Articles | Volume 17, issue 9
https://doi.org/10.5194/essd-17-4865-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-4865-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A bioavailable strontium isoscape of Australia
Wollongong Isotope Geochronology Laboratory, Environmental Futures, School of Science, University of Wollongong, Wollongong, NSW 2522, Australia
Florian Dux
Wollongong Isotope Geochronology Laboratory, Environmental Futures, School of Science, University of Wollongong, Wollongong, NSW 2522, Australia
Clément Bataille
Earth and Environmental Sciences, University of Ottawa, Ottawa, Canada
Purdue University, Forestry and Natural Resources, West Lafayette, Indiana, USA
Patrice de Caritat
Geoscience Australia, GPO Box 378, Canberra, ACT 2601, Australia
John de Laeter Centre, Curtin University, Bentley, WA 6102, Australia
Related authors
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data, 17, 79–93, https://doi.org/10.5194/essd-17-79-2025, https://doi.org/10.5194/essd-17-79-2025, 2025
Short summary
Short summary
This new, extensive dataset from southwestern Australia contributes considerable new data and knowledge to Australia’s strontium isotope coverage. The data are discussed in terms of the lithology and age of the source lithologies. This dataset will reduce Northern Hemisphere bias in future global strontium isotope models. Potential applications of the new data include mineral exploration, hydrogeology, food tracing, dust provenancing, and historic migrations of people and animals.
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data, 15, 1655–1673, https://doi.org/10.5194/essd-15-1655-2023, https://doi.org/10.5194/essd-15-1655-2023, 2023
Short summary
Short summary
This new, extensive (~1.5×106 km2) dataset from northern Australia contributes considerable new information on Australia's strontium (Sr) isotope coverage. The data are discussed in terms of lithology and age of the source areas. This dataset will reduce Northern Hemisphere bias in future global Sr isotope models. Other potential applications of the new data include mineral exploration, hydrology, food tracing, dust provenancing, and examining historic migrations of people and animals.
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data, 14, 4271–4286, https://doi.org/10.5194/essd-14-4271-2022, https://doi.org/10.5194/essd-14-4271-2022, 2022
Short summary
Short summary
Strontium isotopes are useful in geological, environmental, archaeological, and forensic research to constrain or identify the source of materials such as minerals, artefacts, or foodstuffs. A new dataset, contributing significant new data and knowledge to Australia’s strontium isotope coverage, is presented from an area of over 500 000 km2 of inland southeastern Australia. Various source areas for the sediments are recognized, and both fluvial and aeolian transport processes identified.
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data, 17, 79–93, https://doi.org/10.5194/essd-17-79-2025, https://doi.org/10.5194/essd-17-79-2025, 2025
Short summary
Short summary
This new, extensive dataset from southwestern Australia contributes considerable new data and knowledge to Australia’s strontium isotope coverage. The data are discussed in terms of the lithology and age of the source lithologies. This dataset will reduce Northern Hemisphere bias in future global strontium isotope models. Potential applications of the new data include mineral exploration, hydrogeology, food tracing, dust provenancing, and historic migrations of people and animals.
Claudia Hird, Morgane M. G. Perron, Thomas M. Holmes, Scott Meyerink, Christopher Nielsen, Ashley T. Townsend, Patrice de Caritat, Michal Strzelec, and Andrew R. Bowie
Aerosol Research, 2, 315–327, https://doi.org/10.5194/ar-2-315-2024, https://doi.org/10.5194/ar-2-315-2024, 2024
Short summary
Short summary
Dust deposition flux was investigated in lutruwita / Tasmania, Australia, between 2016–2021. Results show that the use of direct measurements of aluminium, iron, thorium, and titanium in aerosols to estimate average dust deposition fluxes limits biases associated with using single elements. Observations of dust deposition fluxes in the Southern Hemisphere are critical to validate model outputs and better understand the seasonal and interannual impacts of dust deposition on biogeochemical cycles.
