Articles | Volume 17, issue 9
https://doi.org/10.5194/essd-17-4587-2025
https://doi.org/10.5194/essd-17-4587-2025
Data description paper
 | 
19 Sep 2025
Data description paper |  | 19 Sep 2025

A 1 km soil moisture dataset over eastern CONUS generated by assimilating SMAP data into the Noah-MP land surface model

Sheng-Lun Tai, Zhao Yang, Brian Gaudet, Koichi Sakaguchi, Larry Berg, Colleen Kaul, Yun Qian, Ye Liu, and Jerome Fast

Related authors

Response of marine post-frontal clouds to Gulf Stream variability
Jingyi Chen, Hailong Wang, Bo Zhang, Hongyu Liu, David Painemal, Armin Sorooshian, Sheng-Lun Tai, and Christiane Voigt
EGUsphere, https://doi.org/10.22541/essoar.175376670.02806644/v1,https://doi.org/10.22541/essoar.175376670.02806644/v1, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Validation of turbulence intensity as simulated by the Weather Research and Forecasting model off the US northeast coast
Sheng-Lun Tai, Larry K. Berg, Raghavendra Krishnamurthy, Rob Newsom, and Anthony Kirincich
Wind Energ. Sci., 8, 433–448, https://doi.org/10.5194/wes-8-433-2023,https://doi.org/10.5194/wes-8-433-2023, 2023
Short summary
Better calibration of cloud parameterizations and subgrid effects increases the fidelity of the E3SM Atmosphere Model version 1
Po-Lun Ma, Bryce E. Harrop, Vincent E. Larson, Richard B. Neale, Andrew Gettelman, Hugh Morrison, Hailong Wang, Kai Zhang, Stephen A. Klein, Mark D. Zelinka, Yuying Zhang, Yun Qian, Jin-Ho Yoon, Christopher R. Jones, Meng Huang, Sheng-Lun Tai, Balwinder Singh, Peter A. Bogenschutz, Xue Zheng, Wuyin Lin, Johannes Quaas, Hélène Chepfer, Michael A. Brunke, Xubin Zeng, Johannes Mülmenstädt, Samson Hagos, Zhibo Zhang, Hua Song, Xiaohong Liu, Michael S. Pritchard, Hui Wan, Jingyu Wang, Qi Tang, Peter M. Caldwell, Jiwen Fan, Larry K. Berg, Jerome D. Fast, Mark A. Taylor, Jean-Christophe Golaz, Shaocheng Xie, Philip J. Rasch, and L. Ruby Leung
Geosci. Model Dev., 15, 2881–2916, https://doi.org/10.5194/gmd-15-2881-2022,https://doi.org/10.5194/gmd-15-2881-2022, 2022
Short summary

Cited articles

Ahmad, J. A., Forman, B. A., and Kumar, S. V.: Soil moisture estimation in South Asia via assimilation of SMAP retrievals, Hydrol. Earth Syst. Sci., 26, 2221–2243, https://doi.org/10.5194/hess-26-2221-2022, 2022. 
Arsenault, K. R., Kumar, S. V., Geiger, J. V., Wang, S., Kemp, E., Mocko, D. M., Beaudoing, H. K., Getirana, A., Navari, M., Li, B., Jacob, J., Wegiel, J., and Peters-Lidard, C. D.: The Land surface Data Toolkit (LDT v7.2) – a data fusion environment for land data assimilation systems, Geosci. Model Dev., 11, 3605–3621, https://doi.org/10.5194/gmd-11-3605-2018, 2018. 
Ball, J. T., Woodrow, I. E., and Berry, J. A.: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions, Prog. Photosynth. Res., 4, 221–224, https://doi.org/10.1007/978-94-017-0519-6_48, 1987. 
Betts, A. K.: Surface diurnal cycle and boundary layer structure over Rondônia during the rainy season, J. Geophys. Res., 107, https://doi.org/10.1029/2001JD000356, 2002. 
Brocca, L., Albergel, C., Balenzano, A., Barbagli, R., de Rosnay, P., Dorigo, W., Wagner, W., and Tarpanelli, A.: Exploring the actual spatial resolution of 1 km satellite soil moisture products, Sci. Total Environ., 945, 174087, https://doi.org/10.1016/j.scitotenv.2024.174087, 2024. 
Download
Short summary
Our study created a high-resolution soil moisture dataset for the eastern US by integrating satellite data with a land surface model and advanced algorithms, achieving 1 km scale analyses. Validated against multiple in situ networks and analysis datasets, it demonstrated superior accuracy. This dataset is vital for understanding soil moisture dynamics, especially during droughts, and highlights the need to mitigate soil-type-dependent biases in the model.
Share
Altmetrics
Final-revised paper
Preprint