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Abstract. Accurate estimation of land surface sensible heat flux (H ) is crucial for comprehending the dynamics
of surface energy transfer and the cycles of water and carbon. Yet, existing H products mainly are meteorolog-
ical reanalysis datasets with coarse spatial resolutions and high uncertainties. FLUXCOM is the sole remotely
sensed product with its 0.0833° spatial and 8- temporal resolution spanning from 2001 to 2015, so there is still
a need for accurate and high spatial resolution global product based on satellite data. To address these issues,
we generated the first global high resolution (1 km) daily H product from 2000 to 2020 using long short-term
memory (LSTM) deep learning models, incorporating data from the Global LAnd Surface Satellite (GLASS)
product suite. Furthermore, considering that the difference between land surface temperature and air tempera-
ture (Ts-a) is a key driver of H , we introduce the first global accurate satellite-based Ts-a product. This product
refines the uncertainty compared with obtaining Ts-a directly from existing products by subtracting air tem-
perature from land surface temperature. Our model, distinct from previous models that estimate H per pixel
through physically-based models requiring parameters that are not readily accessible, can conveniently derive
global values and efficiently capture nonlinear interactions. Additionally, it accounts for the temporal variation
of H . Validation against independent in-situ measurements yielded a root mean square error (RMSE), mean
absolute error (MAE), and coefficient of determination (R2) of 25.54 W m−2, 18.649 W m−2, and 0.54 for H ,
and 1.46 K, 1.073 K, and 0.52 for Ts-a, respectively. The estimated H and Ts-a values are more accurate than
current products such as MERRA2, ERA5-Land, ERA5, and FLUXCOM under most conditions. Additionally,
the new H product offers more detailed spatial information in diverse landscapes. The estimated global average
land surface H from 2000 to 2020 is 35.29± 0.71 W m−2. These high-resolution H and Ts-a products are in-
valuable for climatic researches and numerous other applications. The daily mean values for the first three days
of each year can be freely downloaded from https://doi.org/10.5281/zenodo.14986255 (Liang et al., 2025a), and
the complete product is freely available at https://www.glass.hku.hk/ (last access: 8 September 2025).
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1 Introduction

Sensible heat flux (H ) is the turbulent transfer of heat be-
tween the land surface and the atmosphere, primarily driven
by temperature differences (T0–Ta, also referred to Ts-a,
where T0 (K) represents the surface aerodynamic temper-
ature and Ta (K) the air temperature) (Mito et al., 2012).
As a major energy source for the lower atmosphere and a
critical component of surface energy fluxes, H plays a vi-
tal role in land-atmosphere interactions, particularly in ther-
mal exchanges between the land surface and the atmospheric
boundary layer (Beamesderfer et al., 2023; Liao et al., 2019).
The uneven distribution of H leads to alternating absorption
or release of heat into the atmosphere, affecting monsoon cir-
culation and local climate systems (Mito et al., 2012; Zhou
and Huang, 2014; Zhou and Huang, 2010). Therefore, ac-
curate estimation of H is essential for studying global en-
ergy flows and understanding the dynamic transfers of water,
energy, and trace gases at the Earth’s surface (Watts et al.,
2000).

Currently, H can be derived from ground-based measure-
ments or various products. Ground measurements, consid-
ered as “ground truth” values, are typically obtained using
eddy covariance (EC) system (on the scale of hundreds of
meters) and large aperture scintillometer (LAS, at the kilo-
meter scale). The EC system measures instantaneous varia-
tions in vertical wind speed and scalar quantities (e.g. tem-
perature, carbon dioxide concentration, and water vapor), de-
termining H by calculating the covariance between these
variables (Zhang, 2024). In contrast, LAS estimates H us-
ing the scintillation principle, measuring light signal distur-
bances caused by atmospheric turbulence (Liu et al., 2011).
These instruments have shown reliable performance across
scales from tens of meters to approximately 1 km, with re-
ported differences of 2 %–3 % in EC and LAS measurements
(Liu et al., 2011, 2018; Baldocchi et al., 2001). However,
their practical applications are limited to areas with flat,
uniform terrain and stable turbulent conditions, leading to
shorter observation periods and sparse spatial coverage due
to high maintenance costs (Mito et al., 2012). Another alter-
native for obtainingH is through existing products, including
reanalysis products generated by merging available observa-
tions with land surface models and remotely sensed prod-
ucts derived from satellite data via machine learning tech-
niques. Table 1 lists the mainstream products utilized for
analysis and evaluation across various global applications,
including the Interim Reanalysis (ERA-Interim) and its latest
version ERA5 and ERA5-Land from the European Centre for
Medium-Range Weather Forecast (ECMWF), the Japanese
55-year Reanalysis (JRA-55), Climate Forecast System Re-
analysis (CFSR) from the National Centers for Environmen-
tal Prediction (NCEP), the Modern-Era Retrospective anal-
ysis for Research and Applications Version2 (MERRA2),
The Global Land Data Assimilation System (GLDAS) and
FLUXCOM. These products generally provide long tempo-

ral coverage but tend to have coarse spatial resolution and
exhibit varying levels of uncertainty, as illustrated in Table 1.
Notably, the uncertainty estimates were derived through dif-
ferent sources (including original documentation and asso-
ciated publications), and should therefore be considered as
approximate references rather than being directly compara-
ble across products. For instance, FLUXCOM_RS as the
most recent and only satellite product with the highest spatial
resolution of 0.0833°, exhibits a reported global uncertainty
of 11.61 % over an 8 d period from 2001 to 2015, thereby
restricting its utility for local-level applications. Products
that combine high precision with finer resolution are crucial,
particularly for supporting studies in regions with complex
land cover and climate features, such as the Tibetan Plateau
(Yizhe et al., 2019) and urban areas with complex human ac-
tivities (Kato and Yamaguchi, 2005).
H estimation has traditionally relied on temperature-

derived one-source and two-source models, incorporating
ground-based observations of temperature and wind fields.
One-source models, treating the land surface as “one-leaf”,
have been extensively applied across various field crops at
regional scales over the past decade (Hatfield et al., 1984;
Seguin et al., 1982a, b). Two-source models attempt to miti-
gate this by distinguishing between soil (Ts) and canopy (Tc)
temperatures, yet they frequently overlook the role of pre-
cipitation interception in influencing energy distribution and
surface temperature dynamics (Anderson et al., 1997, 2007;
Colaizzi et al., 2014; Kustas and Norman, 1999; Asdak et
al., 1998). Both models face common challenges in calcu-
lating aerodynamic resistance (rah) due to the complexities
of Monin–Obukhov similarity theory (Monin and Obukhov,
1954; Brutsaert, 2013), and in accurately representing T0 un-
der diverse conditions, leading to significant uncertainties.
Despite attempts to use the more easily obtainable land sur-
face temperature (LST) as a proxy for its linear correlation
with T0 (Chehbouni et al., 2001), LST-related errors account
for over half of the inaccuracies in these models (Timmer-
mans et al., 2007; Stewart et al., 1994). Furthermore, the un-
certainty associated with LST usage could be up to four times
higher than that of simulating all-wave net radiation (Rn) and
ground heat flux (G) (Costa-Filho et al., 2021). Since Ts-a
significantly influences H , its variability directly reflects in
H fluctuations. Therefore, improving the accuracy of Ts-a
estimation and minimizing related errors is crucial for devel-
oping a reliable, globally applicable method for H estima-
tion.

Recent research has highlighted the significance of the
Ts-a, examining its influencing factors and mechanisms of
variation. Bartlett et al. (2006) found that downward short-
wave radiation (DSR) is the primary factor affecting Ts-
a, with an observed increase of 1.21 K for every additional
100 W m−2 of DSR. The absorbed DSR warms the land sur-
face, influences Ta, alters H and enhances surface evapo-
ration (known as latent heat flux, hereinafter LE). In areas
with dense vegetation, heightened evapotranspiration gener-
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Table 1. The mainstream global product information. Note that the uncertainty estimates, coming from different sources (e.g., documentation
and publications), serve only as general references and should not be directly compared between products.

Product Period Resolution Uncertainty Method Reference

Reanalysis data products

ERA5-Land 1950–present 0.1°× 0.1°
1 hourly

RMSE= 38.21 W m−2

in TP at daily scale
ECMWF land surface
model

Xin et al. (2022),
Muñoz-Sabater et al.
(2021)

ERA5 1950–present 0.25°× 0.25°
1 hourly

Similar to ERA5-Land ECMWF land surface
model

Hersbach et al. (2020)

ERA-Interim 1979–2019 T255 (80 km)
3 hourly

RMSE= 114.46 W m−2

in TP at daily scale
ECMWF IFS (Cy31r2) Xin et al. (2022),

Berrisford et al. (2011),
Dee et al. (2011)

JRA55 1958–present T319
(∼ 55 km)
3 hourly

– Similar algorithm as
Beljaars (1995)

Kobayashi et al. (2015)

CFSR 1979–2010 T382 (38 km)
6 hourly

RMSE= 30–
70 W m−2 at monthly
scale

UA algorithm Decker et al. (2012)

MERRA2 1979–present 1 hourly
0.5°× 0.625°

– Updated Goddard
Earth Observing
System model

Buchard et al. (2017)

GLDAS 1948–present 3 hourly
0.25°× 0.25°

– Data assimilation Rodell et al. (2004)

Remotely sensed products

FLUXCOM_RS/

FLUXCOM_RS

+METEO

2001–2015 0.0833°×
0.0833°/0.5°×
0.5°
8 daily/daily

11.61 %/11.85 %
(1.59 %/2.69 % for Rn)
in global at daily scale

Multi-model ensemble Jung et al. (2019)

ally leads to evaporative cooling, which tends to reduce Ts-
a (Prakash et al., 2018; Gordon et al., 2005). Furthermore,
Feng and Zou (2019) reported that although albedo shows
a weaker positive correlation with Ts-a compared to LST
and Ta, the normalized difference vegetation index (NDVI)
exhibits a stronger correlation with Ts-a than albedo or at-
mospheric water vapor. Additionally, factors such as terrain
features (elevation and slope), snow cover, and precipitation
have also been identified as influencers of Ts-a (Cermak and
Bodri, 2016; Jiang et al., 2022; Sun et al., 2020). Collectively,
these studies indicate that Ts-a is subject to a complex inter-
play of atmospheric and surface elements, complicating the
attribution of its variability to any single factor (Feng and
Zou, 2019). Moreover, most previous research has been car-
ried out on regional scales, relying on in-situ measurements
and reanalysis or remote sensing products (Liao et al., 2019),
potentially leading to discrepancies in scale. Additionally, es-
timating Ts-a by subtracting Ta from LST, using the same

or different products, can introduce significant uncertainties
(Wang et al., 2020).

