Articles | Volume 17, issue 10
https://doi.org/10.5194/essd-17-5571-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-5571-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Generation of global 1 km daily land surface–air temperature difference and sensible heat flux products from 2000 to 2020
Hui Liang
CORRESPONDING AUTHOR
Hubei Key Laboratory of Quantitative Remote Sensing of Land and Atmosphere, School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, 430079, China
Jockey Club STEM Lab of Quantitative Remote Sensing, Department of Geography, University of Hong Kong, Hong Kong, 999077, China
Bo Jiang
State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
Beijing Engineering Research Center for Global Land Remote Sensing Products, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
Hubei Key Laboratory of Quantitative Remote Sensing of Land and Atmosphere, School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, 430079, China
Feng Tian
Hubei Key Laboratory of Quantitative Remote Sensing of Land and Atmosphere, School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, 430079, China
Jockey Club STEM Lab of Quantitative Remote Sensing, Department of Geography, University of Hong Kong, Hong Kong, 999077, China
Jianglei Xu
Jockey Club STEM Lab of Quantitative Remote Sensing, Department of Geography, University of Hong Kong, Hong Kong, 999077, China
Wenyuan Li
Jockey Club STEM Lab of Quantitative Remote Sensing, Department of Geography, University of Hong Kong, Hong Kong, 999077, China
Yichuan Ma
Jockey Club STEM Lab of Quantitative Remote Sensing, Department of Geography, University of Hong Kong, Hong Kong, 999077, China
Fengjiao Zhang
Hubei Key Laboratory of Quantitative Remote Sensing of Land and Atmosphere, School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, 430079, China
Husheng Fang
Hubei Key Laboratory of Quantitative Remote Sensing of Land and Atmosphere, School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, 430079, China
Related authors
No articles found.
Yueming Zheng, Tao He, Yichuan Ma, and Xinyan Liu
EGUsphere, https://doi.org/10.5194/egusphere-2025-4787, https://doi.org/10.5194/egusphere-2025-4787, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Estimating surface radiation in the Arctic is difficult because cloud conditions are not well captured. We used an advanced learning-based method and a more accurate cloud dataset to correct radiation estimates that are biased by cloud fraction underestimation. The improved results greatly reduce long-standing errors and provide a new and more reliable dataset. This helps researchers better understand Arctic climate change and energy balance.
Yufang Zhang, Shunlin Liang, Han Ma, Tao He, Feng Tian, Guodong Zhang, and Jianglei Xu
Earth Syst. Sci. Data, 17, 5181–5207, https://doi.org/10.5194/essd-17-5181-2025, https://doi.org/10.5194/essd-17-5181-2025, 2025
Short summary
Short summary
Soil moisture (SM) plays a vital role in climate, agriculture, and hydrology, yet reliable long-term, seamless global datasets remain scarce. To fill this gap, we developed a four-decade seamless global daily 5 km SM product using multi-source datasets and deep learning models. This product has long-term coverage, spatial and temporal integrity, and high accuracy, making it a valuable resource for applications like SM trend analysis, drought monitoring, and assessment of vegetation responses.
Jianghai Peng, Bo Jiang, Hui Liang, Shaopeng Li, Jiakun Han, Thomas C. Ingalls, Jie Cheng, Yunjun Yao, Kun Jia, and Xiaotong Zhang
Atmos. Meas. Tech., 18, 2877–2898, https://doi.org/10.5194/amt-18-2877-2025, https://doi.org/10.5194/amt-18-2877-2025, 2025
Short summary
Short summary
We developed a new method to estimate how much heat the ocean surface receives from the atmosphere, which is important for understanding weather and climate. Using over 30 years of data from buoys around the world, we created a model that outperforms existing ones, especially under cloudy skies. Our results show that including detailed cloud information improves accuracy, making this method useful for global climate and ocean research.
Xinyan Liu, Tao He, Qingxin Wang, Xiongxin Xiao, Yichuan Ma, Yanyan Wang, Shanjun Luo, Lei Du, and Zhaocong Wu
Earth Syst. Sci. Data, 17, 2405–2435, https://doi.org/10.5194/essd-17-2405-2025, https://doi.org/10.5194/essd-17-2405-2025, 2025
Short summary
Short summary
This study addresses the challenge of how clouds affect the Earth's energy balance, which is vital for understanding climate change. We developed a new method to create long-term cloud radiative kernels to improve the accuracy of measurements of sunlight reaching the surface, which significantly reduces errors. Findings suggest that prior estimates of cloud cooling effects may have been overstated, emphasizing the need for better strategies to manage climate change impacts in the Arctic.
Bing Li, Shunlin Liang, Han Ma, Guanpeng Dong, Xiaobang Liu, Tao He, and Yufang Zhang
Earth Syst. Sci. Data, 16, 3795–3819, https://doi.org/10.5194/essd-16-3795-2024, https://doi.org/10.5194/essd-16-3795-2024, 2024
Short summary
Short summary
This study describes 1 km all-weather instantaneous and daily mean land surface temperature (LST) datasets on the global scale during 2000–2020. It is the first attempt to synergistically estimate all-weather instantaneous and daily mean LST data on a long global-scale time series. The generated datasets were evaluated by the observations from in situ stations and other LST datasets, and the evaluation indicated that the dataset is sufficiently reliable.
Xingyi Huang, Yuwei Yin, Luwei Feng, Xiaoye Tong, Xiaoxin Zhang, Jiangrong Li, and Feng Tian
Earth Syst. Sci. Data, 16, 3307–3332, https://doi.org/10.5194/essd-16-3307-2024, https://doi.org/10.5194/essd-16-3307-2024, 2024
Short summary
Short summary
The Tibetan Plateau, with its diverse vegetation ranging from forests to alpine grasslands, plays a key role in understanding climate change impacts. Existing maps lack detail or miss unique ecosystems. Our research, using advanced satellite technology and machine learning, produced the map TP_LC10-2022. Comparisons with other maps revealed TP_LC10-2022's excellence in capturing local variations. Our map is significant for in-depth ecological studies.
