Articles | Volume 17, issue 10
https://doi.org/10.5194/essd-17-5065-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-5065-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global-PCG-10: a 10 m global map of plastic-covered greenhouses derived from Sentinel-2 in 2020
Bowen Niu
College of Land Science and Technology, China Agricultural University, Beijing 100193, China
Quanlong Feng
CORRESPONDING AUTHOR
College of Land Science and Technology, China Agricultural University, Beijing 100193, China
Bingwen Qiu
Key Laboratory of Spatial Data Mining & Information Sharing of Ministry of Education, Academy of Digital China (Fujian), Fuzhou University, Fuzhou 350116, Fujian, China
Shuai Su
College of Land Science and Technology, China Agricultural University, Beijing 100193, China
Xinmin Zhang
College of Land Science and Technology, China Agricultural University, Beijing 100193, China
Rongji Cui
College of Land Science and Technology, China Agricultural University, Beijing 100193, China
Xinhong Zhang
College of Land Science and Technology, China Agricultural University, Beijing 100193, China
Fanli Sun
College of Land Science and Technology, China Agricultural University, Beijing 100193, China
Wenhui Yan
College of Land Science and Technology, China Agricultural University, Beijing 100193, China
Siyuan Zhao
College of Land Science and Technology, China Agricultural University, Beijing 100193, China
Hanyu Shi
College of Land Science and Technology, China Agricultural University, Beijing 100193, China
Cong Ou
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
Xiaolu Yan
Laboratory of Geo-Information Science and Remote Sensing, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
Jianhua Gong
National Engineering Research Center for Geoinformatics, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
Gaofei Yin
Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu 611756, China
Jianxi Huang
College of Land Science and Technology, China Agricultural University, Beijing 100193, China
Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu 611756, China
Jiantao Liu
School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan 250101, Shandong, China
Bingbo Gao
College of Land Science and Technology, China Agricultural University, Beijing 100193, China
Xiaochuang Yao
College of Land Science and Technology, China Agricultural University, Beijing 100193, China
Jianyu Yang
College of Land Science and Technology, China Agricultural University, Beijing 100193, China
Dehai Zhu
College of Land Science and Technology, China Agricultural University, Beijing 100193, China
Related authors
No articles found.
Kai Yan, Jingrui Wang, Rui Peng, Kai Yang, Xiuzhi Chen, Gaofei Yin, Jinwei Dong, Marie Weiss, Jiabin Pu, and Ranga B. Myneni
Earth Syst. Sci. Data, 16, 1601–1622, https://doi.org/10.5194/essd-16-1601-2024, https://doi.org/10.5194/essd-16-1601-2024, 2024
Short summary
Short summary
Variations in observational conditions have led to poor spatiotemporal consistency in leaf area index (LAI) time series. Using prior knowledge, we leveraged high-quality observations and spatiotemporal correlation to reprocess MODIS LAI, thereby generating HiQ-LAI, a product that exhibits fewer abnormal fluctuations in time series. Reprocessing was done on Google Earth Engine, providing users with convenient access to this value-added data and facilitating large-scale research and applications.
Miaoqing Xu, Jing Yang, Manchun Li, Xiao Chen, Qiancheng Lv, Qi Yao, Bingbo Gao, and Ziyue Chen
Atmos. Chem. Phys., 23, 14065–14076, https://doi.org/10.5194/acp-23-14065-2023, https://doi.org/10.5194/acp-23-14065-2023, 2023
Short summary
Short summary
Although the temporal-scale effects on PM2.5–meteorology associations have been discussed, no quantitative evidence has proved this before. Based on rare 3 h meteorology data, we revealed that the dominant meteorological factor for PM2.5 concentrations across China extracted at the 3 h and 24 h scales presented large variations. This research suggests that data sources of different temporal scales should be comprehensively considered for better attribution and prevention of airborne pollution.