Traditional physically-based models for estimating H are
typically developed for specific areas and land surface condi-
tions, and often require parameters that are not easily acces-
sible (e.g. aerodynamic resistance to heat transfer, rah). As a
result, these models tend to produce large uncertainties when
applied to other areas. Therefore, a convenient and widely
applicable method for estimating global H values is still
lacking. Different from physically-based model, data-derive
machine learning (ML) methods has emerged as a formidable
tool for enhancing the estimation of land surface parameters
when adequate input data was adopted (Xu et al., 2022; Li
et al., 2022b). Its superior performance and improved gener-
alization capability position it as a potential solution for im-
proving the accuracy and spatial resolution of Ts-a andH on
a global scale. Considering the different characteristics of the
target variables, we adopted two ML models tailored. Specif-
ically, RF was used for Ts-a estimation due to the availability
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of dense in-situ measurements and its robust performance in
such scenarios, whereas LSTM was applied forH estimation
to better handle the limited data samples and capture tem-
poral dependencies. Initially, we employed the RF method,
utilizing pertinent parameters mentioned above to precisely
estimate Ts-a, followed by an in-depth uncertainty analysis.
Subsequently, a global H product for the period of 2000 to
2020 was generated using LSTM models, incorporating data
from the Global LAnd Surface Satellite (GLASS) product
suite and estimated Ts-a. The remainder of this paper is or-
ganized as follows: Data and methodologies are detailed in
Sects. 2 and 3, validation results for Ts-a and H are exam-
ined in Sect. 4, and the study’s discussions and conclusions
are articulated in Sects. 5 and 7.

2 Dataset and pre-processing

This study utilized three distinct types of data: in-situ
measurements, remotely sensed products, and reanalysis
datasets. In-situ measurements were employed for both
model development and independent validation. Remotely
sensed products, including GMTED2010 DEM and GLASS
product suite, supported the modeling and generation of new
Ts-a and H products, while FLUXCOM was used for com-
parison with H estimates. Reanalysis datasets were used for
comparative analysis with H and Ts-a estimates. Detailed
descriptions of each dataset are provided in the subsequent
sections.

2.1 In-situ measurements

In this study, data from 398 sites across eight observation
networks were collected for the period 2000–2019. The spa-
tial distribution of these sites is shown in Fig. 1a. The sites
were globally distributed, with elevations ranging from−4 m
to 4104 m a.s.l. (above sea level), and were predominantly
located in the mid-to-low latitudes of the Northern Hemi-
sphere. These sites represent diverse land cover types and
ecosystem conditions within various climatic zones. In this
study, the land covers were categorized into ten major classes
based on the International Geosphere-Biosphere Programme
(IGBP): Barren land with sparse vegetation 〈BSV〉, Crop-
land 〈CRO〉, Mosaic of crops and natural vegetation 〈CVM〉,
Forest 〈FOR〉, Grassland 〈GRA〉, Ice and Snow 〈IAS〉, Sa-
vannas 〈SAV〉, Shrubland 〈SHR〉, Tundra 〈TUN〉 and Wet-
land 〈WET〉. All sites were used for studying the Ts-a, while
140 sites, marked with red triangle symbols in Fig. 1a, were
specifically used for estimating H . The proportions of these
sites across the ten land cover types and five elevation ranges
for both Ts-a and H studies are presented in Fig. 1b and c.
Furthermore, investigations by Li et al. (2022a), Jiang et
al. (2023), and Yin et al. (2023) indicated that land cover
types within a 5 km radius of most sites exhibited a high de-
gree of similarity or equivalence. Consequently, these sites

provide strong spatial representativeness and comprehensive-
ness.

Table 2 provides detailed descriptions of the eight observa-
tion networks encompassing the 398 sites, including Atmo-
spheric Radiation Measurement (ARM), AsiaFlux, Baseline
Surface Radiation Network (BSRN), the Institute for Ma-
rine and Atmospheric Research (IMAU), Lathuile (includ-
ing FLUXNET and AmeriFlux), PROMICE, SURFRAD and
National Tibetan Plateau/Third Pole Environment Data Cen-
ter (TPDC). Selection of sites was predicated on the avail-
ability of specific measurements: those with Ta, downward
longwave radiation (DLW), and upward longwave radiation
(ULW) were utilized for Ts-a calculation, whereas sites with
LE, G, all four radiation components (DLW, ULW, DSR,
and upward shortwave radiation 〈USR〉) or Rn were used for
H estimation. As indicated in Table 2, measurement data var-
ied in frequency and format across the sites, necessitating the
conversion of all quality-controlled measurements to local
time. Subsequently, different methodologies were employed
to calculate daily Ts-a and H values. Ts-a was determined at
an instantaneous scale using Ta, DLW, and ULW measure-
ments according to Eq. (1). For sites recording data less fre-
quently than hourly, Ts-a data were compiled into hourly av-
erages, tolerating a maximum of 10 min of missing data per
hour. These hourly values were then aggregated into daily
means with no missing data. Conversely, dailyH values were
computed directly from days with over 75 % of valid obser-
vations, and subsequently adjusted for energy imbalance us-
ing the method proposed by Twine et al. (2000) (Eq. 2). Rn
measurements were acquired directly from the sites or de-
rived by summing the radiative components (Eq. 3). All cal-
culated daily values underwent manual verification to elimi-
nate any implausible figures. The equations below detail the
procedures for calculating instantaneous Ts-a and adjusting
daily H values:

Ts-a=
(

ULW− (1− ε)×DLW
σ × ε

)1/4

− Ta (1)

where ε represent the surface broadband emissivity and σ is
the Stefan–Boltzmann constant (5.67× 10−8 W m−2 K−4).

Hcor =
Rn−G

Huncor+LEuncor
×Huncor (2)

Rn = DSR−USR+DLW−ULW (3)

where Hcor is corrected H ; LEuncor and Huncor are uncor-
rected LE and H , respectively. It should be noted that this
correction method relies on assumptions about the distribu-
tion of residual energy, which may still have uncertainties
into the corrected flux values. These uncertainties and their
potential impacts are further discussed in the Discussion sec-
tion of this paper.

Ultimately, a total of 649 689 daily Ts-a measurements and
216 542 daily H in-situ measurements were collected from
2000 to 2019 to estimate Ts-a and H on a global scale. Due
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Figure 1. (a) Spatial distribution of 398 sites from eight measurement networks. The proportions of all sites for (b) ten land cover types; and
(c) five elevation ranges.

Table 2. The detailed information about eight observation networks.

Abbreviation No. of Time span Instrument Temporal
sites resolution

ARM 33 2000-2019 Kipp & Zonen Pyrgeometer 1 min

AsiaFlux 21 (5) 2000–2013, Kipp & Zonen CNR-1 30 min
2015–2018

BSRN 20 2000–2019 Eppley, PIR/Kipp & Zonen CG4 1 or 3 min

IMAU 3 2016–2019 Kipp & Zonen, CNR-1 30 min

Lathuile 267 (116) 2000–2019 Kipp & Zonen CNR-1, etc. 30 min

PROMICE 27 2007–2019 Kipp & Zonen CNR-1/CNR-2 1 h

SURFRAD 7 2000–2019 Eppley, PIR 3 min

TPDC 20 (19) 2008–2010, CNR-4 10 min
2012–2019
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to significant gaps in the daily in-situ measurements of H
after stringent quality control, a distinct strategy was imple-
mented to segregate the samples for H and Ts-a. For H , the
methodology involved selecting monthly datasets with fewer
than 10 % missing values for the training set, while the rest
were allocated to an independent validation set for evaluat-
ing model performance. Linear interpolation was employed
to impute missing values within the training set, ensuring the
integrity of the monthly datasets. The final model was trained
using 80 % of the months for training and the remaining 20 %
for tuning the model parameters. This process yielded a train-
ing set encompassing 121 542 daily H samples and an in-
dependent validation set containing 97 982 samples. In con-
trast, the Ts-a analysis designated measurements from 2018
to 2019 as the independent validation set for model evalua-
tion, with data from preceding years allocated to the train-
ing set. Specifically, for each site, 70 % of the samples from
2000 to 2017 were randomly selected for training, and the
remaining 30 % were used for tuning the model parameters.
These two approaches allow the validation set to assess the
model’s ability to predict “unseen” time periods and gener-
alize to “unseen” sites (n= 32 for Ts-a and 17 for H ). As a
result, the Ts-a training set included 564 918 daily samples,
and the independent validation set comprised 84 771 daily
Ts-a samples.