Candan U. Desem, Patrice de Caritat, Jon Woodhead, Roland Maas, and Graham Carr
Earth Syst. Sci. Data, 16, 1383–1393, https://doi.org/10.5194/essd-16-1383-2024, https://doi.org/10.5194/essd-16-1383-2024, 2024
Short summary
Short summary
Lead (Pb) isotopes form a potent tracer in studies of provenance, mineral exploration and environmental remediation. Previously, however, Pb isotope analysis has rarely been deployed at a continental scale. Here we present a new regolith Pb isotope dataset for Australia, which includes 1119 large catchments encompassing 5.6 × 106 km2 or close to ~75 % of the continent. Isoscape maps have been produced for use in diverse fields of study.
Wartini Ng, Budiman Minasny, Alex McBratney, Patrice de Caritat, and John Wilford
Earth Syst. Sci. Data, 15, 2465–2482, https://doi.org/10.5194/essd-15-2465-2023, https://doi.org/10.5194/essd-15-2465-2023, 2023
Short summary
Short summary
With a higher demand for lithium (Li), a better understanding of its concentration and spatial distribution is important to delineate potential anomalous areas. This study uses a framework that combines data from recent geochemical surveys and relevant environmental factors to predict and map Li content across Australia. The map shows high Li concentration around existing mines and other potentially anomalous Li areas. The same mapping principles can potentially be applied to other elements.
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data, 15, 1655–1673, https://doi.org/10.5194/essd-15-1655-2023, https://doi.org/10.5194/essd-15-1655-2023, 2023
Short summary
Short summary
This new, extensive (~1.5×106 km2) dataset from northern Australia contributes considerable new information on Australia's strontium (Sr) isotope coverage. The data are discussed in terms of lithology and age of the source areas. This dataset will reduce Northern Hemisphere bias in future global Sr isotope models. Other potential applications of the new data include mineral exploration, hydrology, food tracing, dust provenancing, and examining historic migrations of people and animals.
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data, 14, 4271–4286, https://doi.org/10.5194/essd-14-4271-2022, https://doi.org/10.5194/essd-14-4271-2022, 2022
Short summary
Short summary
Strontium isotopes are useful in geological, environmental, archaeological, and forensic research to constrain or identify the source of materials such as minerals, artefacts, or foodstuffs. A new dataset, contributing significant new data and knowledge to Australia’s strontium isotope coverage, is presented from an area of over 500 000 km2 of inland southeastern Australia. Various source areas for the sediments are recognized, and both fluvial and aeolian transport processes identified.
Cited articles
Adams, S., Grün, R., McGahan, D., Zhao, J.-X., Feng, Y., Nguyen, A., Willmes, M., Quaresimin, M., Lobsey, B., Collard, M., and Westaway, M. C.: A strontium isoscape of north-east Australia for human provenance and repatriation, Geoarchaeology, https://doi.org/10.1002/gea.21728, 2019.
Almeida, C. M. R. and Vasconcelos, M. T. S. D.: Multielement Composition of Wines and Their Precursors Including Provenance Soil and Their Potentialities As Fingerprints of Wine Origin, Journal of Agricultural and Food Chemistry, 51, 4788–4798, https://doi.org/10.1021/jf034145b, 2003.
Bataille, C. P. and Bowen, G. J.: Mapping 87Sr/86Sr variations in bedrock and water for large scale provenance studies, Chemical Geology, 304, 39–52, https://doi.org/10.1016/j.chemgeo.2012.01.028, 2012.
Bataille, C. P., von Holstein, I. C., Laffoon, J. E., Willmes, M., Liu, X.-M., and Davies, G. R.: A bioavailable strontium isoscape for Western Europe: A machine learning approach, PloS one, 13, e0197386, https://doi.org/10.1371/journal.pone.0197386, 2018.
Bataille, C. P., Crowley, B. E., Wooller, M. J., and Bowen, G. J.: Advances in global bioavailable strontium isoscapes, Palaeogeography, Palaeoclimatology, Palaeoecology, 555, 109849, https://doi.org/10.1016/j.palaeo.2020.109849, 2020.