Yang Yan, Wenjun Ji, Baoguo Li, Guiman Wang, Songchao Chen, Dehai Zhu, and Zhong Liu
SOIL, 9, 351–364, https://doi.org/10.5194/soil-9-351-2023, https://doi.org/10.5194/soil-9-351-2023, 2023
Short summary
Short summary
The response rate of soil organic matter (SOM) to the amount of straw return was inversely proportional to the initial SOM and the sand contents. From paddy to dryland, the SOM loss decreased with the increased amount of straw return. The SOM even increased by 1.84 g kg-1 when the straw return amount reached 60–100%. The study revealed that straw return is beneficial to carbon sink in farmland and is a way to prevent a C source caused by the change of paddy field to upland.
Jie Chen, Qiancheng Lv, Shuang Wu, Yelu Zeng, Manchun Li, Ziyue Chen, Enze Zhou, Wei Zheng, Cheng Liu, Xiao Chen, Jing Yang, and Bingbo Gao
Earth Syst. Sci. Data, 15, 1911–1931, https://doi.org/10.5194/essd-15-1911-2023, https://doi.org/10.5194/essd-15-1911-2023, 2023
Short summary
Short summary
The Himawari-8 fire product is the mainstream fire product with the highest temporal resolution, yet it presents large uncertainties and is not suitable for reliable real-time fire monitoring in China. To address this issue, we proposed an adaptive hourly NSMC (National Satellite Meteorological Center) Himawari-8 fire product for China; the overall accuracy increased from 54 % (original Himawari product) to 80 %. This product can largely enhance real-time fire monitoring and relevant research.
Jie Chen, Qi Yao, Ziyue Chen, Manchun Li, Zhaozhan Hao, Cheng Liu, Wei Zheng, Miaoqing Xu, Xiao Chen, Jing Yang, Qiancheng Lv, and Bingbo Gao
Earth Syst. Sci. Data, 14, 3489–3508, https://doi.org/10.5194/essd-14-3489-2022, https://doi.org/10.5194/essd-14-3489-2022, 2022
Short summary
Short summary
The potential degradation of mainstream global fire products leads to large uncertainty in the effective monitoring of wildfires and their influence. To fill this gap, we produced a Fengyun-3D (FY-3D) global active fire product with a similar spatial and temporal resolution to MODIS fire products, aiming to serve as continuity and a replacement for MODIS fire products. The FY-3D fire product is an ideal tool for global fire monitoring and can be preferably employed for fire monitoring in China.
Ruiyuan Li, Miaoqing Xu, Manchun Li, Ziyue Chen, Na Zhao, Bingbo Gao, and Qi Yao
Atmos. Chem. Phys., 21, 15631–15646, https://doi.org/10.5194/acp-21-15631-2021, https://doi.org/10.5194/acp-21-15631-2021, 2021
Short summary
Short summary
We employed ground observations of ozone and satellite products of HCHO and NO2 to investigate spatiotemporal variations of ozone formation regimes across China. Two different models were employed for determining the crucial thresholds that separate three ozone formation regimes, including NOx-limited, VOC-limited, and transitional regimes. The close output from two different models provides a reliable reference for better understanding ozone formation regimes.
Cited articles
Aguilar, M., Nemmaoui, A., Novelli, A., Aguilar, F., and García Lorca, A.: Object-Based Greenhouse Mapping Using Very High Resolution Satellite Data and Landsat 8 Time Series, Remote Sens., 8, 513, https://doi.org/10.3390/rs8060513, 2016.
Aguilar, M. A., Jiménez-Lao, R., Ladisa, C., Aguilar, F. J., and Tarantino, E.: Comparison of spectral indices extracted from Sentinel-2 images to map plastic covered greenhouses through an object-based approach, GIScience Remote Sens., 59, 822–842, https://doi.org/10.1080/15481603.2022.2071057, 2022.
Brown, C. F., Brumby, S. P., Guzder-Williams, B., Birch, T., Hyde, S. B., Mazzariello, J., Czerwinski, W., Pasquarella, V. J., Haertel, R., Ilyushchenko, S., Schwehr, K., Weisse, M., Stolle, F., Hanson, C., Guinan, O., Moore, R., and Tait, A. M.: Dynamic World, Near real-time global 10 m land use land cover mapping, Sci. Data, 9, 251, https://doi.org/10.1038/s41597-022-01307-4, 2022.