2.2 Remotely sensed data

2.2.1 GMTED2010 DEM

The Global Multi-resolution Terrain Elevation
Data 2010 elevation dataset (GMTED2010, https:
//www.usgs.gov/coastal-changes-and-impacts/gmted2010,
last access: 8 September 2025), developed by the United
States Geological Survey (USGS), provides an advanced
level of detail in global topographic data (Danielson
and Gesch, 2011). It replaces Global 30 arcsec Eleva-
tion (GTOPO30) as the preferred choice for global and
continental-scale applications. GMTED2010 is produced
by combining multiple high-quality digital elevation model
(DEM) datasets from various international institutions. This
dataset offers seven raster elevation products across three
spatial resolutions: 30, 15, and 7.5 arcsec. In this study,
the 30 arcsec resolution product, which spans from 84° N
to 90° S, was employed to derive terrain attributes such as
elevation, slope, and aspect. Detailed methodologies for
calculating slope and aspect are documented in the study of
Liang et al. (2023).

2.2.2 GLASS product suite

The GLASS product suite (https://www.glass.hku.hk/, last
access: 8 September 2025) provides approximately 20 land
surface variables with high spatial resolution (up to 250 m)
and long-term temporal coverage, with many products ex-
tending from 1981 to the present. These products have gained

widespread use in land surface studies, attributed to their data
integrity (no missing data) and superior quality (Liang et al.,
2021). The accuracy of GLASS products has been corrobo-
rated through numerous validations against in-situ measure-
ments and other existing datasets (Yin et al., 2023; Xie et
al., 2022; Yang et al., 2023). In this study, eleven GLASS
products, covering the period from 2000 to 2020, were se-
lected based on their documented impact on H variations
(Zhuang et al., 2016; Trenberth et al., 2009). These prod-
ucts are predominantly sourced from Advanced Very High
Resolution Radiometer (AVHRR) and Moderate Resolution
Imaging Spectroradiometer (MODIS) observations, supple-
mented by other satellite and ancillary data. Comprehensive
details on these eleven products are provided in Table 3. The
BBE product was specifically used to acquire in-situ LST
measurements, and the Ta and LST products were integrated
to get GLASS Ts-a for comparison with the estimated daily
Ts-a. Additionally, eight other products – surface broadband
albedo (ABD), DLW, DSR, Rn, ET, FVC, NDVI and LAI
– were employed to identify the optimal parameters for esti-
matingH and to generate daily Ts-a andH estimates. Specif-
ically, LST, DLW, DSR, NDVI were used as model inputs
for Ts-a estimation, while the estimated Ts-a, in conjunction
with ABD, DLW, FVC, Rn, and ET, facilitated the estima-
tion of daily H . To maintain spatial consistency, the DSR,
DLW, and Rn products, originally at a 0.05° spatial reso-
lution, and the NDVI and LAI products, at 250 m resolu-
tion, were resampled to 1 km using the bilinear interpolation
method. Subsequently, values from these products were ex-
tracted according to the in-situ measurement locations, and
the 8 d composite datasets were linearly interpolated to daily
values to maintain temporal alignment with the model inputs.

2.2.3 FLUXCOM

The FLUXCOM initiative (https://www.fluxcom.org/, last
access: 8 September 2025) aims to improve the compre-
hension of the diverse sources and aspects of uncertainties
in empirical upscaling, ultimately providing an ensemble of
machine learning-based global flux products to the scientific
community (Jung et al., 2019). It presents two product ver-
sions: one derived exclusively from MODIS satellite obser-
vations (FLUXCOM_RS) and another that integrates meteo-
rological data from global climate forcing datasets (FLUX-
COM_RS+METEO). The spatial resolution and temporal
coverage of FLUXCOM_RS are constrained by its depen-
dency on MODIS data. Moreover, both products omit un-
vegetated regions, including barren landscapes, permanent
snow or ice, water bodies (such as Antarctica and Green-
land), vast deserts (notably the Sahara), and much of the Ti-
betan Plateau. In this study, FLUXCOM_RS was chosen for
its comparatively higher spatial resolution and marginally su-
perior accuracy over FLUXCOM_RS+METEO. This ver-
sion was utilized to assess the estimated H values derived
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Table 3. Summary of eleven GLASS series products used in this study.

Variables Spatial
resolution

Temporal
resolution

Usage Reference

Land surface temperature (LST) 1 km daily Model input,
comparison

Li et al. (2024)

Air temperature (Ta) 1 km daily Comparison Chen et al. (2021)

Surface broadband albedo (ABD) 1 km 8 d Model input Qu et al. (2014)

Broadband emissivity (BBE) 1 km 8 d Calculate
in-situ Ts

Cheng et al. (2016), Cheng and Liang
(2013)

Downward longwave radiation (DLW) 0.05° daily Model input Xu et al. (2022)

Downward shortwave radiation (DSR) 0.05° daily Model input Zhang et al. (2014b)

Surface all-wave net radiation (Rn) 0.05° daily Model input Jiang et al. (2015), Yin et al. (2023)

Evapotranspiration (ET) 1 km 8 d Model input Xie et al. (2022)

Fractional vegetation coverage (FVC) 1 km 8 d Model input Jia et al. (2015)

Normalized difference vegetation
index (NDVI)

250 m 8 d Model input Xiong et al. (2023)

Leaf area index (LAI) 250 m 8 d Variable
selection

Ma and Liang (2022)

from the LSTM model, with the annual data being interpo-
lated to a 1 km spatial resolution for consistency.

2.3 Reanalysis data

In this study, we utilized three reanalysis datasets: ERA5,
ERA5-Land, and MERRA2. The ERA5-Land was employed
to evaluate the performance of the generated daily Ts-a,
while all three reanalysis products were used to assess the ac-
curacy of the generated dailyH product. For the period from
2000 to 2020, all product values were initially resampled
to a 1 km resolution using the bilinear interpolation method
(downward fluxes considered positive). Below are detailed
descriptions of these datasets:

(1) ERA5

ERA5 (https://www.ecmwf.int/en/forecasts/dataset/, last ac-
cess: 8 September 2025) represents the latest iteration of the
ERA reanalysis series (Hersbach et al., 2020). With its 1-
hour intervals and 31 km spatial resolution, ERA5 provides
enhanced spatiotemporal precision over its predecessor, the
ECMWF Interim Re-Analysis (ERA-Interim). Its parame-
ters have been widely validated and exhibit strong perfor-
mance across diverse applications (Li et al., 2022a; Tarek et
al., 2020; Liang et al., 2022). In this study, we converted the
hourly H values from ERA5 to local time and aggregated
them into daily values, which were then compared with esti-
mated H values against in-situ measurements.

(2) ERA5-Land

The ERA5-Land (https://www.ecmwf.int/en/era5-land, last
access: 8 September 2025) offers a higher spatiotemporal
resolution of 1 h and 9 km. It is produced through high-
resolution global numerical integrations of the ECMWF
land surface model, using downscaled meteorological forc-
ing from the ERA5 climate reanalysis. The uncertainties
present in ERA5-Land are inherited from the ERA5 dataset
(Muñoz-Sabater et al., 2021). In this study, we used the daily
Ts-a and H values from ERA5-Land for comparison with
our estimated Ts-a and H values. We converted all product
values to local time and computed daily averages for com-
parison against in-situ measurements.

(3) MERRA2

The MERRA2 (https://gmao.gsfc.nasa.gov/reanalysis/
MERRA-2/, last access: 8 September 2025) is the most
recent atmospheric reanalysis from NASA Global Modeling
and Assimilation Office (GMAO) at the modern satellite era.
MERRA2 continues the climate record of its predecessor,
MERRA, with enhancements from the updated Goddard
Earth Observing System (GEOS) model and analysis pro-
gram (Gelaro et al., 2017). It offers a spatial resolution of
1/2°× 2/3° on an hourly basis. In this study, we aggregated
the hourly H data into daily values after converting them to
local time.
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3 Methods

Figure 2 presents the flowchart of this study. Initially, four
GLASS products (LST, DLW, DSR, and NDVI) along with
GMTED2010 DEM data (including elevation, slope, and
aspect) were used to estimate Ts-a through an RF model.
Subsequent analysis involved in-situ Ts-a measurements and
eight additional GLASS products (LAI, DSR, DLW, FVC,
Rn, ABD, ET and NDVI) to identify the optimal variables for
estimatingH through two methods: Variance Inflation Factor
(VIF) and Pearson Correlation Analysis (referred to as Pear-
son). Based on the analyses, five GLASS products (DLW,Rn,
FVC, ET, and ABD) and the estimated Ts-a values were ap-
plied to deriveH using LSTM models to account for the tem-
poral variation of H . Considering the unavailability of ABD
data during the polar night, two models were developed:
mod1 for regions with ABD data and mod2 for those with-
out, with the latter differing from mod1 only in the exclusion
of ABD. The performance of all models was subsequently
evaluated against in-situ measurements and other products,
comparing the efficacy of H estimates across three different
methods: RF, Deep Belief Network (DBN), and Transformer.