Xinyan Liu, Tao He, Shunlin Liang, Ruibo Li, Xiongxin Xiao, Rui Ma, and Yichuan Ma
Earth Syst. Sci. Data, 15, 3641–3671, https://doi.org/10.5194/essd-15-3641-2023, https://doi.org/10.5194/essd-15-3641-2023, 2023
Short summary
Short summary
We proposed a data fusion strategy that combines the complementary features of multiple-satellite cloud fraction (CF) datasets and generated a continuous monthly 1° daytime cloud fraction product covering the entire Arctic during the sunlit months in 2000–2020. This study has positive significance for reducing the uncertainties for the assessment of surface radiation fluxes and improving the accuracy of research related to climate change and energy budgets, both regionally and globally.
Yufang Zhang, Shunlin Liang, Han Ma, Tao He, Qian Wang, Bing Li, Jianglei Xu, Guodong Zhang, Xiaobang Liu, and Changhao Xiong
Earth Syst. Sci. Data, 15, 2055–2079, https://doi.org/10.5194/essd-15-2055-2023, https://doi.org/10.5194/essd-15-2055-2023, 2023
Short summary
Short summary
Soil moisture observations are important for a range of earth system applications. This study generated a long-term (2000–2020) global seamless soil moisture product with both high spatial and temporal resolutions (1 km, daily) using an XGBoost model and multisource datasets. Evaluation of this product against dense in situ soil moisture datasets and microwave soil moisture products showed that this product has reliable accuracy and more complete spatial coverage.
Aolin Jia, Shunlin Liang, Dongdong Wang, Lei Ma, Zhihao Wang, and Shuo Xu
Earth Syst. Sci. Data, 15, 869–895, https://doi.org/10.5194/essd-15-869-2023, https://doi.org/10.5194/essd-15-869-2023, 2023
Short summary
Short summary
Satellites are now producing multiple global land surface temperature (LST) products; however, they suffer from data gaps caused by cloud cover, seriously restricting the applications, and few products provide gap-free global hourly LST. We produced global hourly, 5 km, all-sky LST data from 2011 to 2021 using geostationary and polar-orbiting satellite data. Based on the assessment, it has high accuracy and can be used to estimate evapotranspiration, drought, etc.
Han Ma, Shunlin Liang, Changhao Xiong, Qian Wang, Aolin Jia, and Bing Li
Earth Syst. Sci. Data, 14, 5333–5347, https://doi.org/10.5194/essd-14-5333-2022, https://doi.org/10.5194/essd-14-5333-2022, 2022
Short summary
Short summary
The fraction of absorbed photosynthetically active radiation (FAPAR) is one of the essential climate variables. This study generated a global land surface FAPAR product with a 250 m resolution based on a deep learning model that takes advantage of the existing FAPAR products and MODIS time series of observation information. Direct validation and intercomparison revealed that our product better meets user requirements and has a greater spatiotemporal continuity than other existing products.
Rui Ma, Jingfeng Xiao, Shunlin Liang, Han Ma, Tao He, Da Guo, Xiaobang Liu, and Haibo Lu
Geosci. Model Dev., 15, 6637–6657, https://doi.org/10.5194/gmd-15-6637-2022, https://doi.org/10.5194/gmd-15-6637-2022, 2022
Short summary
Short summary
Parameter optimization can improve the accuracy of modeled carbon fluxes. Few studies conducted pixel-level parameterization because it requires a high computational cost. Our paper used high-quality spatial products to optimize parameters at the pixel level, and also used the machine learning method to improve the speed of optimization. The results showed that there was significant spatial variability of parameters and we also improved the spatial pattern of carbon fluxes.
Jianglei Xu, Shunlin Liang, and Bo Jiang
Earth Syst. Sci. Data, 14, 2315–2341, https://doi.org/10.5194/essd-14-2315-2022, https://doi.org/10.5194/essd-14-2315-2022, 2022
Short summary
Short summary
Land surface all-wave net radiation (Rn) is a key parameter in many land processes. Current products have drawbacks of coarse resolutions, large uncertainty, and short time spans. A deep learning method was used to obtain global surface Rn. A long-term Rn product was generated from 1981 to 2019 using AVHRR data. The product has the highest accuracy and a reasonable spatiotemporal variation compared to three other products. Our product will play an important role in long-term climate change.
Xueyuan Gao, Shunlin Liang, Dongdong Wang, Yan Li, Bin He, and Aolin Jia
Earth Syst. Dynam., 13, 219–230, https://doi.org/10.5194/esd-13-219-2022, https://doi.org/10.5194/esd-13-219-2022, 2022
Short summary
Short summary
Numerical experiments with a coupled Earth system model show that large-scale nighttime artificial lighting in tropical forests will significantly increase carbon sink, local temperature, and precipitation, and it requires less energy than direct air carbon capture for capturing 1 t of carbon, suggesting that it could be a powerful climate mitigation option. Side effects include CO2 outgassing after the termination of the nighttime lighting and impacts on local wildlife.
Xiaona Chen, Shunlin Liang, Lian He, Yaping Yang, and Cong Yin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-279, https://doi.org/10.5194/essd-2021-279, 2021
Preprint withdrawn
Short summary
Short summary
The present study developed a 39 year consistent 8-day 0.05 degree gap-free SCE dataset over the NH for the period 1981–2019 as part of the Global LAnd Surface Satellite dataset (GLASS) product suite based on the NOAA AVHRR-SR CDR and several contributory datasets. Compared with published SCE datasets, GLASS SCE has several advantages in snow cover studies, including long time series, finer spatial resolution (especially for years before 2000), and complete spatial coverage.
