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Abstract. An improved fine-scale soil moisture (SM) dataset at 1 km grid spacing, covering much of the east-
ern continental US, was generated by assimilating 9 km Soil Moisture Active Passive (SMAP) SM data into
the v4.0.1 Noah-MP land surface model. With 12 ensemble members, the assimilation was carried out using
the ensemble Kalman filter algorithm within NASA’s Land Information System. The SM analysis for 2016 was
fully validated against in situ observations from four different networks and compared with four other existing
datasets. Results indicate that this SM analysis surpasses other datasets in top-layer SM distribution, includ-
ing a machine-learning-based product, despite all SM estimates being less heterogeneous than observed. The
analysis of anomalous errors suggests that large similarity in intrinsic errors is likely due to overlapping data
sources among the selected SM datasets. More detailed evaluations were performed over two geographic areas.
The observations collected by the Atmospheric Radiation Measurement facility in Oklahoma suggest that soil
temperature and surface heat fluxes are concurrently simulated with good accuracy. Investigation into the 2016
southeastern US drought response further indicates drier conditions and higher evapotranspiration estimates
compared to GLEAMv4.1. Notably, large errors are associated with grids having clay soil textures, underscoring
the need for refined model treatments for specific soil types to further improve SM estimates. The dataset is

publicly available on Zenodo at https://doi.org/10.5281/zenodo.14370563 (Tai et al., 2024).

1 Introduction

Soil moisture (SM) is a critical component in the complex
interactions between the land surface and the atmosphere,
influencing a range of processes that are vital for weather
and climate dynamics. More specifically, it plays a signifi-
cant role in regulating surface energy fluxes by controlling
the partitioning of incoming solar radiation into sensible and
latent heat fluxes, thereby impacting atmospheric stability,
boundary layer dynamics, and the initiation of convective
systems (Dirmeyer et al. 2016; Ek and Holtslag, 2004; Betts,
2002; Taylor et al., 2011).

In addition to groundwater, precipitation falling onto
ground surface contributes to the SM availability. Con-
versely, variations in SM heterogeneity can also influence
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the spatial and temporal distribution of precipitation through
its effects on evapotranspiration rates and the atmospheric
moisture and energy budgets (Katul et al., 2012; Hsu and
Dirmeyer, 2023). Hence, the feedback loop between SM
and precipitation is crucial for understanding and predict-
ing regional hydrological cycles, droughts, and flood events
(Koster et al., 2004; Dirmeyer et al., 2016). Furthermore, SM
conditions can impact weather extremes such as heatwaves
by modulating the surface energy balance and the efficiency
of heat exchange between the land surface and the atmo-
sphere (Seneviratne et al., 2010). These interactions occur
across various spatial and temporal scales, underscoring the
need to accurately capture the spatial and temporal variabili-
ties of SM distribution.
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A variety of sensors such as time domain reflectome-
try (TDR) sensors, capacitance probes, and neutron probes
have been used for in situ (ground-based) SM measurements.
These measurements provide direct assessments of SM con-
tent at specific locations with high temporal resolution and
accuracy in the soil column and are most useful for validat-
ing remote sensing data and calibrating hydrological mod-
els (Robock et al., 2000; Rasheed et al., 2022). However,
their relatively sparse distribution hinders their applicability
for characterizing realistic local to regional SM variability in
broader regions despite efforts made to expand soil moisture
observation networks (Diamond et al., 2013; Schaefer et al.,
2007; Hawdon et al., 2014; Dorigo et al., 2021a; McPher-
son et al., 2007; Wang et al., 2023). Conversely, remote
sensing satellites such as the Soil Moisture Active Passive
(SMAP) mission, Advanced Microwave Scanning Radiome-
ter for the Earth Observing System (AMSR-E), Soil Mois-
ture and Ocean Salinity (SMOS), and Sentinel-1 (Entekhabi
et al., 2010; Njoku et al., 2003; Kerr et al., 2001; Torres et
al., 2012) provide nearly global coverage of soil moisture
estimates measured by passive and active microwave sen-
sors. Passive microwave sensors measure soil moisture based
on microwave emissions from the Earth’s surface, while ac-
tive radar sensors use backscatter measurements to infer soil
moisture levels (e.g., Kerr et al., 2001; Wagner et al., 2013).
These satellite-based retrievals offer spatially extensive cov-
erage and reasonable revisit times (1-3d), contributing to
large-scale hydrological and climate studies. Nevertheless,
known uncertainties of satellite SM retrievals such as rela-
tively coarse resolution [O (10km)], limited accuracy (af-
fected by vegetation, surface roughness, and temperature),
shallow depth (only a depth of 0-5 cm is measured), and en-
vironmental interference (rain, cloud, and snow cover) have
posed challenges for their contributions to represent local- to
regional-scale SM distribution (e.g., Colliander et al., 2017).