3.1 Model building of the daily Ts-a

Based on the previous studies mentioned in the Introduction
section and multiple experiments, the Ts-a was estimated as:

Ts–a = f (LST,DLW,DSR,NDVI,elevation,slope,aspect,doy) (4)

where doy is the day of the year.
Afterwards, the Ts-a estimated model was built by using

the RF method (Breiman, 1996). The RF is a widely used
non-linear machine learning algorithm that constructs an en-
semble of regression or classification trees. It has gained pop-
ularity in parameter prediction and estimation due to its high
accuracy, ease of implementation, low computational cost,
and fast processing speed (Babar et al., 2020; Liang et al.,
2023; Li et al., 2022a; Jiang et al., 2023). In this study, RF
regression was applied, with the final results determined by
averaging the ensemble of regression output (Fig. 4a). To ad-
dress common machine learning challenges such as under-
fitting and over-fitting, several key hyper-parameters were
fine-tuned, including the number of trees in the forest 〈n-
estimators〉, the maximum depth of each tree 〈max depth〉,
minimum number of samples required to split a node 〈min
samples split〉, minimum number of samples per leaf 〈min
samples leaf〉, and etc. (Babar et al., 2020). After plenty of
experiments, we identified four hyper-parameters as critical
for estimating Ts-a. To mitigate overfitting, we adopted a cir-
cular approach that minimizes the root mean-squared error
(RMSE) between the training and parameter tuning in the RF
model, in accordance with the methodology proposed by Li
et al. (2022a). Consequently, the optimal hyper-parameters
for the RF model were ascertained using these two strategies,

Table 4. Hyper-parameter settings used to identify optimal model
for estimating Ts-a. The three values in brackets for each Hyper-
parameter of every model represent the start, interval, and end val-
ues, respectively, the values in parentheses represent the value of
the confirming hyper-parameter.

n-estimators Max depth Min samples Min samples
split leaf

[50, 10, 110] (80) [10, 5, 50] (25) [2, 5, 22] (7) [2, 5, 22] (2)

and the results are presented in Table 4. This model is imple-
mented on Scikit-learn toolbox (Pedregosa et al., 2012) on
the Python platform within a Microsoft Windows 10 system
with 32 GB of memory.

3.2 Model building of the daily H

3.2.1 Land surface parameters selectin

Previous studies indicate that H is influenced by a variety
of land surface parameters (Nayak et al., 2022; Wulfmeyer
et al., 2022). In this study, nine pertinent parameters were
selected to determine the optimal variables for H estimation
based on existed researches. These included three vegetation-
related parameters (LAI, NDVI, and FVC) and six radiation-
related parameters (Ts-a, DLW, Rn, ABD, DSR, and ET).
Note that aerodynamic factors such as aerodynamic resis-
tance, which is primarily derived from wind speed, were
not included in this study. Preliminary experiments using
wind speed from reanalysis datasets showed that its inclu-
sion decreased model accuracy, likely due to the coarse spa-
tial resolution and associated uncertainties of the data. The
significant correlations among these parameters are well-
established; for instance, DSR is frequently utilized to cal-
culate Rn, while both NDVI and FVC are indices associated
with LAI (Xiong et al., 2023; Jiang et al., 2015, 2023). To
mitigate multicollinearity and select relevant predictors for
estimatingH , two statistical methods, VIF and Pearson, were
employed.

VIF quantifies the degree of multicollinearity by assess-
ing how much the variance of an estimated regression coeffi-
cient increases due to collinearity (Jiao et al., 2017; Rehman
et al., 2024). As the VIF value rises, so does the degree of
collinearity. A VIF value exceeding 10 typically indicates
strong multicollinearity and suggests removal of the corre-
sponding variable. The method for calculating the VIF is de-
tailed in Eq. (5):

VIFi =
1

1− z2
i

(5)

where z2
i is the coefficient of determination when the ith in-

dependent variable is regressed against all other independent
variables.
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Figure 2. The flowchart of this study.

Pearson are used to measure the strength and direction
of the linear relationship between two continuous variables
(Pearson, 1896). This method is widely used in various fields
to identify and quantify relationships between variables, un-
derstand data patterns and develop predictive models (Wei et
al., 2022; Yan et al., 2023). The calculation method is pre-
sented below:

r =

n∑
i=1

(
Mi −M

)(
Ni −N

)
√

n∑
i=1

(
Mi −M

)2√ n∑
i=1

(
Ni −N

)2 (6)

where Mi and Ni are single sample points of variables M
and N , M and N are their means. The correlation coefficient
r ranges from −1 to 1, with values closer to ±1 indicating
stronger linear relationships.

Figure 3 presents the results of the multi-collinearity anal-
ysis conducted on nine land surface parameters using the two
aforementioned methods. Note that the Ts-a values were ob-
tained from in-situ measurements which considered as “true
values”, while the other eight parameters were derived from
the GLASS product suite. As depicted in Fig. 3a (orange
bars), the VIF values for DSR, FVC, Rn, and NDVI sur-
pass the threshold of 10, indicating the presence of multi-
collinearity. Given the functional relationships among FVC,
NDVI, and LAI, coupled with the Pearson correlation out-
comes shown in Fig. 3b, FVC was chosen due to its notably
negative correlation (−0.12) in comparison to LAI (0.02)
and NDVI (−0.05). Despite DSR exhibiting a higher Pear-
son coefficient than Rn, Rn was preferred for its applicability
in nocturnal conditions and its enhanced predictive capabil-
ity, potentially owing to Rn’s reduced uncertainty relative to

DSR, as evidenced in our experimental findings. Ultimately,
six land surface parameters were selected, with none exhibit-
ing multicollinearity issues, as illustrated in Fig. 3a (green
bars).

3.2.2 Modeling building

According to the results presented in Sect. 3.2.1, six variables
were used in estimating dailyH . Furthermore, due to the un-
availability of ABD data during the polar night, two models
were developed: one for areas with ABD data (designated as
mod1) and another for areas without ABD data (designated
as mod2). Thus, the H estimation model is expressed math-
ematically as follows:

H ={
f (Ts–a,ABD,DLW,FVC,Rn,ET) , areas with ABD
f (Ts–a,DLW,FVC,Rn,ET) , areas without ABD . (7)

Subsequently, the LSTM was used to constructed the dailyH
estimation model. As an advanced type of Recurrent Neural
Network (RNN), LSTM effectively captures long-term de-
pendencies by incorporating memory cells and gating mech-
anisms, which mitigate the vanishing gradient problem (Lyu
et al., 2016; Xiong et al., 2023; Ma and Liang, 2022). In this
study, both LSTM models shared the same architecture, con-
sisting of one input layer, two LSTM layers with 400 and
250 neurons, and one regression layer (Fig. 4b). After exten-
sive experimentation, the Adam optimizer was selected with
a batch size of 16, a learning rate of 0.001, and a maximum of
100 epochs. The entire process was implemented in Python
platform using the LSTM module from the Keras toolbox
(https://github.com/keras-team/keras/, last access: 18 Octo-
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Figure 3. The results of the multi-collinearity analysis for nine land surface parameters using (a) the VIF method and (b) the Pearson
method. The orange bars represent pre-filter variables, while the green bars represent post-filter variables.

ber 2025), on a Microsoft Windows 10 system with 32 GB of
memory.

3.3 Comparing daily H estimated model

Three methods were picked for their representativeness to
compare with LSTM in estimating daily H , including RF,
DBN and Transformer. The introduction to RF is provided in
Sect. 3.1 and its optimal hyper-parameters setting is provided
in Table 5. The details of the DBN and Transformer methods
are described below, with their structures illustrated in Fig. 4c
and d.

(1) Deep Belief Network

The DBN, a probabilistic generative model introduced by
Hinton et al. (2006), has been widely applied in land sur-
face parameter estimation (Zang et al., 2019; Li et al., 2017;
Shen et al., 2020). It typically consists of multiple Restricted
Boltzmann Machines (RBMs) and a backpropagation (BP)
layer for classification or regression tasks as Fig. 4d shows.
RBMs are pre-trained to capture input distributions and mit-
igate issues such as local optima and vanishing gradients
(Hinton et al., 2006; Shen et al., 2018). In this study, the
batch size, activation function, network structure, and learn-
ing rate were optimized. Following extensive experimenta-
tion, the DBN model was constructed with one RBM layer
and one hidden layer, and the optimal hyper-parameter com-
bination is provided in Table 6.

(2) Transformer

The Transformer, introduced by Ashish Vaswani et
al. (2017), is a self-attention-based sequence-to-sequence
model that efficiently captures long-term dependencies and
enables parallel processing of input sequences, making it

well suited for time series forecasting (Tay et al., 2020; Lim
et al., 2021; Zhou et al., 2021). In this study, the model
adopted a modified encoder-decoder architecture. The en-
coder included two Transformer blocks, each with a multi-
head self-attention mechanism using 70 heads of size 10,
followed by a feedforward network with 32 neurons. The de-
coder was implemented as a Multilayer Perceptron (MLP) to
better suit the task. The model structure is shown in Fig. 4c.

3.4 Evaluation approaches

Three statistical measures were used to represent the valida-
tion accuracy: RMSE, Mean Absolute Error (MAE), and the
coefficient of determination (R2).

MAE=

N∑
i=1
|(Yi −Xi)|

N
(8)

RMSE=

√√√√ 1
N

N∑
i=1

(Xi −Yi)2 (9)

R2
= 1−

N∑
i=1

(Xi −Yi)2

N∑
i=1

(
Xi −X

)2 (10)

where Yi andXi are the estimation and the measurement val-
ues of the ith group of samples, andN represents the number
of samples.

To further assess model robustness and spatial generaliza-
tion, a five-fold leave-sites-out cross-validation (5-CV) was
conducted for both H and Ts-a. In this procedure, all sites
were split into five folds, and in each iteration, four folds
were used for training while one fold was used for validation,
ensuring that validation sites were excluded from the train-
ing set. The CV results complement the overall independent
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Figure 4. The structure diagram of (a) RF model, (b) LSTM, (c) Transformer model and (d) DBN model in this study. Add and Norm are
the Residual Connection and Layer Normalization. GPA represents the global average-pooling operations.

Table 5. Same as Table 3 but for estimating H .