Diyang Cui, Shunlin Liang, Dongdong Wang, and Zheng Liu
Earth Syst. Sci. Data, 13, 5087–5114, https://doi.org/10.5194/essd-13-5087-2021, https://doi.org/10.5194/essd-13-5087-2021, 2021
Short summary
Short summary
Large portions of the Earth's surface are expected to experience changes in climatic conditions. The rearrangement of climate distributions can lead to serious impacts on ecological and social systems. Major climate zones are distributed in a predictable pattern and are largely defined following the Köppen climate classification. This creates an urgent need to compile a series of Köppen climate classification maps with finer spatial and temporal resolutions and improved accuracy.
Yan Chen, Shunlin Liang, Han Ma, Bing Li, Tao He, and Qian Wang
Earth Syst. Sci. Data, 13, 4241–4261, https://doi.org/10.5194/essd-13-4241-2021, https://doi.org/10.5194/essd-13-4241-2021, 2021
Short summary
Short summary
This study used remotely sensed and assimilated data to estimate all-sky land surface air temperature (Ta) using a machine learning method, and developed an all-sky 1 km daily mean land Ta product for 2003–2019 over mainland China. Validation results demonstrated that this dataset has achieved satisfactory accuracy and high spatial resolution simultaneously, which fills the current dataset gap in this field and plays an important role in studies of climate change and the hydrological cycle.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Diyang Cui, Shunlin Liang, Dongdong Wang, and Zheng Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-53, https://doi.org/10.5194/essd-2021-53, 2021
Preprint withdrawn
Short summary
Short summary
The Köppen-Geiger climate classification has been widely applied in climate change and ecology studies to characterize climatic conditions. We present a new 1-km global dataset of Köppen-Geiger climate classification and bioclimatic variables for historical and future climates. The new climate maps offer higher classification accuracy, correspond well with distributions of vegetation and topographic features, and demonstrate the ability to identify recent and future changes in climate zones.
Xiongxin Xiao, Shunlin Liang, Tao He, Daiqiang Wu, Congyuan Pei, and Jianya Gong
The Cryosphere, 15, 835–861, https://doi.org/10.5194/tc-15-835-2021, https://doi.org/10.5194/tc-15-835-2021, 2021
Short summary
Short summary
Daily time series and full space-covered sub-pixel snow cover area data are urgently needed for climate and reanalysis studies. Due to the fact that observations from optical satellite sensors are affected by clouds, this study attempts to capture dynamic characteristics of snow cover at a fine spatiotemporal resolution (daily; 6.25 km) accurately by using passive microwave data. We demonstrate the potential to use the passive microwave and the MODIS data to map the fractional snow cover area.
Jin Ma, Ji Zhou, Frank-Michael Göttsche, Shunlin Liang, Shaofei Wang, and Mingsong Li
Earth Syst. Sci. Data, 12, 3247–3268, https://doi.org/10.5194/essd-12-3247-2020, https://doi.org/10.5194/essd-12-3247-2020, 2020
Short summary
Short summary
Land surface temperature is an important parameter in the research of climate change and many land surface processes. This article describes the development and testing of an algorithm for generating a consistent global long-term land surface temperature product from 20 years of NOAA AVHRR radiance data. The preliminary validation results indicate good accuracy of this new long-term product, which has been designed to simplify applications and support the scientific research community.
Yi Zheng, Ruoque Shen, Yawen Wang, Xiangqian Li, Shuguang Liu, Shunlin Liang, Jing M. Chen, Weimin Ju, Li Zhang, and Wenping Yuan
Earth Syst. Sci. Data, 12, 2725–2746, https://doi.org/10.5194/essd-12-2725-2020, https://doi.org/10.5194/essd-12-2725-2020, 2020
Short summary
Short summary
Accurately reproducing the interannual variations in vegetation gross primary production (GPP) is a major challenge. A global GPP dataset was generated by integrating the regulations of several major environmental variables with long-term changes. The dataset can effectively reproduce the spatial, seasonal, and particularly interannual variations in global GPP. Our study will contribute to accurate carbon flux estimates at long timescales.
Cited articles
Ai, L. and Guo, W.: The desertification over North China through comparing the long-time variation of air temperature and 0 cm soil temperature, Acta Geogr. Sin., 108–116, https://doi.org/10.11821/xb20037s013, 2003.
Anderson, M. C., Norman, J. M., Diak, G. R., Kustas, W. P., and Mecikalski, J. R.: A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing, Remote Sens. Environ., 60, 195–216, https://doi.org/10.1016/S0034-4257(96)00215-5, 1997.
Anderson, M., Norman, J., Mecikalski, J., Otkin, J., and Kustas, W.: A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation, J. Geophys. Res., 112, https://doi.org/10.1029/2006JD007506, 2007.
Asdak, C., Jarvis, P. G., van Gardingen, P., and Fraser, A.: Rainfall interception loss in unlogged and logged forest areas of Central Kalimantan, Indonesia, J. Hydrol., 206, 237–244, https://doi.org/10.1016/S0022-1694(98)00108-5, 1998.
Ashish Vaswani, N. S., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I.: Attention Is All You Need, Advances in Neural Information Processing Systems, arXiv [preprint], https://doi.org/10.48550/arXiv.1706.03762, 2017.
Babar, B., Luppino, L. T., Boström, T., and Anfinsen, S. N.: Random forest regression for improved mapping of solar irradiance at high latitudes, Solar Energy, 198, 81–92, https://doi.org/10.1016/j.solener.2020.01.034, 2020.
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, J., Oechel, W., and Richardson, F.: FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem–Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities, American Meteorological Society, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 2001.
Bartlett, M. G., Chapman, D. S., and Harris, R. N.: A Decade of Ground–Air Temperature Tracking at Emigrant Pass Observatory, Utah, J. Climate, 19, 3722–3731, https://doi.org/10.1175/JCLI3808.1, 2006.