Land surface models (LSMs) can simulate soil moisture
conditions for any region by representing the interactions
among the atmosphere, vegetation, and ground (Niu et al.,
2011; Lawrence et al., 2019; Liang et al., 1994). Key pro-
cesses such as precipitation, infiltration, lateral flow, evapo-
ration, plant transpiration, and groundwater table variations
are parameterized in LSMs. When precipitation occurs, wa-
ter can infiltrate into the soil, accumulate, or run off, depend-
ing on soil characteristics and the rate of rainfall. Evapora-
tion from the soil and transpiration from plants (collectively
called evapotranspiration) reduce soil moisture, while infil-
tration and percolation move water downward through the
soil profile. LSMs typically predict these processes to pro-
vide estimates of soil moisture at different depths over time.
Various depths of soil layers can be configured to model
the water movement between these layers in the soil col-
umn. A retrospective LSM simulation forced by observation-
constrained surface atmospheric conditions (rainfall, temper-
ature, wind, humidity, and radiation, etc.) and land and soil
properties (leaf area index (LAI), albedo, land cover, soil tex-
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ture, and permeability, etc.) is commonly used to reproduce
the soil conditions. Despite the advantages, state-of-the-art
LSMs still contain uncertain, incomplete, and/or unresolved
physical processes that may introduce biases into the simu-
lated land surface properties.

As a way to mitigate such modeling issues, data assim-
ilation (DA) techniques such as the ensemble Kalman fil-
ter (EnKF), variational methods (e.g., 3DVar and 4DVar),
and Bayesian approaches have been used to merge multi-
ple sources of observational data (in situ measurements and
satellite retrievals) with LSM simulations to optimize soil
moisture simulations by improving initial conditions and pa-
rameter estimates, enhancing the accuracy of soil moisture
predictions and hydrological forecasts (e.g., Reichle et al.,
2002; Crow and Wood, 2003; Kumar et al., 2008; Chao et al.,
2022; Martens et al., 2017). In any DA approach, the assim-
ilation scheme must be coupled with an LSM. As such, the
generated analysis consists of model states which are always
physically balanced and can be directly used as the initial
conditions of an LSM. Some additional advantages of uti-
lizing DA techniques in generating high-resolution SM data
include their flexibility in data resolution (output frequency,
horizontal grid spacing, and vertical layers) and domain cov-
erage, the possibility to incorporate any improvements in the
coupled models and/or new observables, and the availability
of the full suite of land surface properties relevant for studies
of atmospheric boundary layer and hydraulic processes.