Chen, B., Feng, Q., Niu, B., Yan, F., Gao, B., Yang, J., Gong, J., and Liu, J.: Multi-modal fusion of satellite and street-view images for urban village classification based on a dual-branch deep neural network, Int. J. Appl. Earth Obs. Geoinf., 109, 102794, https://doi.org/10.1016/j.jag.2022.102794, 2022.
Chen, D., Ma, A., Zheng, Z., and Zhong, Y.: Large-scale agricultural greenhouse extraction for remote sensing imagery based on layout attention network: A case study of China, ISPRS J. Photogram. Remote Sens., 200, 73–88, https://doi.org/10.1016/j.isprsjprs.2023.04.020, 2023.
Chen, W., Xu, Y., Zhang, Z., Yang, L., Pan, X., and Jia, Z.: Mapping agricultural plastic greenhouses using Google Earth images and deep learning, Comput. Electron. Agric., 191, 106552, https://doi.org/10.1016/j.compag.2021.106552, 2021.
Du, Z., Yang, J., Ou, C., and Zhang, T.: Agricultural Land Abandonment and Retirement Mapping in the Northern China Crop-Pasture Band Using Temporal Consistency Check and Trajectory-Based Change Detection Approach, IEEE Trans. Geosci. Remote, 60, 1–12, https://doi.org/10.1109/TGRS.2021.3121816, 2022.
Feng, Q., Niu, B., Chen, B., Ren, Y., Zhu, D., Yang, J., Liu, J., Ou, C., and Li, B.: Mapping of plastic greenhouses and mulching films from very high resolution remote sensing imagery based on a dilated and non-local convolutional neural network, Int. J. Appl. Earth Obs. Geoinf., 102, 102441, https://doi.org/10.1016/j.jag.2021.102441, 2021.
Feng, Q., Niu, B., Zhu, D., Yao, X., Liu, Y., Ou, C., Chen, B., Yang, J., Guo, H., and Liu, J.: A dataset of remote sensing-based classification for agricultural plastic greenhouses in China in 2019, China Sci. Data, 6, https://doi.org/10.11922/noda.2021.0009.zh, 2022a.
Feng, Q., Niu, B., Zhu, D., Liu, Y., Ou, C., and Liu, J.: Classification of Agricultural Plastic Cover Based on Multi-kernel Active Learning and Multi-source Data Fusion, Trans. Chin. Soc. Agric. Mach., 53, 177–185, 2022b.
Feng, Q., Niu, B., Ren, Y., Su, S., Wang, J., Shi, H., Yang, J., and Han, M.: A 10-m national-scale map of ground-mounted photovoltaic power stations in China of 2020, Sci. Data, https://doi.org/10.1038/s41597-024-02994-x, 2024.
Fu, Y., Deng, J., Wang, H., Comber, A., Yang, W., Wu, W., You, S., Lin, Y., and Wang, K.: A new satellite-derived dataset for marine aquaculture areas in China's coastal region, Earth Syst. Sci. Data, 13, 1829–1842, https://doi.org/10.5194/essd-13-1829-2021, 2021.
Gao, C., Wu, Q., Dyck, M., Lv, J., and He, H.: Greenhouse area detection in Guanzhong Plain, Shaanxi, China: spatio-temporal change and suitability classification, Int. J. Digit. Earth, 15, 226–248, https://doi.org/10.1080/17538947.2021.2023667, 2022.
González-Yebra, Ó., Aguilar, M. A., Nemmaoui, A., and Aguilar, F. J.: Methodological proposal to assess plastic greenhouses land cover change from the combination of archival aerial orthoimages and Landsat data, Biosyst. Eng., 175, 36–51, https://doi.org/10.1016/j.biosystemseng.2018.08.009, 2018.
Hao, P., Chen, Z., Tang, H., Li, D., and Li, H.: New Workflow of Plastic-Mulched Farmland Mapping using Multi-Temporal Sentinel-2 data, Remote Sens., 11, 1353, https://doi.org/10.3390/rs11111353, 2019.
Huang, S., Tang, L., Hupy, J. P., Wang, Y., and Shao, G.: A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing, J. Forest. Res., 32, 1–6, https://doi.org/10.1007/s11676-020-01155-1, 2021.