Bentley, A. R.: Strontium Isotopes from the Earth to the Archaeological Skeleton: A Review, Journal of Archaeological Method and Theory, 13, 135–187, https://doi.org/10.1007/s10816-006-9009-x, 2006.
Bølviken, B., Bogen, J., Jartun, M., Langedal, M., Ottesen, R., and Volden, T.: Overbank sediments: a natural bed blending sampling medium for large – scale geochemical mapping, Chemometrics and Intelligent Laboratory Systems, 74, 183–199, https://doi.org/10.1016/j.chemolab.2004.06.006, 2004.
Capo, R. C., Stewart, B. W., and Chadwick, O. A.: Strontium isotopes as tracers of ecosystem processes: theory and methods, Geoderma, 82, 197–225, https://doi.org/10.1016/S0016-7061(97)00102-X, 1998.
Clarkson, C., Jacobs, Z., Marwick, B., Fullagar, R., Wallis, L., Smith, M., Roberts, R. G., Hayes, E., Lowe, K., and Carah, X.: Human occupation of northern Australia by 65,000 years ago, Nature, 547, 306–310, 2017.
Copeland, S. R., Cawthra, H. C., Fisher, E. C., Lee-Thorp, J. A., Cowling, R. M., le Roux, P. J., Hodgkins, J., and Marean, C. W.: Strontium isotope investigation of ungulate movement patterns on the Pleistocene Paleo-Agulhas Plain of the Greater Cape Floristic Region, South Africa, Quaternary Science Reviews, 141, 65–84, https://doi.org/10.1016/j.quascirev.2016.04.002, 2016.
Crisp, M. D. and Cook, L. G.: How Was the Australian Flora Assembled Over the Last 65 Million Years? A Molecular Phylogenetic Perspective, Annual Review of Ecology, Evolution, and Systematics, 44, 303–324, 2013.
Crook, D. A., Lacksen, K., King, A. J., Buckle, D. J., Tickell, S. J., Woodhead, J. D., Maas, R., Townsend, S. A., and Douglas, M. M.: Temporal and spatial variation in strontium in a tropical river: Implications for otolith chemistry analyses of fish migration, Canadian Journal of Fisheries and Aquatic Sciences, 74, 533–545, 2017.
de Caritat, P. and Cooper, M.: National geochemical survey of Australia: the geochemical atlas of Australia, Geoscience Australia Canberra, https://doi.org/10.11636/Record.2011.020, 2011.
de Caritat, P. and Cooper, M. L.: A continental-scale geochemical atlas for resource exploration and environmental management: the National Geochemical Survey of Australia, https://doi.org/10.1144/geochem2014-322, 2016.
de Caritat, P., Cooper, M., Pappas, W., Thun, C., and Webber, E.: National Geochemical Survey of Australia: Analytical Methods Manual, Geoscience Australia Canberra, https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/70369 (last access: 25 September 2025), 2010.
de Caritat, P., Dosseto, A., and Dux, F.: A strontium isoscape of inland southeastern Australia, Earth Syst. Sci. Data, 14, 4271–4286, https://doi.org/10.5194/essd-14-4271-2022, 2022.
de Caritat, P., Dosseto, A., and Dux, F.: A strontium isoscape of northern Australia, Earth Syst. Sci. Data, 15, 1655–1673, https://doi.org/10.5194/essd-15-1655-2023, 2023.
de Caritat, P., Dosseto, A., and Dux, F.: A bioavailable strontium isoscape of Australia: initial contribution, Australian Government [data set], https://doi.org/10.26186/150024, 2025a.
de Caritat, P., Dosseto, A., and Dux, F.: A strontium isoscape of southwestern Australia and progress toward a national strontium isoscape, Earth Syst. Sci. Data, 17, 79–93, https://doi.org/10.5194/essd-17-79-2025, 2025b.