A variety of satellite soil moisture retrievals have been
assimilated into different LSMs. For example, Draper et
al. (2012) assimilated data measured by both an active mi-
crowave advanced scatterometer (ASCAT) and the passive
AMSR-E into a catchment model. Liu et al. (2011) also as-
similated ASCAT and AMSR-E, but the Noah LSM was cho-
sen as the core model. Seo et al. (2021) conducted experi-
ments over CONUS, which assimilates SMAP and ASCAT
data into the Joint UK Land Environment Simulator (JULES)
using the local ensemble transform Kalman filter (LETKF).
They found that SMAP data are more beneficial than ASCAT
in terms of improvement in soil moisture estimate. Mousa
and Shu (2020) assessed the potential impacts of assimila-
tion of SMAP, SMOS, and ASCAT on spatial representa-
tion in soil moisture over Africa and reported that SMAP
has overall superior performance compared to SMOS and
ASCAT. Earlier studies have specifically explored the im-
pact of SMAP soil moisture data assimilation in terms of
soil moisture estimates, hydrological modeling, and drought
monitoring across different regions of the globe. For exam-
ple, studies have shown promising results by assimilating
SMAP soil moisture data into the Noah-MP land surface
model (e.g., Rouf et al., 2021; Ahmad et al., 2022). The
Noah-MP LSM is widely used in both research and opera-
tional systems (e.g., Ma et al., 2017; He et al., 2023; John-
son et al., 2023). Compared to its predecessor (Noah LSM),
Noah-MP introduces substantial improvements that enhance
realism, flexibility, and process representation. Those up-
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dates include dynamic vegetation models, multi-layer snow
and soil physics, stomatal resistance schemes, and canopy in-
terception processes. Given the compatibility with coupled
models, Noah-MP is integrated into state-of-the-art atmo-
spheric models including the Weather Research and Fore-
casting (WRF) model, making it an excellent choice of LSM
to study land—atmosphere coupling processes. Research by
Rouf et al. (2021) discussed how the spatial resolution of
SMAP SM data (36 km versus 9 km) and the grid spacing of
analysis (12.5 and 0.5 km) would impact SM estimation over
Oklahoma using the framework of NASA’s Land Information
System (LIS). They showed that the accuracy of SM analy-
sis is enhanced when assimilating the 9 km SMAP data with
0.5km LSM grid spacing. Likewise, Yin and Zhan (2020)
showed a positive influence of soil moisture data assimilation
coupled with Noah-MP simulations in the continental US
(CONUS) that underscores the need for fine-scale soil mois-
ture data to achieve an optimal result. Ahmad et al. (2022)
further demonstrated the positive impact of SMAP DA on
soil moisture estimate in South Asia along with sensitivi-
ties to SMAP data bias correction settings. In Chakraborty
et al. (2024), an improved soil moisture distribution over In-
dia was obtained by incorporating SMAP soil moisture into
the Indian Land Data Assimilation System (ILDAS).

Emerging higher-resolution (i.e., 1km) soil moisture
datasets such as SMAP-derived 1 km downscaled surface soil
moisture data (Fang et al., 2022) and Sentinel-1 surface soil
moisture data (Fan et al., 2025) could potentially provide
finer-scale soil moisture information and may be incorpo-
rated into data assimilation processes. However, as described
in Fang et al. (2022), the spatial coverage and availability
of the downscaled SMAP dataset are notably reduced com-
pared to the 9 km dataset. On the other hand, although there
are multiple studies demonstrating the impacts of assimila-
tion of Sentinel-1 data (e.g., Brocca et al., 2024; Filippucci
et al., 2022; Foucras et al., 2020; Gao et al., 2017; Meyer et
al., 2022), the experiments were all performed over smaller
and more localized areas as opposed to the more extensive
domains used in SMAP-based studies. This is primarily due
to the contrasts in sensor characteristics between these two
satellites. While Sentinel-1 measures at a higher spatial res-
olution (~ 1 km) than SMAP, it has relatively lower radiom-
etry sensitivity, has a much longer revisit time (3 to 4 times),
and requires more complex preprocessing. This means that
Sentinel-1 may be less sensitive to subtle differences in soil
moisture content than SMAP and would be unlikely to cap-
ture day-to-day variability. Hence, in general, SMAP data are
more suitable for regional- and global-scale applications than
Sentinel-1.