Huang, X., Yang, J., Wang, W., and Liu, Z.: Mapping 10 m global impervious surface area (GISA-10m) using multi-source geospatial data, Earth Syst. Sci. Data, 14, 3649–3672, https://doi.org/10.5194/essd-14-3649-2022, 2022.
Huete, A. R.: A soil-adjusted vegetation index (SAVI), Remote Sens. Environ., 25, 295–309, https://doi.org/10.1016/0034-4257(88)90106-X, 1988.
Ji, L., Zhang, L., Shen, Y., Li, X., Liu, W., Chai, Q., Zhang, R., and Chen, D.: Object-Based Mapping of Plastic Greenhouses with Scattered Distribution in Complex Land Cover Using Landsat 8 OLI Images: A Case Study in Xuzhou, China, J. Indian Soc. Remote Sens., 48, 287–303, https://doi.org/10.1007/s12524-019-01081-8, 2020.
Jiménez-Lao, R., Aguilar, F. J., Nemmaoui, A., and Aguilar, M. A.: Remote Sensing of Agricultural Greenhouses and Plastic-Mulched Farmland: An Analysis of Worldwide Research, Remote Sens., 12, 2649, https://doi.org/10.3390/rs12162649, 2020.
Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J. C., Mathis, M., and Brumby, S. P.: Global land use/land cover with Sentinel 2 and deep learning, in: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, IGARSS 2021–2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 4704–4707, https://doi.org/10.1109/IGARSS47720.2021.9553499, 2021.
Li, H., Gan, Y., Wu, Y., and Guo, L.: EAGNet: A method for automatic extraction of agricultural greenhouses from high spatial resolution remote sensing images based on hybrid multi-attention, Comput. Electron. Agric., 202, 107431, https://doi.org/10.1016/j.compag.2022.107431, 2022.
Li, J., Wang, H., Wang, J., Zhang, J., Lan, Y., and Deng, Y.: Combining Multi-Source Data and Feature Optimization for Plastic-Covered Greenhouse Extraction and Mapping Using the Google Earth Engine: A Case in Central Yunnan Province, China, Remote Sens., 15, 3287, https://doi.org/10.3390/rs15133287, 2023.
Liu, X. and Xin, L.: Spatial and temporal evolution and greenhouse gas emissions of China's agricultural plastic greenhouses, Sci. Total Environ., 863, 160810, https://doi.org/10.1016/j.scitotenv.2022.160810, 2023.
Liu, X., He, W., and Zhang, H.: Cross-region plastic greenhouse segmentation and counting using the style transfer and dual-task networks, Comput. Electron. Agric., 207, 107766, https://doi.org/10.1016/j.compag.2023.107766, 2023.
Lu, L., Di, L., and Ye, Y.: A Decision-Tree Classifier for Extracting Transparent Plastic-Mulched Landcover from Landsat-5 TM Images, IEEE J. Select. Top. Appl. Earth Obs. Remote Sens., 7, 4548–4558, https://doi.org/10.1109/JSTARS.2014.2327226, 2014.
Lu, L., Tao, Y., and Di, L.: Object-Based Plastic-Mulched Landcover Extraction Using Integrated Sentinel-1 and Sentinel-2 Data, Remote Sens., 10, 1820, https://doi.org/10.3390/rs10111820, 2018.
Ma, A., Chen, D., Zhong, Y., Zheng, Z., and Zhang, L.: National-scale greenhouse mapping for high spatial resolution remote sensing imagery using a dense object dual-task deep learning framework: A case study of China, ISPRS J. Photogram. Remote Sens., 181, 279–294, https://doi.org/10.1016/j.isprsjprs.2021.08.024, 2021.
Mei, Q., Zhang, Z., Han, J., Song, J., Dong, J., Wu, H., Xu, J., and Tao, F.: ChinaSoyArea10m: a dataset of soybean-planting areas with a spatial resolution of 10 m across China from 2017 to 2021, Earth Syst. Sci. Data, 16, 3213–3231, https://doi.org/10.5194/essd-16-3213-2024, 2024.