Beamesderfer, E. R., Biraud, S. C., Brunsell, N. A., Friedl, M. A., Helbig, M., Hollinger, D. Y., Milliman, T., Rahn, D. A., Scott, R. L., Stoy, P. C., Diehl, J. L., and Richardson, A. D.: The role of surface energy fluxes in determining mixing layer heights, Agr. Forest Meteorol., 342, https://doi.org/10.1016/j.agrformet.2023.109687, 2023.
Beljaars, A.: The parametrization of surface fluxes in large-scale models under free convection, Q. J. Roy. Meteorol. Soc., 121, 255-270, https://doi.org/10.1002/qj.49712152203, 1995.
Berrisford, P., Dee, D. P., Poli, P., Brugge, R., Fielding, M., Fuentes, M., Kållberg, P. W, Kobayashi, S., and Uppala, S.: The ERA-Interim archive Version 2.0, report, https://www.ecmwf.int/en/elibrary/73682-era-interim-archive-version-20 (last access date: 18 October 2025), 2011.
Breiman, L.: Bagging predictors, Mach. Learn., 24, 123–140, https://doi.org/10.1023/A:1018054314350, 1996.
Brutsaert, W.: Evaporation into the atmosphere: theory, history and applications, Springer Science & Business Media, https://doi.org/10.1029/EO063i051p01223-04, 2013.
Buchard, V., Randles, C. A., da Silva, A. M., Darmenov, A., Colarco, P. R., Govindaraju, R., Ferrare, R., Hair, J., Beyersdorf, A. J., Ziemba, L. D., and Yu, H.: The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies, J. Climate, 30, 6851–6872, https://doi.org/10.1175/jcli-d-16-0613.1, 2017.
Cermak, V. and Bodri, L.: Attribution of precipitation changes on ground–air temperature offset: Granger causality analysis, Int. J. Earth Sci., 107, https://doi.org/10.1007/s00531-016-1351-y, 2016.
Chehbouni, A., Nouvellon, Y., Lhomme, J. P., Watts, C., Boulet, G., Kerr, Y. H., Moran, M. S., and Goodrich, D. C.: Estimation of surface sensible heat flux using dual angle observations of radiative surface temperature, Agr. Forest Meteorol., 108, 55–65, https://doi.org/10.1016/S0168-1923(01)00221-0, 2001.
Chen, Y., Liang, S., Ma, H., Li, B., He, T., and Wang, Q.: An all-sky 1 km daily land surface air temperature product over mainland China for 2003–2019 from MODIS and ancillary data, Earth Syst. Sci. Data, 13, 4241–4261, https://doi.org/10.5194/essd-13-4241-2021, 2021.
Cheng, J. and Liang, S.: Estimating global land surface broadband thermal-infrared emissivity using advanced very high resolution radiometer optical data, Int. J. Digit. Earth, 6, 34, https://doi.org/10.1080/17538947.2013.783129, 2013.
Cheng, J., Liang, S., Verhoef, W., Shi, L., and Liu, Q.: Estimating the Hemispherical Broadband Longwave Emissivity of Global Vegetated Surfaces Using a Radiative Transfer Model, IEEE T. Geosci. Remote, 54, 905, https://doi.org/10.1109/TGRS.2015.2469535, 2016.
Colaizzi, P., Agam, N., Tolk, J., Evett, S., Howell, T., Gowda, P., O'Shaughnessy, S., Kustas, W., and Anderson, M.: Two-Source Energy Balance Model to Calculate E, T, and ET: Comparison of Priestley-Taylor and Penman-Monteith Formulations and Two Time Scaling Methods, T. ASABE, 57, 479–498, https://doi.org/10.13031/trans.57.10423, 2014.
Costa-Filho, E., Chávez, J. L., Zhang, H., and Andales, A. A.: An optimized surface aerodynamic temperature approach to estimate maize sensible heat flux and evapotranspiration, Agr. Forest Meteorol., 311, https://doi.org/10.1016/j.agrformet.2021.108683, 2021.
Danielson, J. and Gesch, D.: Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010), USGS, https://doi.org/10.3133/ofr20111073, 2011.
Decker, M., Brunke, M. A., Wang, Z., Sakaguchi, K., Zeng, X., and Bosilovich, M. G.: Evaluation of the Reanalysis Products from GSFC, NCEP, and ECMWF Using Flux Tower Observations, J. Climate, 25, 1916–1944, https://doi.org/10.1175/JCLI-D-11-00004.1, 2012.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Feng, H. and Zou, B.: A greening world enhances the surface-air temperature difference, Sci. Total Environ., 658, 385–394, https://doi.org/10.1016/j.scitotenv.2018.12.210, 2019.
Gelaro, R., McCarty, W., Suarez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A., Gu, W., Kim, G. K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Ghent, D., Veal, K. L., Taylor, C., and Gallego-Elvira, B.: Relating trends in land surface skin-air temperature difference to soil moisture and evapotranspiration, in: AGU Fall Meeting Abstracts, 1 December 2015, 2015AGUFM.H31F1492G, 2015.
Gordon, L., Steffen, W., Jönsson, B., Folke, C., Falkenmark, M., and Johannessen, Å.: Human Modification of Global Water Vapor Flows From the Land Surface, P. Natl. Acad. Sci. USA, 102, 7612–7617, https://doi.org/10.1073/pnas.0500208102, 2005.
Gu, X., Zhang, Y., and Huang, D.: Temporal and spatial characteristics of soil-air temperature difference (Ts–Ta) in southeast Guizhou last 50 years, Chin. J. Agrometeorol., 33, 71–77+85, 2012.
Hatfield, J., Reginato, R., and Idso, S. B.: Evaluation of canopy temperature–evapotranspiration models over various crops, Agr. Forest Meteorol., 32, 41–53, https://doi.org/10.1016/0168-1923(84)90027-3, 1984.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hinton, G., Osindero, S., and Teh, Y.-W.: A Fast Learning Algorithm for Deep Belief Nets, Neural Comput., 18, 1527–1554, https://doi.org/10.1162/neco.2006.18.7.1527, 2006.