Hyper-parameters

n-estimators Max depth Min samples Min samples
split leaf

mod1 [50, 10, 110] (10) [10, 5, 50] (10) [2, 5, 22] (17) [2, 5, 22] (2)
mod2 [10, 10, 100] (80) [10, 5, 30] (5) [2, 5, 22] (5) [2, 5, 22] (5)

validation and “unseen” site evaluation, providing additional
evidence of the model’s ability to generalize across locations.

4 Results

4.1 Evaluation of estimated Ts-a

As described in Sect. 2.1, the measurement values from 2000
to 2017 were used for training, while data from the subse-
quent two years, 2018 and 2019, served as independent val-
idation samples to assess the model’s performance. Figure 5
presents the independent validation accuracy of the estimated
Ts-a values using the RF model developed in this study, com-
pared with those derived from GLASS and ERA5-Land. All
three were evaluated using the same validation samples from
2018–2019 (n= 83 284). For GLASS and ERA5-Land, the
Ts-a values were calculated by subtracting Ta from LST.

As shown in Fig. 5a–c, the RF-estimated Ts-a over the
entire validation set achieved an RMSE of 1.46 K, a MAE
of 1.073 K, and an R2 of 0.52, significantly outperform-
ing GLASS and ERA5-Land, which yielded RMSEs of
2.238 and 2.037 K, MAEs of 1.667 and 1.394 K, and R2 val-
ues of 0.11 and 0.32, respectively. Moreover, the estimated
Ts-a values more closely align with the 1 : 1 line in the scat-
ter plot, whereas GLASS shows a more dispersed distribution
and ERA5-Land significantly underestimates values below
0 K. These results demonstrate that our model has strong ca-
pability for temporal extrapolation. To further examine spa-
tial generalization, we tested the model on independent sam-
ples from “unseen” sites (Fig. 5d–f). A similar pattern is
observed, with the RF model again outperforming the other
two products, achieving an RMSE of 1.803 K, compared to
1.955 K for ERA5-Land and 2.543 K for GLASS. In addi-
tion, to assess model robustness, a 5-CV was conducted us-
ing all available samples. The CV results (RMSE= 1.73 K,
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Table 6. The hyper-parameter setting for two models. The optimal parameter values for mod1 and mod2 are listed in the last two columns.

Hyper-parameters Values The optimal
parameters

mod1 mod2

batch size 16, 32, 64, 128, 256, 512, 1024, 2048 32 16
activation function Relu, Tanh, Sigmoid Relu Relu
neurons of hidden layer 16, 32, 64, 128, 256, 512, 1024, 2048 256 128
Learning rate 0.01, 0.05, 0.001, 0.005 0.05 0.05
Learning rate of RBM 0.01, 0.05, 0.001, 0.005 0.05 0.005

Figure 5. Comparison of the independent validation accuracy of Ts-a against in-situ measurements from 2018–2019: (a, d) estimated values
using the RF model developed in this study; (b, e) from GLASS; and (c, f) from ERA5-Land. Panels (a)–(c) show results on the entire
independent validation set, while panels (d)–(f) show results on the subset of “unseen” sites only.

MAE= 1.86 K, R2
= 0.30) are consistent with those ob-

tained for the “unseen” sites and the temporal extrapolation
tests, further confirming the strong generalization ability of
the RF model. These discrepancies are likely attributable to
differences in land cover types, further demonstrating the
strong generalization capability of the proposed RF model in
estimating Ts-a for both “future” time periods and “unseen”
locations.

Building on the previously validated robustness and spa-
tial generalization of the model, we further examined how
its performance varies under different environmental condi-
tions. Daily-scale validation accuracies of the estimated Ts-a
model and two other products were evaluated using the en-

tire independent validation set across five elevation ranges
(0–200, 200–500, 500–1000, 1000–1500 and> 1500 m), five
NDVI ranges (0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8 and 0.8–1),
six slope ranges (0–2, 2–4, 4–6, 6–8, 8–10 and > 10°) and
nine land cover types (BSV, CRO, CVM, FOR, GRA, IAS,
SAV, SHR and WET). These subgroup analyses focus on
performance variability across different environments rather
than additional “unseen” sites evaluation, providing insights
into the conditions under which the model performs better or
worse. The evaluation results are presented in Fig. 6.

Overall, the RF estimated model exhibited superior accu-
racy in various conditions, followed by ERA5-Land, aligning
with findings from Fig. 5. In terms of terrain factors like ele-
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Figure 6. The validation accuracy of estimated Ts-a, ERA5-Land and GLASS across different conditions: (a) elevation within 0–200, 200–
500, 500–1000, 1000–1500 and > 1500 m, (b) land cover described in Fig. 1, (c) NDVI with an interval of 0.2 and (d) slope with an interval
of 2°. The pie charts in (b), (d), (f) and (h) display the corresponding sample sizes for each condition.

vation and slope (Fig. 6a and g), the RF model showed signif-
icant improvements, especially within the 500–1000 and >
1500 m elevation ranges, and the 2–6 and > 8° slope ranges,
with RMSE improvements of approximately 1 K for eleva-
tion and between 0.7 and 1.4 K for slope. Regarding NDVI
(Fig. 6e), a notable improvement was observed in the 0–
0.2 range, with an RMSE of ∼ 1 K. These outcomes sug-
gest that the RF model more accurately reflects Ts-a vari-
ations influenced by vegetation and terrain, which are key
factors mentioned in the Introduction. Additionally, the per-
formance across different land cover types was evaluated in
Fig. 6c. The RF model performed well across all types, ex-
cept for a site in CVM, which had an RMSE of approx-

imately 2.2 K, an MAE of 1.8 K and R2 of 0.16, slightly
higher than GLASS and ERA5-Land by 0.3 and 0.5 K in
RMSE, respectively. Among the eight land cover types eval-
uated, the RF model demonstrated exceptional performance,
especially in areas with high albedo (IAS) and those subject
to seasonal variations (WET). In these cases, ERA5-Land
recorded an RMSE of approximately 3.3 K for IAS, while
GLASS reported around 2.9 K, implying the need for cau-
tion when applying these products to studies of icy regions.
Regarding the BSV, the accuracy of the RF model was on par
with ERA5-Land and surpassed that of GLASS, suggesting
that the RF model and ERA5-Land effectively incorporate
critical information.
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Table 7. The training and independent validation accuracy of two
LSTM models based on the same samples, both with and without
the use of ABD data. Units of RMSE and Bias are W m−2.

Training Independent validation
(no. of samples= 121 542) (no. of samples= 97 982)

RMSE MAE R2 RMSE MAE R2

mod1 22.293 16.494 0.71 25.533 18.641 0.54
mod2 24.819 18.565 0.64 27.051 20.034 0.51

In summary, the accuracy of the RF model and the two
comparison products varied significantly under different con-
ditions, with the RF model consistently outperforming the
others as indicated by the lowest RMSE and MAE in almost
all cases. Consequently, the RF model was used to generate
daily Ts-a values globally from 2000 to 2020 for the calcula-
tion of daily H .

4.2 Evaluation of model accuracy for H estimation

Table 7 presents the training and validation accuracy of esti-
mated daily H from two LSTM models against in-situ mea-
surements using the same samples. The independent val-
idation results of two models were different but accept-
able, with RMSEs of 25.533 and 27.051 W m−2, MAEs of
18.641 and 20.034 W m−2, and R2 of 0.54 and 0.51. Com-
pared to the training accuracy, the validation results showed
a slight increase in RMSE (3.24 and 2.232 W m−2) and MAE
(2.147 and 1.469 W m−2), but these differences were con-
sidered acceptable. Additionally, incorporating ABD into the
model improved accuracy, reducing RMSE to 1.518 W m−2

and MAE to 1.393 W m−2, underscoring the significance
of ABD. Overall, all models exhibited satisfactory perfor-
mance, as evidenced by their comparable training and vali-
dation results.

Due to the lack of ABD data during the polar night, two
models were developed. In the final validation phase, the po-
lar night results from model 1 were substituted with those
from model 2, as depicted in Fig. 7a. The overall valida-
tion accuracy was deemed satisfactory, with an RMSE of
25.54 W m−2, MAE of 18.649 W m−2 and R2 of 0.54. To
evaluate the model’s spatial generalization ability, indepen-
dent validation samples were split into those from training
sites and those from “unseen” sites. The corresponding accu-
racies are presented in Fig. 7b, where the pink scatter points
represent samples from sites not included in the training pro-
cess. The model performed reasonably well on the “unseen”
sites, with an RMSE of 27.53 W m−2, a MAE of 20 W m−2

and an R2 of 0.43. These results are only slightly lower than
those obtained for the sites included in the training set, which
yielded an RMSE of 25.16 W m−2, MAE of 18.43 W m−2

and R2 of 0.56. In addition, a 5-CV was conducted across
all samples to further assess model robustness. The CV
results (RMSE= 27.9 W m−2, MAE= 20.44 W m−2, R2

=

0.49) are comparable to those obtained for the “unseen”
sites, indicating that the model maintains stable performance
across different data subsets. To provide a comprehensive
view of site-level performance, the RMSE was calculated for
each validation site, including both training sites (at previ-
ously “unseen” times) and “unseen” sites. The spatial distri-
bution of these RMSE values is illustrated in Fig. 8. It was
observed that the LSTM model exhibited the highest level of
robustness on a global scale, with 80 % of the sites (107 sites)
reporting an RMSE below 30 W m−2 (indicated in red and
orange in Fig. 8). Nonetheless, some sites (eight sites) dis-
played suboptimal performance with RMSE values exceed-
ing 40 W m−2.