Desem, C. U., Woodhead, J., de Caritat, P., Maas, R., Champion, D. C., Dosseto, A., Wainwright, A., and Carr, G.: The Pb, Sr and Nd isotopic composition of the upper continental crust: An Australian perspective, Chemical Geology, 672, https://doi.org/10.1016/j.chemgeo.2024.122503, 2025.
Evans, J., Stoodley, N., and Chenery, C.: A strontium and oxygen isotope assessment of a possible fourth century immigrant population in a Hampshire cemetery, southern England, Journal of Archaeological Science, 33, 265–272, https://doi.org/10.1016/j.jas.2005.07.011, 2006.
Faure, G. and Powell, J. L.: Strontium isotope geology, Springer Science & Business Media, https://doi.org/10.1007/978-3-642-65367-4, 2012.
Frei, R. and Frei, K. M.: The geographic distribution of Sr isotopes from surface waters and soil extracts over the island of Bornholm (Denmark) – A base for provenance studies in archaeology and agriculture, Applied Geochemistry, 38, 147–160, https://doi.org/10.1016/j.apgeochem.2013.09.007, 2013.
Funck, J., Bataille, C., Rasic, J., and Wooller, M.: A bio-available strontium isoscape for eastern Beringia: a tool for tracking landscape use of Pleistocene megafauna, Journal of Quaternary Science, 36, 76–90, https://doi.org/10.1002/jqs.3262, 2020.
Genuer, R., Poggi, J.-M., and Tuleau-Malot, C.: Variable selection using random forests, Pattern Recognition Letters, 31, 2225–2236, https://doi.org/10.1016/j.patrec.2010.03.014, 2010.
Goldstein, S. J. and Jacobsen, S. B.: The Nd and Sr isotopic systematics of river-water dissolved material: Implications for the sources of Nd and Sr in seawater, Chem. Geol., 66, https://doi.org/10.1016/0168-9622(87)90045-5, 1987.
Gosz, J. R., Brookins, D. G., and Moore, D. I.: Using strontium isotope ratios to estimate inputs to ecosystems, Bioscience, 33, 23–30, https://doi.org/10.2307/1309240, 1983.
Hobson, K. A., Barnett-Johnson, R., and Cerling, T.: Using Isoscapes to Track Animal Migration, in: Isoscapes: Understanding movement, pattern, and process on Earth through isotope mapping, edited by: West, J. B., Bowen, G. J., Dawson, T. E., and Tu, K. P., Springer Netherlands, Dordrecht, 273-298, https://doi.org/10.1007/978-90-481-3354-3_13, 2010.
Kelly, S., Heaton, K., and Hoogewerff, J.: Tracing the geographical origin of food: The application of multi-element and multi-isotope analysis, Trends in Food Science & Technology, 16, 555–567, https://doi.org/10.1016/j.tifs.2005.08.008, 2005.
Lech, M., Caritat, P. d., and McPherson, A.: National Geochemical Survey of Australia: Field Manual, https://www.ga.gov.au/bigobj/GA10307.pdf (last access: 25 September 2025), 2007.
McNutt, R. H.: Strontium isotopes, in: Environmental tracers in subsurface hydrology, Springer, 233–260, https://doi.org/10.1007/978-1-4615-4557-6_8, 2000.
Meier-Augenstein, W.: Stable Isotope Forensics: Methods and Forensic Applications of Stable Isotope Analysis, Wiley, ISBN 978-1-119-08023-7, 2017.
Moffat, I., Rudd, R., Willmes, M., Mortimer, G., Kinsley, L., McMorrow, L., Armstrong, R., Aubert, M., and Grün, R.: Bioavailable soil and rock strontium isotope data from Israel, Earth Syst. Sci. Data, 12, 3641–3652, https://doi.org/10.5194/essd-12-3641-2020, 2020.
Nebel, O. and Stammeier, J. A.: Strontium isotopes, in: Encyclopedia of Geochemistry, Springer, 1379–1384, https://doi.org/10.1007/978-3-319-39312-4_137, 2018.