Building upon these studies, we aim to improve local to
regional soil moisture distributions over much of the east
CONUS region by assimilating the SMAP Level 3 (L3) 9km
soil moisture product into the 1 km grid spacing Noah-MP
LSM. While earlier studies (e.g., Rouf et al., 2021) chose
not to use higher-resolution precipitation forcing data, we
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use the 4 km NCEP Stage IV Quantitative Precipitation Es-
timate (QPE) data (Lin and Mitchell, 2005) as the LSM’s
precipitation forcing. The Stage IV product is a unique pre-
cipitation dataset since it takes advantage of both the weather
radar and rain gauge observation networks over the CONUS
to robustly reconstruct precipitation distribution. Moreover,
instead of only focusing on the importance of SM DA to im-
prove soil moisture estimates as other studies did, we also
explore how SM DA may influence other simulated land sur-
face properties on both seasonal and regional bases. We as-
sess the performance of our dataset over the full study do-
main but also explore key regions in additional detail. Specif-
ically, we evaluate the performance of our dataset in a known
“hotspot” of land—atmosphere coupling using the dense in
situ observations collected by the Oklahoma Mesonet and
DOE’s Atmospheric Radiation Measurement (ARM) facility
in the Southern Great Plains (SGP), which were also used in
the study of Rouf et al. (2021). In addition, we examine our
dataset’s characterization of the extreme drought conditions
affecting the southeast US over the fall and winter of 2016.
Comparisons are made to alternative SM datasets, including
datasets generated through machine learning approaches, to
better understand the value of DA incorporated with an LSM.
The primary goal of this study is to demonstrate the develop-
ment of a year-long soil moisture dataset for the eastern US,
which can also be readily used in land—atmosphere coupled
simulations by providing the essential boundary conditions
needed for model initialization.

The remaining parts of this paper are organized as follows:
the analysis domain and period are described in Sect. 2. The
methodologies and datasets employed in this study are de-
tailed in Sect. 3. The results of the impact of SM data assimi-
lation and the evaluations of the generated SM estimate along
with the other existing SM datasets are discussed in Sect. 4.
Lastly, the summary and discussion are provided in Sect. 5.

2 Analysis domain and period

Our study domain encompasses a wide swath of the central
and eastern CONUS (Fig. 1). The time period for the anal-
ysis covers the entire year of 2016 from 1 January through
31 December 2016. This analysis period was selected in
order to complement land—atmosphere coupled simulations
associated with the 2016 Holistic Interactions of Shallow
Clouds, Aerosols, and Land Ecosystems (HI-SCALE) field
campaign (Fast et al., 2018). The locations of in situ mea-
surements from the United Sates Climate Reference Network
(USCRN), Soil Climate Analysis Network (SCAN), Okla-
homa Mesonet (OKMet), and ARM SGP are overlaid on the
map in Fig. la. The soil texture and land cover maps are
given in Fig. 1b and c, respectively. Table 1 summarizes the
grid numbers and their percentages over the study domain
for each classification of soil texture and land cover. The top
three soil types (besides water) are silt loam (24.02 %), loam
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(18.88 %), and sandy loam (15.7 %), whereas grassland,
cropland, and cropland/natural vegetation mosaics are the top
three land cover types accounting for 22.2 %, 19.64 %, and
10.2 %, respectively, of points in the domain.

3 Methodology and datasets

3.1 NASA Land Information System and Noah-MP land
surface model

The NASA Land Information System (LIS) is an advanced
modeling and data assimilation framework designed to better
simulate land surface processes and improve our understand-
ing of terrestrial hydrology, biogeochemistry, and climate in-
teractions (Kumar et al., 2006; Peters-Lidard et al., 2007).
LIS incorporates multiple hydrological models and LSMs as
well as data assimilation techniques to optimize the represen-
tation of land surface processes. This model-observation in-
tegration enhances the accuracy and reliability of simulations
by leveraging the strengths of different models and obser-
vational datasets. It is functionable in assimilating satellite-
derived observations of soil moisture, vegetation dynamics,
and other land surface variables to improve the initializa-
tion and calibration of model simulations. Its versatility and
scalability make it suitable for both research and operational
uses. Given the above, LIS is primarily used in this study to
generate realistic representation in soil states through assim-
ilation of SMAP soil moisture retrievals into the Noah-MP
land surface model.