Jia, K., Liang, S., Liu, S., Li, Y., Xiao, Z., Yao, Y., Jiang, B., Zhao, X., Wang, X., Xu, S., and Cui, J.: Global Land Surface Fractional Vegetation Cover Estimation Using General Regression Neural Networks from MODIS Surface Reflectance, IEEE T. Geosci. Remote, 53, 4787, https://doi.org/10.1109/TGRS.2015.2409563, 2015.
Jiang, B., Zhang, Y., Liang, S., Wohlfahrt, G., Arain, A., Cescatti, A., Georgiadis, T., Jia, K., Kiely, G., Lund, M., Montagnani, L., Magliulo, V., Ortiz, P. S., Oechel, W., Vaccari, F. P., Yao, Y., and Zhang, X.: Empirical estimation of daytime net radiation from shortwave radiation and ancillary information, Agr. Forest Meteorol., 211–212, 23–36, https://doi.org/10.1016/j.agrformet.2015.05.003, 2015.
Jiang, B., Han, J., Liang, H., Liang, S., Yin, X., Peng, J., He, T., and Ma, Y.: The Hi-GLASS all-wave daily net radiation product: Algorithm and product validation, Sci. Remote Sens., 7, https://doi.org/10.1016/j.srs.2023.100080, 2023.
Jiang, K., Pan, Z., Pan, F., Wang, J., Han, G., Song, Y., Zhang, Z., Huang, N., Ma, S., Chen, X., Zhang, Z., and Men, J.: The global spatiotemporal heterogeneity of land surface-air temperature difference and its influencing factors, Sci. Total Environ., 838, 156214, https://doi.org/10.1016/j.scitotenv.2022.156214, 2022.
Jiao, L., Xu, G., Jin, J., Dong, T., Liu, J., Wu, Y., and Zhang, B.: Remotely sensed urban environmental indices and their economic implications, Habitat Int., 67, 22–32, https://doi.org/10.1016/j.habitatint.2017.06.012, 2017.
Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls, G., Papale, D., Schwalm, C., Tramontana, G., and Reichstein, M.: The FLUXCOM ensemble of global land-atmosphere energy fluxes, Sci. Data, 6, 74, https://doi.org/10.1038/s41597-019-0076-8, 2019.
Kato, S. and Yamaguchi, Y.: Analysis of urban heat-island effect using ASTER and ETM+ Data: Separation of anthropogenic heat discharge and natural heat radiation from sensible heat flux, Remote Sens. Environ., 99, 44–54, https://doi.org/10.1016/j.rse.2005.04.026, 2005.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.: The JRA-55 Reanalysis: General Specifications and Basic Characteristics, J. Meteorol. Soc. Jon. Ser. II, 93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015.
Kustas, W. and Norman, J.: Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover, Agr. Forest Meteorol., 94, 13–29, https://doi.org/10.1016/S0168-1923(99)00005-2, 1999.
Lensky, I. M., Dayan, U., and Helman, D.: Synoptic Circulation Impact on the Near-Surface Temperature Difference Outweighs That of the Seasonal Signal in the Eastern Mediterranean, J. Geophys. Res.-Atmos., 123, 11333–11347, https://doi.org/10.1029/2017jd027973, 2018.
Li, B., Liang, S., Ma, H., Dong, G., Liu, X., He, T., and Zhang, Y.: Generation of global 1 km all-weather instantaneous and daily mean land surface temperatures from MODIS data, Earth Syst. Sci. Data, 16, 3795–3819, https://doi.org/10.5194/essd-16-3795-2024, 2024.
Li, S., Jiang, B., Peng, J., Liang, H., Han, J., Yao, Y., Zhang, X., Cheng, J., Zhao, X., Liu, Q., and Jia, K.: Estimation of the All-Wave All-Sky Land Surface Daily Net Radiation at Mid-Low Latitudes from MODIS Data Based on ERA5 Constraints, Remote Sens., 14, 33, https://doi.org/10.3390/rs14010033, 2022a.
Li, S., Jiang, B., Liang, S., Peng, J., Liang, H., Han, J., Yin, X., Yao, Y., Zhang, X., Cheng, J., Zhao, X., Liu, Q., and Jia, K.: Evaluation of nine machine learning methods for estimating daily land surface radiation budget from MODIS satellite data, Int. J. Digit. Earth, 15, 1784–1816, https://doi.org/10.1080/17538947.2022.2130460, 2022b.
Li, T., Shen, H., Yuan, Q., Zhang, X., and Zhang, L.: Estimating Ground-Level PM2.5 by Fusing Satellite and Station Observations: A Geo-Intelligent Deep Learning Approach, Geophys. Res. Lett., 44, https://doi.org/10.1002/2017gl075710, 2017.
Liang, H., Jiang, B., Liang, S., Peng, J., Li, S., Han, J., Yin, X., Cheng, J., Jia, K., Liu, Q., Yao, Y., Zhao, X., and Zhang, X.: A global long-term ocean surface daily/0.05° net radiation product from 1983–2020, Sci. Data, 9, https://doi.org/10.1038/s41597-022-01419-x, 2022.
Liang, H., Jiang, B., Peng, J., Li, S., Han, J., and Yin, X.: Estimating daily surface downward shortwave radiation over rugged terrain without bright surface at 30 m on clear-sky days using CERES data, Int. J. Digit. Earth, 16, 4317–4345, https://doi.org/10.1080/17538947.2023.2263421, 2023.
Liang, H., Jiang, B., Liang, S., Wen, J., He, T., Zhang, X., Peng, J., Li, S., Han, J., and Yin, X.: A Novel Terrain Correction Sinusoidal Model for Improving Estimation of Daily Clear-Sky Downward Shortwave Radiation, IEEE T. Geosci. Remote, 62, 1–15, https://doi.org/10.1109/tgrs.2024.3452791, 2024a.