Niu, B., Feng, Q., Chen, B., Ou, C., Liu, Y., and Yang, J.: HSI-TransUNet: A transformer based semantic segmentation model for crop mapping from UAV hyperspectral imagery, Comput. Electron. Agric., 201, 107297, https://doi.org/10.1016/j.compag.2022.107297, 2022.
Niu, B., Feng, Q., Su, S., Yang, Z., Zhang, S., Liu, S., Wang, J., Yang, J., and Gong, J.: Semantic segmentation for plastic-covered greenhouses and plastic-mulched farmlands from VHR imagery, Int. J. Digit. Earth, 16, 4553–4572, https://doi.org/10.1080/17538947.2023.2275657, 2023a.
Niu, B., Feng, Q., Yang, J., Chen, B., Gao, B., Liu, J., Li, Y., and Gong, J.: Solid waste mapping based on very high resolution remote sensing imagery and a novel deep learning approach, Geocarto Int., 38, 2164361, https://doi.org/10.1080/10106049.2022.2164361, 2023b.
Niu, B., Feng, Q., Qiu, B., Su, S., Zhang, X., Cui, R., Zhang, X., Sun, F., Yan, W., Zhao, S., Shi, H., Ou, C., Yan, X., Gong, J., Yin, G., Huang, J., Liu, J., Gao, B., Yao, X., Yang, J., and Zhu, D.: Global-PCG-10: a 10-m global map of plastic-covered greenhouses derived from Sentinel-2 in 2020, figshare [data set], https://doi.org/10.6084/m9.figshare.27731148, 2024.
Olofsson, P., Foody, G. M., Stehman, S. V., and Woodcock, C. E.: Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation, Remote Sens. Environ., 129, 122–131, https://doi.org/10.1016/j.rse.2012.10.031, 2013.
Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and Wulder, M. A.: Good practices for estimating area and assessing accuracy of land change, Remote Sens. Environ., 148, 42–57, https://doi.org/10.1016/j.rse.2014.02.015, 2014.
Ou, C. and Wang, Y.: Tracking Spatio-Temporal Dynamics of Greenhouse-Led Cultivated Land and its Drivers in Shandong Province, China, Front. Environ. Sci., 10, 944422, https://doi.org/10.3389/fenvs.2022.944422, 2022.
Ou, C., Yang, J., Du, Z., Liu, Y., Feng, Q., and Zhu, D.: Long-Term Mapping of a Greenhouse in a Typical Protected Agricultural Region Using Landsat Imagery and the Google Earth Engine, Remote Sens., 12, 55, https://doi.org/10.3390/rs12010055, 2019.
Ou, C., Yang, J., Du, Z., Zhang, T., Niu, B., Feng, Q., Liu, Y., and Zhu, D.: Landsat-Derived Annual Maps of Agricultural Greenhouse in Shandong Province, China from 1989 to 2018, Remote Sens., 13, 4830, https://doi.org/10.3390/rs13234830, 2021.
Qiu, B., Hu, X., Chen, C., Yang, P., Zhu, X., Yan, C., and Jian, Z.: Maps of cropping patterns in China during 2015–2021., Sci. Data, https://doi.org/10.1038/s41597-022-01589-8, 2022.
Qiu, B., Chen, J., Wang, L., Zhang, C., and Wu, F.: National-scale 10-m maps of cropland use intensity in China during 2018–2023, Sci. Data, https://doi.org/10.1038/s41597-024-03456-0, 2024.
Sui, Y., Feng, M., Wang, C., and Li, X.: A high-resolution inland surface water body dataset for the tundra and boreal forests of North America, Earth Syst. Sci. Data, 14, 3349–3363, https://doi.org/10.5194/essd-14-3349-2022, 2022.
Tian, F., Wu, B., Zeng, H., Zhang, M., Zhu, W., Yan, N., Lu, Y., and Li, Y.: GMIE: a global maximum irrigation extent and central pivot irrigation system dataset derived via irrigation performance during drought stress and deep learning methods, Earth Syst. Sci. Data, 17, 855–880, https://doi.org/10.5194/essd-17-855-2025, 2025.