The version 4.0.1 Noah-MP LSM (Ek et al., 2003; Niu et
al., 2011; Yang et al., 2011) was run within LIS to simulate
the relevant land surface processes across the study domain.
The Noah-MP model was run with a 0.01° by 0.01° hori-
zontal grid spacing and using a 15 min time step. The spe-
cific model configurations utilized are detailed in Table 2.
Each soil column within the study region is represented by
four layers with depths of 10, 30, 60, and 100 cm below the
ground surface. The surface soil moisture updates are trans-
mitted to deeper layers according to model formulations in
water diffusivity and hydraulic conductivity. More specifi-
cally, while moisture fluxes between successive layers con-
trol how water moves within each soil column, excess wa-
ter above saturation in any layer will be transferred to the
next unsaturated layer downward. The Noah-MP LSM can
be driven by many sources of meteorological forcing data
as desired. Note that external irrigation and groundwater ex-
traction were not explicitly simulated in Noah-MP, and these
processes might be important for certain locations (Yang et
al., 2020, 2021).

3.2 Datasets

The datasets employed in this study include the forcing data
that drive the Noah-MP LSM (Sect. 3.2.1-3.2.3), as well as
multiple in situ observations (Sect. 3.2.4) used as the bench-
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marks for intercomparison among our SM estimates and the
other existing SM datasets (Sect. 3.2.5-3.2.7).

3.2.1 Enhanced SMAP Level 3 soil moisture data

The Soil Moisture Active Passive (SMAP) mission uses
passive (radiometer) L-band microwave remote sensing to
estimate land surface soil moisture and freeze/thaw state
(O’Neill et al., 2014). The L-band radiometry offers all-
weather, diurnal sensing of the surface dielectric proper-
ties, which are a function of the near-surface soil mois-
ture. SMAP has a 2 to 3d revisit frequency and two over-
passes (morning and afternoon) at local times of 06:00 and
18:00, respectively. One of the SMAP products, the en-
hanced SMAP Level 3 soil moisture product (SPL3SMP_E;
O’Neill et al., 2023), is primarily used for assimilation in this
study. It consists of daily estimates of global soil moisture
within the top soil layer (~5cm depth) on a cylindrical
9km equal-area scalable Earth grid (https://nsidc.org/data/
spl3smp_e/versions/6, last access: 8 September 2025), span-
ning 31 March 2015 to present.

3.2.2 North America Land Data Assimilation System
Phase 2 (NLDAS-2)

The NLDAS-2 (Xia et al.,, 2012) aims to provide high-
resolution, near-real-time, and retrospective datasets that in-
tegrate land surface model outputs with observations to mon-
itor and simulate land surface conditions across North Amer-
ica. It is available at hourly intervals and on a 12.5 km spa-
tial grid from January 1979 to the present. A wide range of
land surface variables such as soil moisture, soil temperature,
snow cover, evapotranspiration, and runoff are provided. Me-
teorological forcing variables such as precipitation, temper-
ature, wind speed, and solar radiation are also included. The
NLDAS-2 is used in this study as the meteorological forcing
data to drive the Noah-MP LSM.

3.2.3 NCEP Stage IV Quantitative Precipitation
Estimate

The NCEP Stage IV Quantitative Precipitation Estimate
(QPE) (Lin and Mitchell, 2005) is a high-resolution, quality-
controlled dataset produced by the National Centers for En-
vironmental Prediction (NCEP). It integrates precipitation
data from multiple sources, including the Next-Generation
Radar (NEXRAD) network rain gauges, and satellite obser-
vations, to provide accurate and detailed precipitation esti-
mates across the contiguous United States. With a grid spac-
ing of 4 km at hourly intervals, Stage IV QPE is widely used
in meteorology, hydrology, and climate research for tasks
such as weather forecasting, flood modeling, and studying
precipitation trends. We replace the precipitation data in the
NLDAS-2 with the Stage IV QPE data as they provide not
only higher-resolution and more realistic precipitation forc-
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Figure 1. Maps illustrating the study domain over eastern CONUS. The yellow, magenta, and cyan triangles denote the stations of SCAN,
USCRN, and OKMet observational networks, respectively. The white circles mark the locations of selected ARM SGP sites. The domain
soil texture was categorized into 14 soil types (¢) according to the NCEP/STATSGO+FAO classification. The domain land cover comprised
18 main types based on the MODIS-derived IGBP classification. The subdomain AL is denoted by the orange box (dashed line) in (a).