Liang, H., Liang, S., Jiang, B., He, T., Tian, F., Xu, J., Li, W., Zhang, F., and Fang, H.: Global 1 km daily land surface–air temperature difference and sensible heat flux products from 2000 to 2020, Zenodo [data set], https://doi.org/10.5281/zenodo.14986255, 2025a.
Liang, S., Cheng, J., Jia, K., Jiang, B., Liu, Q., Xiao, Z., Yao, Y., Yuan, W., Zhang, X., Zhao, X., and Zhou, J.: The global land surface satellite (GLASS) product suite, B. Am. Meteorol. Soc., 102, E323, https://doi.org/10.1175/BAMS-D-18-0341.1, 2021.
Liang, S., He, T., Cheng, J., Jiang, B., Jin, H., Li, A., Li, S., Liu, L., Liu, X., Ma, H., Song, D.-X., Sun, L., Yao, Y., Yuan, W., Zhang, Y., Tian, F., and Li, L.: An overview of the high-resolution global LAnd surface satellite (Hi-GLASS) products suite, Sci. Remote Sens., 12, https://doi.org/10.1016/j.srs.2025.100263, 2025b.
Liang, S., He, T., Huang, J., Jia, A., Zhang, Y., Cao, Y., Chen, X., Chen, X., Cheng, J., Jiang, B., Jin, H., Li, A., Li, S., Li, X., Liu, L., Liu, X., Ma, H., Ma, Y., Song, D.-X., Sun, L., Yao, Y., Yuan, W., Zhang, G., Zhang, Y., and Song, L.: Advancements in high-resolution land surface satellite products: A comprehensive review of inversion algorithms, products and challenges, Sci. Remote Sens., 10, https://doi.org/10.1016/j.srs.2024.100152, 2024b.
Liao, Y., Chen, D., and Liu, Q.: The spatiotemporal characteristics and long-term trends of surface-air temperatures difference in China. Advances in Climate Change Research, Adv. Clim. Change Res., 15, 374–384, https://doi.org/10.12006/j.issn.1673-1719.2018.199, 2019.
Lim, B., Arik, S., Loeff, N., and Pfister, T.: Temporal Fusion Transformers for interpretable multi-horizon time series forecasting, Int. J. Forecast., 37, https://doi.org/10.1016/j.ijforecast.2021.03.012, 2021.
Liu, S., Xu, Z., Wang, W., Jia, Z., Zhu, M., Bai, J., and Wang, J.: A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance problem, Hydrol. Earth Syst. Sci., 15, 1291–1306, https://doi.org/10.5194/hess-15-1291-2011, 2011.
Liu, S., Li, X., Xu, Z., Che, T., Xiao, Q., Ma, M., Liu, Q., Jin, R., Guo, J., Wang, L., Wang, W., Qi, Y., Li, H., Xu, T., Ran, Y., Hu, X., Shi, S., Zhu, Z., Tan, J., Zhang, Y., and Ren, Z.: The Heihe Integrated Observatory Network: A Basin-Scale Land Surface Processes Observatory in China, Vadose Zone J., 17, https://doi.org/10.2136/vzj2018.04.0072, 2018.
Liu, Y., Xu, X., and Shi, X.: Distribution of Differences between Ground and Air Temperature in Spring and Its Impact on Precipitation in Mid-Lower Reaches of Yangtze River, Meteorol. Sci. Technol., 37, 301–305, 2009.
Lyu, H., Lu, H., and Mou, L.: Learning a Transferable Change Rule from a Recurrent Neural Network for Land Cover Change Detection, Remote Sens., 8, 506, https://doi.org/10.3390/rs8060506, 2016.
Ma, H. and Liang, S.: Development of the GLASS 250-m leaf area index product (version 6) from MODIS data using the bidirectional LSTM deep learning model, Remote Sens. Environ., 273, https://doi.org/10.1016/j.rse.2022.112985, 2022.
Mauder, M., Jung, M., Stoy, P., Nelson, J., and Wanner, L.: Energy balance closure at FLUXNET sites revisited, Agr. Forest Meteorol., 358, https://doi.org/10.1016/j.agrformet.2024.110235, 2024.
Mito, C. O., Boiyo, R. K., and Laneve, G.: A simple algorithm to estimate sensible heat flux from remotely sensed MODIS data, Int. J. Remote Sens., 33, 6109–6121, https://doi.org/10.1080/01431161.2012.680616, 2012.
Monin, A. S. and Obukhov, A. M.: Basic laws of turbulent mixing in the surface layer of the atmosphere, Trudy Geofizicheskogo Instituta Akademii Nauk SSSR, 24, 163–187, 1954.
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.
Nayak, H. P., Nayak, S., Maity, S., Patra, N., Singh, K. S., and Dutta, S.: Sensitivity of Land Surface Processes and Its Variation during Contrasting Seasons over India, Atmosphere, 13, https://doi.org/10.3390/atmos13091382, 2022.
Pearson, K.: IV. Mathematical contributions to the theory of evolution. – V. On the reconstruction of the stature of prehistoric races, Philos. T. Roy. Soc. Lond. A, 192, 169–244, https://doi.org/10.1098/rsta.1899.0004, 1896.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., and Louppe, G.: Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825−-2830, 2012.
Prakash, S., Shati, F., Norouzi, H., and Blake, R.: Observed differences between near-surface air and skin temperatures using satellite and ground-based data, Theor. Appl. Climatol., 137, 587–600, https://doi.org/10.1007/s00704-018-2623-1, 2018.
Qiang, Z., Zhang, J., Qiao, J., and Wang, S.: Relationship of atmospheric boundary layer depth with thermodynamic processes at the land surface in arid regions of China, Sci. China Earth Sci., 54, 1586–1594, https://doi.org/10.1007/s11430-011-4207-0, 2011.