Tong, X., Zhang, X., Fensholt, R., Jensen, P. R. D., Li, S., Larsen, M. N., Reiner, F., Tian, F., and Brandt, M.: Global area boom for greenhouse cultivation revealed by satellite mapping, Nat. Food, 5, 513–523, https://doi.org/10.1038/s43016-024-00985-0, 2024.
Veettil, B. K., Van, D. D., Quang, N. X., and Hoai, P. N.: Remote sensing of plastic-covered greenhouses and plastic-mulched farmlands: Current trends and future perspectives, Land Degrad. Dev., 34, 591–609, https://doi.org/10.1002/ldr.4497, 2023.
Wang, K., Chen, W., Tian, J., Niu, F., Xing, Y., Wu, Y., Zhang, R., Zheng, J., and Xu, L.: Accumulation of microplastics in greenhouse soil after long-term plastic film mulching in Beijing, China, Sci. Total Environ., 828, 154544, https://doi.org/10.1016/j.scitotenv.2022.154544, 2022.
Wang, M., Mao, D., Wang, Y., Xiao, X., Xiang, H., Feng, K., Luo, L., Jia, M., Song, K., and Wang, Z.: Wetland mapping in east asia by two-stage object-based random forest and hierarchical decision tree algorithms on sentinel-1/2 images, Remote Sens. Environ., 297, 113793, https://doi.org/10.1016/j.rse.2023.113793, 2023.
Wu, C., Deng, J. S., Wang, K., Ma, L., and Tahmassebi, A. R. S.: Object-based classification approach for greenhouse mapping using Landsat-8 imagery, Int. J. Agric. Biol. Eng., 9, 79–88, https://doi.org/10.3965/j.ijabe.20160901.1414, 2016.
Xu, H.: Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery, Int. J. Remote Sens., 27, 3025–3033, https://doi.org/10.1080/01431160600589179, 2006.
Yang, D., Chen, J., Zhou, Y., Chen, X., Chen, X., and Cao, X.: Mapping plastic greenhouse with medium spatial resolution satellite data: Development of a new spectral index, ISPRS J. Photogram. Remote Sens., 128, 47–60, https://doi.org/10.1016/j.isprsjprs.2017.03.002, 2017.
Yu, L., Du, Z., Dong, R., Zheng, J., Tu, Y., Chen, X., Hao, P., Zhong, B., Peng, D., Zhao, J., Li, X., Yang, J., Fu, H., Yang, G., and Gong, P.: FROM-GLC Plus: toward near real-time and multi-resolution land cover mapping, GIScience Remote Sens., 59, 1026–1047, https://doi.org/10.1080/15481603.2022.2096184, 2022.
Zanaga, D., Van De Kerchove, R., De Keersmaecker, W., Souverijns, N., Brockmann, C., Quast, R., Wevers, J., Grosu, A., Paccini, A., Vergnaud, S., Cartus, O., Santoro, M., Fritz, S., Georgieva, I., Lesiv, M., Carter, S., Herold, M., Li, L., Tsendbazar, N.-E., Ramoino, F., and Arino, O.: ESA WorldCover 10 m 2020 v100 (v100), Zenodo [data set], https://doi.org/10.5281/zenodo.5571936, 2021.
Zha, Y., Gao, J., and Ni, S.: Use of normalized difference built-up index in automatically mapping urban areas from TM imagery, Int. J. Remote Sens., 24, 583–594, https://doi.org/10.1080/01431160304987, 2003.
Zhang, L., Xie, Y., Zhu, X., Ma, Q., and Brocca, L.: CIrrMap250: annual maps of China's irrigated cropland from 2000 to 2020 developed through multisource data integration, Earth Syst. Sci. Data, 16, 5207–5226, https://doi.org/10.5194/essd-16-5207-2024, 2024a.
Zhang, P., Du, P., Guo, S., Zhang, W., Tang, P., Chen, J., and Zheng, H.: A novel index for robust and large-scale mapping of plastic greenhouse from Sentinel-2 images, Remote Sens. Environ., 276, 113042, https://doi.org/10.1016/j.rse.2022.113042, 2022a.