ing over the CONUS region but also improved SM estimates
in our test simulations. As an example, the comparison of in-
stantaneous rain rate obtained from NLDAS-2 and Stage IV
precipitation at 00:00 UTC on 30 August 2016 (Fig. S1 in the
Supplement) demonstrates that the Stage IV data provide a
more heterogeneous precipitation distribution than NLDAS-
2 over the study domain.

3.2.4 In situ measurements

In situ soil moisture observations used in this study were
obtained from the (1) US Climate Reference Network
(USCRN), (2) Soil Climate Analysis Network (SCAN),
(3) Oklahoma Mesonet (OKMet, McPherson et al., 2007),
and (4) ARM SGP (Sisterson et al., 2016). The USCRN and
SCAN data are acquired from the International Soil Mois-
ture Network (Dorigo et al., 2021a). The four networks are
selected as the benchmarks of our SM analysis due to ei-
ther their relatively wide spatial coverages or preferred site
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locations. Besides atmospheric and environmental parame-
ters such as air temperature, humidity, and wind conditions,
both SCAN and USCRN stations are equipped with sensors
that measure critical soil parameters, including soil moisture
and temperature at depths of 5, 10, 20, 50, and 100 cm. The
USCRN and SCAN are superior among available soil mois-
ture networks as many of their stations (112 and 91 sites
from USCRN and SCAN, respectively) are uniformly dis-
tributed over the study domain (Fig. 1). They are used to eval-
uate our SM analysis along with other existing SM datasets
(Table 3). The OKMet (120 sites) and ARM SGP (6 sites)
observations are adopted as their site locations are densely
distributed (the average distance between any two stations
is shorter than 30 km) over a portion of the Southern Great
Plains (SGP) region, which is one of the hotspots with strong
land—atmosphere coupling (e.g., Fast et al., 2018; Sakaguchi
et al., 2022). In addition to SM, the soil temperature observa-
tions and the latent and sensible heat fluxes measured by the
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Table 1. Summary of grid numbers and percentage of total grids for the soil texture/land cover types.

Soil texture ‘

Land cover

Class No.of  Percentage of | Class No.of  Percentage of
grids  total grids [%] grids  total grids [%]

Sand 370227 7.12 | Evergreen needleleaf forests 120816 2.32
Loamy sand 140072 2.69 | Evergreen broadleaf forests 66193 1.27
Sandy loam 816849 15.70 | Deciduous needleleaf forests 344 0.007
Silt loam 1249730 24.02 | Deciduous broadleaf forests 373716 7.18
Loam 982206 18.88 | Mixed forests 332114 6.38
Sandy clay loam 41522 0.80 | Closed shrublands 23319 0.45
Silty clay loam 240916 4.63 | Open shrubs 514667 9.89
Clay loam 187450 3.60 | Woody savannahs 100390 1.93
Silty clay 63818 1.23 | Savannahs 27746 0.53
Clay 205676 3.95 | Grasslands 1154805 22.20
Organic materials 39598 0.76 | Permanent wetlands 9591 0.18
Water 842008 16.19 | Cropland 1021681 19.64
Other 22069 0.42 | Urban 64997 1.25
Cropland/natural vegetation mosaics 521029 10.02

Snow and ice 33 0.0006

Barren desert 28692 0.55

Water bodies 842008 16.19

Table 2. Selected parameters, parameterizations, and forcing data used in the configured Noah-MP LSM.