Qu, Y., Liu, Q., Liang, S., Wang, L., Liu, N., and Liu, S.: Direct-estimation algorithm for mapping daily land-surface broadband albedo from modis data, IEEE T. Geosci. Remote, 52, 907, https://doi.org/10.1109/TGRS.2013.2245670, 2014.
Rehman, S., Iqbal, Z., Qureshi, R., Khan, A. M., Qaseem, M. F., and Siddiqui, M. H.: Bioclimatic and remote sensing factors are better key indicators than local topography and soil: Vegetation composition variability in forests of Pakistan's Spin Ghar Mountain range, Ecol. Indic., 163, 112111, https://doi.org/10.1016/j.ecolind.2024.112111, 2024.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data Assimilation System, B. Am. Meteorol. Soc., 85, 381–394, https://doi.org/10.1175/bams-85-3-381, 2004.
Seguin, B., Baelz, S., Monget, J.-M., and Petit, V.: Utilisation de la thermographie IR pour l'estimation de l'évaporation régionale II. – Résultats obtenus à partir des données de satellite, Agronomie, 2, 113–115, https://doi.org/10.1051/agro:19820202, 1982a.
Seguin, B., Baelz, S., Monget, J.-M., and Petit, V.: Utilisation de la thermographie IR pour l'estimation de l'évaporation régionale I. Mise au point méthodologique sur le site de la Crau, Agronomie, 2, 7–16, https://doi.org/10.1051/agro:19820102, 1982b.
Shen, H., Li, T., Yuan, Q., and Zhang, L.: Estimating Regional Ground-Level PM2.5 Directly From Satellite Top-Of-Atmosphere Reflectance Using Deep Belief Networks, J. Geophys. Res.-Atmos., 123, https://doi.org/10.1029/2018JD028759, 2018.
Shen, H., Jiang, Y., Li, T., Cheng, Q., Zeng, C., and Zhang, L.: Deep learning-based air temperature mapping by fusing remote sensing, station, simulation and socioeconomic data, Remote Sens. Environ., 240, 111692, https://doi.org/10.1016/j.rse.2020.111692, 2020.
Siemann, A. L., Chaney, N., and Wood, E. F.: Development and Validation of a Long-Term, Global, Terrestrial Sensible Heat Flux Dataset, J. Climate, 31, 6073–6095, https://doi.org/10.1175/JCLI-D-17-0732.1, 2018.
Stewart, J. B., Kustas, W. P., Humes, K. S., Nichols, W. D., Moran, M. S., and de Bruin, H. A. R.: Sensible Heat Flux-Radiometric Surface Temperature Relationship for Eight Semiarid Areas, J. Appl. Meteorol. Clim., 33, 1110–1117, https://doi.org/10.1175/1520-0450(1994)033<1110:SHFRST>2.0.CO;2, 1994.
Sun, T., Sun, R., and Chen, L.: The Trend Inconsistency between Land Surface Temperature and Near Surface Air Temperature in Assessing Urban Heat Island Effects, Remote Sens., 12, https://doi.org/10.3390/rs12081271, 2020.
Tarek, M., Brissette, F. P., and Arsenault, R.: Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America, Hydrol. Earth Syst. Sci., 24, 2527–2544, https://doi.org/10.5194/hess-24-2527-2020, 2020.
Tay, Y., Dehghani, M., Bahri, D., and Metzler, D.: Efficient transformers: A survey, arXiv [preprint], arXiv:2009.06732, https://doi.org/10.48550/arXiv.2009.06732, 2020.
Timmermans, W. J., Kustas, W. P., Anderson, M. C., and French, A. N.: An intercomparison of the Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB) modeling schemes, Remote Sens. Environ., 108, 369–384, https://doi.org/10.1016/j.rse.2006.11.028, 2007.
Trenberth, K. E., Fasullo, J. T., and Kiehl, J. T.: Earth's Global Energy Budget, B. Am. Meteorol. Soc., 90, 311–323, https://doi.org/10.1175/2008BAMS2634.1, 2009.
Twine, T., Kustas, W. P., Norman, J., Cook, D., Houser, P., Teyers, T. P., Prueger, J., Starks, P., and Wesely, M.: Correcting Eddy-Covariance Flux Underestimates over a Grassland, Agr. Forest Meteorol., 103, https://doi.org/10.1016/S0168-1923(00)00123-4, 2000.
Wang, K., Zhou, X., and Liiu, J.: The Effects of Comples Terrain on the Computed Surface Solar short-wave Radiation, Chin. J. Atmos. Sci., 28, 625–633, https://doi.org/10.3878/j.issn.1006-9895.2004.04.14, 2004.
Wang, X., Chen, D., Pang, G., Ou, T., Yang, M., and Wang, M.: A climatology of surface–air temperature difference over the Tibetan Plateau: Results from multi-source reanalyses, Int. J. Climatol., 40, 6080–6094, https://doi.org/10.1002/joc.6568, 2020.
Watts, C. J., Chehbouni, A., Rodríguez, J.-C., Kerr, Y. H., Hartogensis, O., and de Bruin, H. A. R.: Comparison of sensible heat flux estimates using AVHRR with scintillometer measurements over semi-arid grassland in northwest Mexico, Agricultural and Forest Meteorology, 105, 81–89, https://doi.org/10.1016/S0168-1923(00)00188-X, 2000.
Wei, X., Huang, Q., Huang, S., Leng, G., Qu, Y., Deng, M., Han, Z., Zhao, J., Liu, D., and Bai, Q.: Assessing the feedback relationship between vegetation and soil moisture over the Loess Plateau, China, Ecol. Indic., 134, 108493, https://doi.org/10.1016/j.ecolind.2021.108493, 2022.
Wulfmeyer, V., Pineda, J. M. V., Otte, S., Karlbauer, M., Butz, M. V., Lee, T. R., and Rajtschan, V.: Estimation of the Surface Fluxes for Heat and Momentum in Unstable Conditions with Machine Learning and Similarity Approaches for the LAFE Data Set, Bound.-Lay. Meteorol., 186, 337–371, https://doi.org/10.1007/s10546-022-00761-2, 2022.