Zhang, P., Lin, C., Guo, S., Zhang, W., Fang, H., and Du, P.: A labor-free index-guided semantic segmentation approach for urban vegetation mapping from high-resolution true color imagery, Int. J. Digit. Earth, 16, 1640–1660, https://doi.org/10.1080/17538947.2023.2207839, 2023.
Zhang, T., Yang, J., Zhou, H., Dai, A., Gao, B., Tang, K., and Tan, D.: Abandoned Cropland Mapping With Phenology-Enhanced Change Vector Analysis and Semi-Supervised Learning in Different Cropping Intensity Areas, IEEE T. Geosci. Remote., 62, 1–15, https://doi.org/10.1109/TGRS.2024.3374451, 2024b.
Zhang, X., Liu, L., Wu, C., Chen, X., Gao, Y., Xie, S., and Zhang, B.: Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform, Earth Syst. Sci. Data, 12, 1625–1648, https://doi.org/10.5194/essd-12-1625-2020, 2020.
Zhang, X., Liu, L., Chen, X., Gao, Y., Xie, S., and Mi, J.:GLC_FCS30: global land-cover product with fine classification system at 30 m using time-series Landsat imagery, Earth Syst. Sci. Data, 13, 2753–2776, https://doi.org/10.5194/essd-13-2753-2021, 2021a.
Zhang, X., Cheng, B., Chen, J., and Liang, C.: High-Resolution Boundary Refined Convolutional Neural Network for Automatic Agricultural Greenhouses Extraction from GaoFen-2 Satellite Imageries, Remote Sens., 13, 4237, https://doi.org/10.3390/rs13214237, 2021b.
Zhang, X., Liu, L., Zhao, T., Gao, Y., Chen, X., and Mi, J.: GISD30: global 30 m impervious-surface dynamic dataset from 1985 to 2020 using time-series Landsat imagery on the Google Earth Engine platform, Earth Syst. Sci. Data, 14, 1831–1856, https://doi.org/10.5194/essd-14-1831-2022, 2022b.
Zhang, X., Xu, M., Wang, S., Huang, Y., and Xie, Z.: Mapping photovoltaic power plants in China using Landsat, random forest, and Google Earth Engine, Earth Syst. Sci. Data, 14, 3743–3755, https://doi.org/10.5194/essd-14-3743-2022, 2022c.
Zhang, X., Zhao, T., Xu, H., Liu, W., Wang, J., Chen, X., and Liu, L.: GLC_FCS30D: the first global 30 m land-cover dynamics monitoring product with a fine classification system for the period from 1985 to 2022 generated using dense-time-series Landsat imagery and the continuous change-detection method, Earth Syst. Sci. Data, 16, 1353–1381, https://doi.org/10.5194/essd-16-1353-2024, 2024c.
Zhang, X., Liu, L., and Chen, X.: Global annual wetland dataset at 30 m with a fine classification system from 2000 to 2022, Sci. Data, 11, 310, https://doi.org/10.1038/s41597-024-03143-0, 2024d.
Zhao, G.-X., Li, J., Li, T., Yue, Y.-D., and Warner, T.: Utilizing Landsat TM imagery to map greenhouses in Qingzhou, Shandong Province, China, Pedosphere, 14, 363–369, 2004.
Zhou, C., Huang, J., Xiao, Y., Du, M., and Li, S.: A novel approach: Coupling prior knowledge and deep learning methods for large-scale plastic greenhouse extraction using Sentinel-1/2 data, Int. J. Appl. Earth Obs. Geoinf., 132, 104073, https://doi.org/10.1016/j.jag.2024.104073, 2024.
Short summary
We have proposed a novel framework to generate the first publicly released 10-m global plastic-covered greenhouse (PCG) map for 2020, derived from Sentinel-2. The global PCG area is about 14 259.85 km2 in 2020, concentrated between 30° N and 40° N. China has 8224.90 km2, accounting for 57.67 % of global and 83.29 % of Asian PCGs. The Global-PCG-10 map shows producer's accuracy of 85.12 % ± 0.90 % and user's accuracy of 99.82 % ± 0.11 %.
We have proposed a novel framework to generate the first publicly released 10-m global...
Altmetrics
Final-revised paper
Preprint