Ottesen, R., Bogen, J., Bølviken, B., and Volden, T.: Overbank sediment: a representative sample medium for regional geochemical mapping, Journal of Geochemical Exploration, 32, 257–277, https://doi.org/10.1016/0375-6742(89)90061-7, 1989.
Palmer, M. R. and Edmond, J. M.: The strontium isotope budget of the modern ocean, Earth and Planetary Science Letters, 92, 11–26, 1989.
Raiber, M., Webb, J. A., and Bennetts, D.: Strontium isotopes as tracers to delineate aquifer interactions and the influence of rainfall in the basalt plains of southeastern Australia, Journal of Hydrology, 367, 188–199, 2009.
Rippon, L., Rollog, M., Bruce, D., Farkas, J., Pate, F. D., Owen, T., Lucas, T., McCallum, S., and Moffat, I.: Baseline bioavailable strontium and oxygen isotope mapping of the Adelaide Region, South Australia, Journal of Archaeological Science: Reports, 34, 102614, https://doi.org/10.1016/j.jasrep.2020.102614, 2020.
Romaniello, S. J., Field, M. P., Smith, H. B., Gordon, G. W., Kim, M. H., and Anbar, A. D.: Fully automated chromatographic purification of Sr and Ca for isotopic analysis, J. Anal. At. Spectrom., https://doi.org/10.1039/c5ja00205b, 2015.
Scaffidi, B. K. and Knudson, K. J.: An archaeological strontium isoscape for the prehistoric Andes: Understanding population mobility through a geostatistical meta-analysis of archaeological values from humans, animals, and artifacts, Journal of Archaeological Science, 117, 105121, https://doi.org/10.1016/j.jas.2020.105121, 2020.
Voerkelius, S., Lorenz, G. D., Rummel, S., Quétel, C. R., Heiss, G., Baxter, M., Brach-Papa, C., Deters-Itzelsberger, P., Hoelzl, S., and Hoogewerff, J.: Strontium isotopic signatures of natural mineral waters, the reference to a simple geological map and its potential for authentication of food, Food Chemistry, 118, 933–940, https://doi.org/10.1016/j.foodchem.2009.04.125, 2010.
Weis, D., Kieffer, B., Maerschalk, C., Barling, J., de Jong, J., Williams, G. A., Hanano, D., Pretorius, W., Mattielli, N., Scoates, J. S., Goolaerts, A., Friedman, R. M., and Mahoney, J. B.: High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS, Geochem. Geophys. Geosyst., 7, Q08006, https://doi.org/10.1029/2006gc001283, 2006.
Wilford, J.: A weathering intensity index for the Australian continent using airborne gamma-ray spectrometry and digital terrain analysis, Geoderma, 183, 124–142, https://doi.org/10.1016/j.geoderma.2010.12.022, 2012.
Willmes, M., McMorrow, L., Kinsley, L., Armstrong, R., Aubert, M., Eggins, S., Falguères, C., Maureille, B., Moffat, I., and Grün, R.: The IRHUM (Isotopic Reconstruction of Human Migration) database – bioavailable strontium isotope ratios for geochemical fingerprinting in France, Earth Syst. Sci. Data, 6, 117–122, https://doi.org/10.5194/essd-6-117-2014, 2014.
Willmes, M., Bataille, C. P., James, H. F., Moffat, I., McMorrow, L., Kinsley, L., Armstrong, R. A., Eggins, S., and Grün, R.: Mapping of bioavailable strontium isotope ratios in France for archaeological provenance studies, Applied Geochemistry, 90, 75–86, https://doi.org/10.1016/j.apgeochem.2017.12.025, 2018.
Short summary
We created the first detailed map of bioavailable strontium isotope ratios in Australian soils that are taken up by plants and animals. These ratios vary depending on local geology and are useful for tracing the origins of people, animals, and food. By combining new data from across Australia with global datasets and a machine learning model, we produced a national prediction that supports research in archaeology, ecology, and forensic science.
We created the first detailed map of bioavailable strontium isotope ratios in Australian soils...
Altmetrics
Final-revised paper
Preprint