Afterwards, three different methods were employed to es-
timate H for a comparative analysis with the accuracy of
the LSTM models. The independent validation results, based
on the full set of samples shown in Fig. 7a are presented in
Fig. 9. All comparisons were conducted using this full in-
dependent validation set to provide a comprehensive eval-
uation of the LSTM model against other methods, as the
robustness and spatial generalization of the model have al-
ready been demonstrated in the previous analyses. The three
methods produced closely aligned results, with RMSE values
ranging from 25.341 to 26.01 W m−2, MAE values between
18.757 and 19.165 W m−2, and R2 values from 0.52 to 0.55,
compared to the LSTM model’s RMSE of 25.54 W m−2,
MAE of 18.649 W m−2 and R2 of 0.54 (as shown in Fig. 7).
However, all models exhibited varying degrees of underes-
timation for high values and overestimation for low values.
While this issue was particularly pronounced in the Trans-
former and RF methods, the DBN and LSTM models demon-
strated relatively better performance, albeit with similar ten-
dencies. Remarkably, the LSTM model surpassed the DBN
model, achieving improvements of 0.47 W m−2 in RMSE
and 0.516 W m−2 in MAE. To further clarify the performance
of these models, we examined each site and randomly se-
lected three sites to illustrate the temporal variations in the
values of H based on these four methods and in-situ mea-
surements, compared against validation samples. As shown
in Fig. 10, the LSTM model effectively captures the tempo-
ral variation of H in relation to in-situ measurements, while
the other three models exhibit relatively poorer performance
on certain days. A notable mismatch is observed in the RF,
DBN, and Transformer models around the 268th day of 2012
at Lath_AU-Dry (Fig. 10a), with RF displaying only a sin-
gle value and the other two methods showing underestima-
tion on those days. Furthermore, RF and DBN exhibit op-
posing trends comparing to in-situ measurements during the
152nd and 218th days of 2011 at Lath_US-SRC (Fig. 10c).
The variations of the four models at Lath_US-Dia (Fig. 10b)
generally coincide with in-situ measurements, but RF shows
slight overestimation around the 248th day of 2011 and DBN
underestimates before the 196th day of 2012. Therefore,
the LSTM model demonstrated superior performance, effec-
tively mitigating the challenges of overestimating low values
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Figure 7. The accuracy of the estimated H based on (a) all independent in-situ validation samples, (b) samples from sites used in training
(blue scatter points) and from “unseen” sites (pink scatter points). The values were obtained by replacing the results for areas with missing
ABD in mod1 with those from mod2.

Figure 8. The spatial distribution of the validation accuracy of all sites (represented by RMSE).

Figure 9. Validation accuracy against in-situ measurements using the common validation samples as LSTM for (a) DBN, (b) RF and
(c) Transformer methods.
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and underestimating high values in this study, likely due to
its incorporation of time series information.

In summary, the LSTM models employed for estimat-
ing daily H , which integrate the estimated Ts-a and other
GLASS products, have shown satisfactory accuracy. Conse-
quently, this method is deemed appropriate for global 1 km
resolution mapping of dailyH , establishing it as a viable and
dependable approach for these applications.

4.3 Daily H product generation

In this study, daily H estimates were generated globally for
the period 2000–2020 by integrating two LSTM models.
Specifically, mod2 was applied under polar night conditions
when ABD data were unavailable. To assess the accuracy of
the estimatedH , we examined its spatial and temporal varia-
tions and compared the daily estimated H values with other
existing products, as outlined below.

4.3.1 The spatial and temporal variation of H

Figure 11 presents the results of calculating monthly average
values across different latitude zones with a 10° range for
all years. It reveals that the variation in H demonstrates dis-
tinct seasonal patterns, with higher values observed during
the summer months in both hemispheres. This trend aligns
with Ts-a variations, highlighting the impact of solar radi-
ation on surface properties, which in turn affects the en-
ergy balance and flux dynamics (Jiang et al., 2022). Specif-
ically, high H values are found in three regions: between
30–60° N from May to August, 20–50° S from January to
March, and 10–50° S from October to December, peaking
in January (82.15 W m−2) at 40–50° S. Conversely, winter
months at higher latitudes exhibit low values, with the low-
est recorded in June (−3.8 W m−2) at 60–70° S. Generally,H
values in polar regions remain below 15 W m−2, occasionally
dropping below 0 W m−2. Nevertheless, in March, April, and
September, H values surpass 40 W m−2 around 80° S. The
scarcity of observation sites in polar regions might increase
uncertainty in our models, particularly in the South Pole re-
gion (> 70° S), thus caution is advised when usingH values.

To better illustrate the spatial and temporal variations in
global H during 2000–2020, Fig. 12 displays the anomaly
values of land surface H across latitude zones (1°) for each
day. There is a clear annual pattern influenced by the sun’s
position evident across these years. The position of the sun
directly influences the distribution of DSR, which in turn af-
fects Ts-a, and ultimately altering the distribution of H . Ad-
ditionally, a distinct cyclic trend is noticeable in both lati-
tudinal and temporal variations, reflecting seasonal changes
across latitudinal zones and underscoring dynamic shifts in
H distribution over time. These shifts may result from a
combination of regional climatic changes, land surface prop-
erties, and interactions with atmospheric processes. These
findings underscore the importance of long-term satellite-

based remote sensing for capturing spatiotemporal variations
in land-atmosphere energy exchanges. Such observations are
essential for understanding the mechanisms behind energy
flux dynamics and their sensitivity to environmental and cli-
matic changes.

In summary, the spatial and temporal variations observed
in the estimated H data align with theoretical expectations,
yet they necessitate further validation. To this end, we con-
ducted a comparison of the estimated H with other existing
products to provide a more thorough evaluation.

4.3.2 Inter-comparison with other products

Three reanalysis products (MERRA2, ERA5 and ERA5-
Land) and one remotely sensed-based product (FLUXCOM)
were further compared. Figure 13a1–a5 illustrates the spa-
tial distributions of these four products and the estimated
H on the 121st day of 2010 at a global scale. The spatial
distribution of the estimated H is logical and closely re-
sembles that of MERRA2, ERA5-Land, and ERA5, while
FLUXCOM exhibits relatively lower values compared to the
other products. Additionally, we provide a further compar-
ison of the estimated H values with other products in the
Tibetan Plateau region, characterized by its complex terrain,
as shown in Fig. 13b1–b5, corresponding to the black box
in Fig. 13a1–a5. The spatial distribution of the three reanal-
ysis products is noticeably smoother than that of the esti-
matedH , and FLUXCOM lacks most data in this region. The
estimated H effectively captures the intricate details of the
rugged terrain, thanks to its higher spatial resolution, a detail
that is not as prominently reflected in the other four products
(Fig. 13c1–c5). This comparison highlights the importance
of high-resolution H products for accurately depicting com-
plex landscapes.

Figure 13 reveals significant discrepancies in the estimated
H values in certain areas compared to other products, mo-
tivating further evaluation using in-situ measurements. All
subsequent results are based on the full independent valida-
tion set, as the model’s robustness and spatial generalization
have already been established in Sect. 4.2. To ensure spatial
consistency, all products were interpolated to a resolution of
1 km. FLUXCOM_RS was evaluated separately, as it is the
sole publicly available global remote sensing product that of-
fers an 8 d temporal resolution spanning from 2001 to 2015,
whereas the reanalysis products feature higher temporal res-
olutions (hourly) and encompass a broader timeframe (1950
to the present).

Reanalysis products

Figure 14 illustrates the performance of the estimated H

values comparison to three reanalysis products (MERRA2,
ERA5 and ERA5-Land), utilizing 97 045 independent val-
idation samples. The independent validation results show
that the estimated H values outperformed those of the
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Figure 10. Temporal variations in the values of H based on the LSTM (red solid line), DBN (purple dotted line), RF (blue solid line),
Transformer (green dash-dot line) and in-situ measurements (black dot) using the validation samples at (a) Lath_AU-Dry, (b) Lath_US-Dia
and (c) Lath_US-SRC. Note that the time given on the abscissa is not continuous in (a)–(c).

three reanalysis products, achieving the lowest RMSE of
26.587 W m−2 and MAE of 19.191 W m−2. Remarkably, the
estimated H exhibited significantly lower uncertainty com-
pared to the other products, with reductions in RMSE of
9.351, 5.497 and 4.573 W m−2 and in MAE of 6.996, 4.342
and 3.562 W m−2 for MERRA2, ERA5-Land and ERA5,
respectively. Moreover, the estimated H demonstrated en-
hanced accuracy for values approaching zero, in contrast to
the significant uncertainty observed in the reanalysis prod-
ucts for small H values, potentially indicative of winter con-
ditions (highlighted by the red circles in the Fig. 14b–d).

These findings suggest that caution is advised when employ-
ing MERRA2, ERA5, and ERA5-Land for small absolute
H values.

Additionally, to provide a more comprehensive evalua-
tion, we compared the performance of the estimated daily
H using validation samples against three other products
across seven land cover types. The comparison results, de-
picted in Fig. 15a–c, include RMSEs, MAEs, and R2 val-
ues, while Fig. 15d provides the sample sizes for each land
cover category. These results demonstrate that the accuracy
of the estimated H varies by land cover type, with RM-
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Figure 11. Variation of monthly H in latitude zones (10°) and months zones from 2000–2020.

Figure 12. The anomalies of land surface H in latitude zones (1°) at daily scales from 2000–2020.