Xie, Z., Yao, Y., Zhang, X., Liang, S., Fisher, J. B., Chen, J., Jia, K., Shang, K., Yang, J., Yu, R., Guo, X., Liu, L., Ning, J., and Zhang, L.: The Global LAnd Surface Satellite (GLASS) evapotranspiration product Version 5.0: Algorithm development and preliminary validation, J. Hydrol., 610, https://doi.org/10.1016/j.jhydrol.2022.127990, 2022.
Xin, Y., Liu, J., Liu, X., Liu, G., Cheng, X., and Chen, Y.: Reduction of uncertainties in surface heat flux over the Tibetan Plateau from ERA-Interim to ERA5, Int. J. Climatol., 42, 6277–6292, https://doi.org/10.1002/joc.7589, 2022.
Xiong, C., Ma, H., Liang, S., He, T., Zhang, Y., Zhang, G., and Xu, J.: Improved global 250 m 8-day NDVI and EVI products from 2000–2021 using the LSTM model, Sci. Data, 10, https://doi.org/10.1038/s41597-023-02695-x, 2023.
Xu, J., Liang, S., Ma, H., and He, T.: Generating 5 km resolution 1981–2018 daily global land surface longwave radiation products from AVHRR shortwave and longwave observations using densely connected convolutional neural networks, Remote Sens. Environ., 280, https://doi.org/10.1016/j.rse.2022.113223, 2022.
Yan, X., Li, J., Smith, A., Yang, D., Ma, T., Su, Y., and Shao, J.: Evaluation of machine learning methods and multi-source remote sensing data combinations to construct forest above-ground biomass models, Int. J. Digit. Earth, 16, 4471–4491, https://doi.org/10.1080/17538947.2023.2270459, 2023.
Yang, S., Zhang, X., Guan, S., Zhao, W., Duan, Y., Yao, Y., Jia, K., and Jiang, B.: A review and comparison of surface incident shortwave radiation from multiple data sources: satellite retrievals, reanalysis data and GCM simulations, Int. J. Digit. Earth, 16, 1332–1357, https://doi.org/10.1080/17538947.2023.2198262, 2023.
Yin, X., Jiang, B., Liang, S., Li, S., Zhao, X., Wang, Q., Xu, J., Han, J., Liang, H., Zhang, X., Liu, Q., Yao, Y., Jia, K., and Xie, X.: Significant discrepancies of land surface daily net radiation among ten remotely sensed and reanalysis products, Int. J. Digit. Earth, 16, 3725–3752, https://doi.org/10.1080/17538947.2023.2253211, 2023.
Yizhe, H., Weiqiang, M., Yaoming, M., and Cuiyan, S.: Variations of surface heat fluxes over the Tibetan Plateau before and after the onset of the South Asian summer monsoon during 1979–2016, J. Meteorol. Res., 33, 491–500, https://doi.org/10.1007/s13351-019-8616-x, 2019.
Zang, H., Cheng, L., Ding, T., Cheung, K., Wang, M., Wei, Z., and Sun, G.: Application of functional deep belief network for estimating daily global solar radiation: A case study in China, Energy, 191, 116502, https://doi.org/10.1016/j.energy.2019.116502, 2019.
Zhang, J., Li, Z., Li, J., and Li, J.: Ensemble retrieval of atmospheric temperature profiles from AIRS, Adv. Atmos. Sci., 31, https://doi.org/10.1007/s00376-013-3094-z, 2014a.
Zhang, X., Liang, S., Zhou, G., Wu, H., and Zhao, X.: Generating Global LAnd Surface Satellite incident shortwave radiation and photosynthetically active radiation products from multiple satellite data, Remote Sens. Environ., 152, 318–332, https://doi.org/10.1016/j.rse.2014.07.003, 2014b.
Zhang, Y.: Correction of Sensible Heat Flux from Flux-Gradient Method to Eddy Covariance Method Based on Multi-Layer Perceptron, Appl. Comput. Eng., 98, 65–70, https://doi.org/10.54254/2755-2721/98/20241120, 2024.
Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., and Zhang, W.: Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting, Proc. AAAI Conf. Artif. Intel., 35, 11106–11115, https://doi.org/10.1609/aaai.v35i12.17325, 2021.
Zhou, L. and Huang, R.: Characteristics of Interdecadal Variability of the Difference Between Surface Temperature and Surface Air Temperature in Spring in Arid and Semi-Arid Region of Northwest China and Its Impact on Summer Precipitation in North China, Clim. Environ. Res., 11, 1–13, https://doi.org/10.3878/j.issn.1006-9585.2006.01.01, 2006.
Zhou, L. and Huang, R.: Interdecadal variability of summer rainfall in Northwest China and its possible causes, Int. J. Climatol., 30, https://doi.org/10.1002/joc.1923, 2010.
Zhou, L.-T. and Huang, R.: Regional differences in surface sensible and latent heat fluxes in China, Theor. Appl. Climatol., 116, 625–637, https://doi.org/10.1007/s00704-013-0975-0, 2014.
Zhuang, Q., Wu, B., Yan, N., Zhu, W., and Xing, Q.: A method for sensible heat flux model parameterization based on radiometric surface temperature and environmental factors without involving the parameter KB-1, Int. J. Appl. Earth Obs. Geoinf., 47, 50–59, https://doi.org/10.1016/j.jag.2015.11.015, 2016.
Short summary
This paper describes 1 km daily mean land surface sensible heat flux (H) and land surface–air temperature difference (Ts-a) datasets on the global scale during 2000–2020. The datasets were developed using a data-driven approach and rigorously validated against in-situ observations and existing H and Ts-a datasets, demonstrating both high accuracy and exceptional spatial resolution.
This paper describes 1 km daily mean land surface sensible heat flux (H) and land surface–air...
Altmetrics
Final-revised paper
Preprint