., Wolff, D., and Filipiak, B.: GPM Ground Validation Micro Rain Radar (MRR2) UConn, NASA Global Hydrometeorology Resource Center DAAC [data set], Huntsville, Alabama, U.S.A., https://doi.org/10.5067/GPMGV/UCONN/MRR2/DATA101, 2025.
Wolff, D., Helms, C., and Tokay, A.: GPM Ground Validation Precipitation Imaging Package (PIP) UConn, NASA Global Hydrometeorology Resource Center DAAC [data set], Huntsville, Alabama, U.S.A. https://doi.org/10.5067/GPMGV/UCONN/PIP/DATA101, 2025.
Vega, M. A., Chandrasekar, V., Carswell, J., Beauchamp, R. M., Schwaller, M. R., and Nguyen, C.: Salient features of the dual-frequency, dual-polarized, Doppler radar for remote sensing of precipitation, Radio Sci., 49, 1087–1105, https://doi.org/10.1002/2014RS005529, 2014.
You, Y., Wang, N.-Y., Ferraro, R., and Rudlosky, S.: Quantifying the snowfall detection performance of the GPM Microwave Imager channels over land, J. Hydrometeor., 18, 729–751, https://doi.org/10.1175/JHM-D-16-0190.1, 2017.
Zhang, J., Howard, K., Langston, C., Kaney, B., Qi, Y., Tang, L., Grams, H., Wang, Y., Cocks, S., Martinaitis, S., and Arthur, A.,: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities, Bull. Amer. Meteor. Soc., 97, 621–638, https://doi.org/10.1175/BAMS-D-14-00174.1, 2016.
Short summary
A GPM (Global Precipitation Measurement) Ground Validation field campaign in Connecticut collected high-resolution microphysical and radar observations of winter precipitation. This field campaign was unique because there was a wide-ranging suite of instruments capable of observing all phases of precipitation co-located with comparable measurements. The observations provide an opportunity to verify and understand complex winter precipitation events through satellite data, microphysical processes, and numerical model simulations.
A GPM (Global Precipitation Measurement) Ground Validation field campaign in Connecticut...
Altmetrics
Final-revised paper
Preprint