SEs ranging from 23.87 to 32.39 W m−2, MAEs from 17.66
to 23.21 W m−2, and R2 from 0.31 to 0.58. Overall, the
estimated daily H outperformed the three other datasets,
followed by ERA5 (with RMSEs between 19.05 and
42.12 W m−2 and MAEs between 14.61 and 31.58 W m−2),
ERA5-Land (with RMSEs between 20.19 and 48.46 W m−2

and MAEs between 15.72 and 36.34 W m−2) and MERRA2
(with RMSEs between 28.11 and 54.42 W m−2 and MAEs
between 21.47 and 39.46 W m−2). Specifically, the estimated
daily H exhibited superior performance for land cover types
such as WET (27.38 W m−2 in RMSE and 19.71 W m−2 in
MAE), SHR (25.29 W m−2 in RMSE and 18.72 W m−2 in
MAE), GRA (23.87 W m−2 in RMSE and 17.66 W m−2 in
MAE), FOR (27.86 W m−2 in RMSE and 19.78 W m−2 in
MAE), and CRO (26.37 W m−2 in RMSE and 19.51 W m−2

in MAE), with the RMSE and MAE values significantly

lower than those of ERA5, ERA5-Land and MERRA. How-
ever, the estimated daily H showed marginally lower per-
formance for SAV and BSV, with all datasets yielding rel-
atively similar RMSEs (ranging from 25.29 to 29.7 W m−2)
and MAEs (from 18.72 to 22.15 W m−2). This indicates that
the estimation methods produce comparable results for these
specific land cover types.

To further assess the performance across different regions,
we compared the daily H estimates with other datasets us-
ing in-situ measurements across six continents, as illustrated
in Fig. 16a1–a6. The comparison reveals that the estimated
H achieved commendable performance in North America,
Europe, Asia, and Australia, with RMSEs of 26.55, 27.15,
25.87, and 26.63 W m−2, respectively. Notably, the RM-
SEs associated with the estimated H decreased significantly
comparing with other three products, ranging from 5.14 to

Earth Syst. Sci. Data, 17, 5571–5600, 2025 https://doi.org/10.5194/essd-17-5571-2025



H. Liang et al.: Generation of global 1 km daily land surface–air temperature difference 5589

Figure 13. (a1)–(a5) display the daily values on the 121th day of 2010 for the estimatedH , FLUXCOM, MERRA2, ERA5-Land and ERA5.
The black box in (a1)–(a5) represents the location of (b1)–(b5) and (c1)–(c5) is the location of black box in (b1)–(b5).
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Figure 14. Comparison of the validation accuracy against in-situ measurements by using common samples in H from (a) the estimated H
in this study, (b) MERRA2, (c) ERA5-Land and (d) ERA5.

10.21 W m−2 in North America, 4.36 to 6.02 W m−2 in Eu-
rope, 7.04 to 21.5 W m−2 in Asia, and 2.42 to 8.48 W m−2

in Australia. Conversely, the estimated H exhibited weaker
performance in South America and Africa, where the valida-
tion was constrained to a limited number of sites – specif-
ically, one site (N = 548) in South America and two sites
(N = 1048) in Africa, as shown in Figs. 8 and 16a7. In
South America, the estimated H reported an RMSE of
19.12 W m−2, with ERA5 outperforming other datasets by
achieving the lowest RMSE of 12.09 W m−2. In Africa, the
difference in RMSE between the estimatedH and MERRA2
was minimal, at merely 3.03 W m−2, whereas the greatest
discrepancy was noted with ERA5-Land, which exhibited a
difference of 6.53 W m−2.

FLUXCOM

The H estimates derived from LSTM were compared with
the sole publicly remotely sensed-based product, FLUX-
COM, through independent validation samples spanning
2001 to 2015 (as shown in Fig. 17). The accuracy of theH es-
timates surpassed that of FLUXCOM, as evidenced by lower

RMSE and MAE values of 24.5 and 18.14 W m−2, respec-
tively, in comparison to FLUXCOM’s RMSE and MAE of
29.21 and 21.82 W m−2 (Fig. 17a1 and b1). Furthermore, the
majority of sites with estimated H exhibited RMSE values
below 30 W m−2, predominantly located in Eastern Asia, Eu-
ropean, Eastern American, and the Northern and Southeast-
ern regions of Australia, as depicted in Fig. 17a2 and b2. In
contrast, the spatial distribution of FLUXCOM demonstrated
significant variability across continents, with RMSE values
ranging from 10 to approximately 40 W m−2 even within the
same continent or adjacent regions.

Based on the preceding results, the estimated H exhibits
superior performance compared to FLUXCOM. To ensure
a more thorough evaluation, we further assessed the valida-
tion accuracy of both products across various months, land-
cover types, and elevation ranges, utilizing the same sam-
ples depicted in Fig. 18. Here, we present the RMSE values,
which have been determined to accurately reflect the perfor-
mance in each scenario following an extensive evaluation.
Overall, the accuracy of both products exhibited variability
under different conditions, yet the estimated H consistently
surpassed FLUXCOM in all scenarios. Figure 18a reveals a
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Figure 15. The (a) RMSE, (b) Bias, (c) R2 of LSTM model with ERA5, ERA5-Land and MERRA2 in various land cover types. The
corresponding sample size in different land cover provided in (d).

Figure 16. The RMSE values for four datasets across six continents: (a1) North America, (a2) South America, (a3) Europe, (a4) Africa,
(a5) Asia, and (a6) Australia. A–D represent the estimatedH , ERA5, ERA5-Land, and MERRA2, respectively. (a7) shows the corresponding
sample sizes for each continent.
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Figure 17. The overall validation accuracy against in-situ measurements by using common samples from (a1) the estimated H in this study
and (b1) FLUXCOM_RS. (a2) and (b2) show their corresponding spatial distribution of site overall validation accuracy (represented by
RMSE).

distinct seasonal variation in accuracy, characterized by re-
duced RMSE values in the winter months and increased val-
ues during the summer. A similar trend was observed for Rn,
which informed the derivation of H in this study (Yin et al.,
2023). This seasonal fluctuation is likely due to seasonal dif-
ferences in cloud cover and water vapor content, which in-
fluence radiation estimates and thus affect the H estimates.
The disparity in RMSE values between the two products
ranged from 1.86 to 7.5 W m−2, with the most significant
differences noted in May and June. For different land-cover
types (Fig. 18b), the estimated H demonstrated stable per-
formance, with RMSE values ranging from 24 to 30 W m−2,
indicating that the LSTM method effectively captured the
features of each land cover type. In terms of accuracy for
CRO and GRA, both products were comparable, with a nom-
inal RMSE disparity of approximately 1.5 W m−2. However,
both products demonstrated relatively weaker performance
in SHR, with RMSEs of 29.78 W m−2 for the estimated H
and 34.94 W m−2 for FLUXCOM. Notably, the estimated H
achieved significant improvements in WET and FOR, with
RMSE improvements of 7.67 and 6 W m−2, respectively. The

comparison of accuracy across five elevation ranges is de-
picted in Fig. 18c. With increasing elevation, the accuracy
of both products diminished. In regions exceeding 1500 m
in elevation, the RMSE values reached 30.38 W m−2 for the
estimated H and 35.09 W m−2 for FLUXCOM. Conversely,
at elevations below 1500 m, the estimated H maintained a
more consistent performance, with RMSE values spanning
from 23.11 to 25.25 W m−2, in contrast to the RMSE values
of FLUXCOM, which varied from 26.17 to 32.05 W m−2.

Overall, the dailyH estimates over a 1 km resolution from
2000 to 2020, derived through the application of LSTM mod-
els based on calculated Ts-a, exhibit significant potential for
broad application. This potential arises from their commend-
able accuracy and their proficiency in capturing surface char-
acteristics, as compared to other existing products.

5 Discussion

Global H products encounter limitations, including coarse
spatial resolution and significant uncertainties. Given that
Ts-a is a crucial factor in deriving H , this study employs
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Figure 18. Comparison of the validation accuracy (represented by RMSE) in H under three conditions: (a) twelve months, (b) land-cover
types and (c) elevation ranges (200, 200–500, 500–1000, 1000–1500, and > 1500 m).

it to obtain H . Nevertheless, the accuracy of Ts-a calcula-
tions frequently suffers when derived from existing datasets
by subtracting Ta from the LST. To overcome this limita-
tion, we employed the RF method to estimate daily Ts-a
on a global scale from 2000 to 2020, incorporating atmo-
spheric and surface factors. Subsequently, we utilized two
LSTM models to generate global daily estimates of H for
the same period, based on the RF-estimated Ts-a and addi-
tional GLASS products. The performance of both RF and
LSTM models is comprehensively assessed in Sect. 4, in-
cluding benchmarking against various datasets and method-
ologies under diverse conditions. For contextual compari-
son, we determined the global average land surface H to be
35.29± 0.71 W m−2 over the 2000–2020 period. This value
is higher than the 27 W m−2 based on global land data from
2000 to 2004 reported by Trenberth et al. (2009), and also ex-
ceeds the 32 W m−2 estimated by Jung et al. (2019), which
excluded barren regions, deserts, permanent snow or ice, and
water bodies for the period 2000–2013. It is more consis-
tent with the 36–40 W m−2 range reported by Siemann et
al. (2018) for global land areas between 1984 and 2007.
These figures are provided for general context, as differences
in spatial coverage and temporal periods across studies limit
direct comparability. Despite these advancements, certain as-
pects still require discussion, as outlined below.

5.1 Key derivers and variable importance in Ts-a
estimation

Existing research indicates that Ts-a is affected by a blend of
atmospheric and surface factors (Feng and Zou, 2019). The-
oretically, when the spatial resolution of terrain is finer than
5 km, it can modify the distribution of DSR and DLW reach-

ing the land surface (Wang et al., 2004; Liang et al., 2024a),
which in turn influences the distribution of LST. Variations in
LST, driven by differences in terrain characteristics and land
cover types, can warm the atmosphere, altering atmospheric
conditions and consequently affecting radiation variation.
In this study, we utilized terrain, vegetation, and radiation-
related variables to estimate daily Ts-a on a global scale. The
relative importance of each variable within the RF model was
quantified and ranked, with the findings detailed in Fig. 19.
Among the variables analyzed, the NDVI, as a key vegetation
parameter, exhibited the highest relative importance score of
25.2 %. This underscores its pivotal role in estimating Ts-a.
Subsequent contributors included slope, LST, elevation, and
DSR, with respective importance scores of 16.38 %, 15.17 %,
12.96 %, and 11.16 %. These findings suggest that both ter-
rain and radiation-related variables are integral to accurately
estimating Ts-a. Notably, slope and elevation were more crit-
ical than the other terrain-related variable, aspect, which ac-
counted for 7.37 %. Although flux towers are generally in-
stalled on relatively flat terrain to ensure measurement accu-
racy, the surrounding complex terrain within and beyond the
flux footprint can still influence local surface energy and tem-
perature dynamics near the flux towers. Similarly, LST and
DSR proved to be more impactful than DLW, which held a
contribution of 4.98 %. In addition, the doy ranked as the sec-
ond least important variable in our analysis. Although it does
not represent a direct physical environmental variable, our
experiments demonstrated that it serves as a simple yet in-
formative seasonal indicator that helps the RF model capture
temporal variations effectively.
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Figure 19. The relative importance (%) of each variable in RF model.

5.2 The application of accurate Ts-a

Ts-a is pivotal in influencing various land processes, bound-
ary layer dynamics, weather forecasting, climate studies, and
atmospheric profile retrievals. Its critical role extends to un-
derstanding atmospheric circulation, weather patterns, agri-
cultural productivity, and ecological systems (Ghent et al.,
2015; Zhang et al., 2014a). Previous studies have highlighted
Ts-a’s significant influence on summer precipitation in the
middle and lower Yangtze River (Liu et al., 2009; Zhou and
Huang, 2006), and its application in assessing soil desertifi-
cation (Ai and Guo, 2003). Moreover, Ts-a is instrumental in
reflecting various crop development stages, such as seed ger-
mination, seedling emergence, and photosynthesis, and af-
fects soil microbial activity and the prevalence of crop dis-
eases and pests (Gu et al., 2012). Additionally, it serves as
a crucial parameter in process-based Earth system models,
indicating the intensity of land–atmosphere interactions, en-
ergy fluxes, and driving key ecological and biophysical pro-
cesses (Lensky et al., 2018; Qiang et al., 2011). The esti-
mation of Ts-a in this study further facilitates the accurate
derivation of Ta values. We estimated daily Ta globally by
subtracting the estimated Ts-a from the GLASS LST prod-
uct. For validation, we compared our Ta estimates with those
from GLASS Ta using the same set of validation samples
(no. of samples= 84 771). As depicted in Fig. 20, the esti-
mation Ta achieved an RMSE of 2.621 K, a MAE of 1.971 K,
and an R2 of 0.95, demonstrating competitive accuracy
compared to GLASS Ta (RMSE= 2.307 K, MAE= 1.692 K,
R2
= 0.96). These results underscore the critical role of Ts-a

in a wide range of environmental and agricultural applica-
tions, highlighting its significant potential for global Ta esti-
mation and further validating the accuracy of the Ts-a model.

5.3 Impact of Ts-a data sources on H estimation using
a physical model

We investigated whether the estimated daily Ts-a could en-
hance the accuracy of dailyH values obtained from the phys-
ical model mentioned in the Introduction, compared to other
data sources typically employed in existing research. To eval-

uate the uncertainty introduced by varying Ts-a data sources,
we calculated dailyH using the temperature-derived method
in Eq. (10):

H = ρCp (T0− Ta)/rah (11)

rah =
1
ku∗

[
ln
(

(zm− d)
zom

)
−9(h)+ ln

(
zom

zoh

)]
(12)

Where ρ (kg m−3) is the air density, Cp (J kg−1 K−1) is the
specific heat capacity of air at constant pressure (1013), rah is
the aerodynamic resistance to heat transfer, zom (m) is rough-
ness length for momentum transport, k is the von Karman’s
constant (0.41), u∗ is friction velocity, d is zero plane dis-
placement height, zm (m) is the reference height, zoh is the
roughness length for heat and related to the aerodynamic pa-
rameter KB−1 and zom (KB−1

= ln(zom/zoh)), 9 (h) repre-
sent the stability correction functions for heat, T0–Ta rep-
resents the Ts-a and data were obtained from GLASS with
1 km resolution, estimated 1 km Ts-a using a RF model, and
in-situ measurements.

Table 8 presents the results of daily H calculated from
physical model by using different data sources. A total of
3391 independent validation samples were acquired. Note
that the uncertainty associated with rah and ρCp were not
addressed in this study. Overall, using GLASS and estimated
Ts-a resulted in uncertainties of 13.5 % and 5.3 %, respec-
tively, with RMSEs of 58.28 and 54.08 W m−2, compared
to Ts-a from in-situ measurements (RMSE= 51.35 W m−2).
Additionally, the uncertainty varied across different land
cover types, as shown in Table 8. Utilizing Ts-a from
GLASS and estimated Ts-a, uncertainty ranged from 6.01 %
to 23.1 %, with the highest and lowest uncertainties observed
in GLASS for FOR and SAV, yielding RMSEs of 65.72 and
59.45 W m−2, respectively. However, for certain land cover
types such as CRO and GRA, lower RMSEs were noted
when employing Ts-a from GLASS and estimated Ts-a com-
pared to in-situ measurements, specifically. Specially, the
RMSEs were 35.62 and 46.2 W m−2 for CRO, and 46.14 and
45.76 W m−2 for GRA. Moreover, across all five land cover
types, RMSE values consistently exceeded 35 W m−2 when
utilizing different Ts-a data sources. This could be due to
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Figure 20. The direct validation result of Ta estimated by (a) GLASS Ta and (b) derived from GLASS LST and the estimated Ts-a against
in-situ measurements.

Table 8. The RMSE values of daily H calculated from physical
model across five land cover types using the Ts-a obtained from
GLASS, Estimated Ts-a and in-situ measurements.

Data source of Ts-a

Land GLASS Estimated Sites No. of
cover Ts-a samples

CRO 35.62 46.2 46.25 385
FOR 65.72 57.46 53.4 1894
GRA 46.14 45.76 47.16 648
SAV 59.45 62.04 56.08 369
SHR 41.44 26.35 34.95 95

the fact that the uncertainty of parameterized method in get-
ting rah was not accounted for. Therefore, accurately estimat-
ing rah is curial in physical model and the machine learning
method used in this study effectively mitigates this issue after
our experiments.

5.4 Uncertainty analysis of in-situ measurements due to
energy balance closure correction

As the H in-situ measurements used as ground truth values
in this study have undergone energy balance closure (EBC)
correction, their reliability warrants thorough discussion. In
this study, we adopted the widely used method proposed by
Twine et al. (2000), which redistributes the residual energy
between sensible and latent heat fluxes in proportion to their
original magnitudes. Although this approach has been imple-
mented in many large-scale studies and provides a practical
solution when additional constraints are lacking, recent re-
search has underscored its limitations. Notably, Mauder et
al. (2024) highlighted that EBC remains a persistent issue in
FLUXNET data, with a global average energy balance ratio
of approximately 0.82, and identified unresolved processes
such as mesoscale secondary circulations and unmeasured
energy storage terms as major contributors to the energy gap.

These uncertainties are particularly relevant for H , and their
effects can propagate into downstream analyses and model
training. Although the Twine method does not resolve these
underlying physical mechanisms, it remains a necessary and
pragmatic compromise for enabling the use of flux tower data
in surface energy balance studies.

6 Data availability

The daily mean values for the first three days
of each year can be freely downloaded from
https://doi.org/10.5281/zenodo.14986255 (Liang et al.,
2025a), and the complete products are now publicly avail-
able at https://www.glass.hku.hk/ (last access: 18 October
2025).

7 Conclusions

To address the shortage of high-resolution and accurate data
on daily land surface H , we employed LSTM deep learning
model to produce a global daily H dataset at a resolution
of 1 km for the years 2000–2020. Moreover, we introduced
RF-based refined Ts-a values to enhance the accuracy of H
by recognizing that Ts-a is a crucial driver of H and that
significant uncertainty arises from the method of subtracting
Ta from the LST. Validation against ground measurements
demonstrated that this process for obtaining H is more ef-
fective than other methods and products. It successfully ad-
dressed the underestimation of high H values and the over-
estimation of low H values, potentially due to the incorpora-
tion of time series information. When compared to the sole
satellite-basedH product, FLUXCOM, this method achieved
the lowest RMSE of 24.5 W m−2 and MAE of 18.14 W m−2,
while FLUXCOM exhibited an RMSE of 29.21 W m−2 and
MAE of 21.82 W m−2. Several conclusions can be drawn
based on the results of this study: (1) H variation exhibits
clear seasonal patterns akin to those of Ts-a. (2) Terrain sig-
nificantly influences Ts-a estimation, with slope being the
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most crucial terrain-related factor. (3) The uncertainty in the
physical model for estimating H was 13.5 % when using
GLASS Ts-a and was reduced to 5.3 % with estimated Ts-
a.

Overall, the daily H estimates derived from the LSTM
method have demonstrated accuracy following extensive val-
idation across diverse conditions and various products. How-
ever, significant uncertainties persist in the South Pole re-
gion (latitude greater than 70° S) due to data scarcity, and
efforts are being made to enhance the performance in these
areas. Future research should further evaluate the uncertainty
of the products due to sub-pixel spatial variability and even
possibly generate the high-resolution (∼ 30 m) H and Ts-a
products using high-resolution satellite information products
(Liang et al., 2024b, 2025b).
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