LSM parameter/parameterization/forcing data

Land cover

Elevation, slope, and aspect
Greenness

Vegetation

Maximum albedo

Canopy stomatal resistance

Snow surface albedo

Runoff and groundwater
Surface-layer drag coefficient

Snow and soil temperature
Partitioning of rain and snowfall
Lower boundary of soil temperature
Supercooled liquid water and frozen soil permeability
Surface meteorological forcing

MODIS (IGBP-NCEP) (Friedl et al., 2002)

SRTM30-v2.0 (Farr et al., 2007)

National Centers for Environmental Prediction (Gutman and Ignatov, 1998)
Dynamic vegetation option

National Centers for Environmental Prediction (Robinson and Kukla, 1985)
Ball-Berry method (Ball et al., 1987)

Canadian land surface scheme (Verseghy, 1991)

Simple groundwater model, SIMGM (Niu et al., 2007)

General Monin—Obukhov similarity theory (Brutsaert, 1982)

Semi-implicit option

Jordan91 (Jordan, 1991)

Noah native option

NYO06 (Niu et al., 2007)

NLDAS-2 and Stage IV QPE (precipitation)

Soil Temperature and Moisture Profiles (STAMP) and Eddy
Correlation Flux Measurement System (ECOR) deployed by
the ARM SGP facility are also used to concurrently assess
the simulated soil properties and surface heat fluxes. Note
that soil moisture (temperature) measured at a depth of 5cm
below the ground surface was primarily used to compare
with the model-estimated surface soil moisture (soil layer
depth=0 to 10 cm).

3.2.5 ERAS5-Land reanalysis

ERAS5-Land (Mufioz-Sabater et al., 2021) is a global reanal-
ysis dataset that provides essential land variables with a grid
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spacing of 0.1° and is valid at hourly frequency, spanning
January 1950 to the present. It is continuously produced
by rerunning the land component (Tiled ECMWF Scheme
for Surface Exchanges over Land incorporating land sur-
face hydrology — H-TESSEL) of the ECMWF ERAS cli-
mate reanalysis that sequentially assimilates available me-
teorological observations (Hersbach et al., 2020). Despite
model uncertainties due in part to imperfect atmospheric
forcing, unresolved physical processes, and lack of observa-
tional constraint, the spatiotemporal coverage of the ERAS-
Land dataset has been advantageous in many land surface
applications including flood or drought monitoring and fore-
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Table 3. Soil moisture estimates analyzed in this study.

4593

Soil moisture ~ Grid Spatial Temporal  Temporal References

product spacing  coverage resolution  coverage

SPL3SMP_E  9km Global Daily 31 March 2015—-present  O’Neill et al. (2023)
ERAS5-Land 0.1° Global Hourly 1950—present Muiioz-Sabater et al. (2021)
GLASS SM 1km Global Daily 2000-2020 Zhang et al. (2023)
GLEAM v4.1  0.1° Global Daily 1980-2023 Miralles et al. (2025)
SMAPDA 1km East CONUS 6 hourly 2016 -

casting. It is thus employed in this study as SM reference
data, providing more insights through the comparison.

3.2.6 Global Land Surface Satellite soil moisture
(GLASS SM)

The global, daily 1km GLASS soil moisture product
(GLASS SM; Zhang et al., 2023) was derived using an en-
semble learning model (eXtreme Gradient Boosting — XG-
Boost) that integrates multiple datasets as the machine learn-
ing (ML) model’s inputs, including the remotely sensed
Global Land Surface Satellite (GLASS) products (Liang et
al., 2021), ERA5-Land reanalysis products (Mufioz-Sabater
et al., 2021), and static auxiliary datasets (e.g., Multi-Error-
Removed Improved-Terrain — MERIT — and Global grid-
ded soil information — SoilGrids; Poggio et al., 2021). The
ground-based soil moisture archived by the International Soil
Moisture Network (ISMN) and the 0.25° grid spacing com-
bined soil moisture data from the European Space Agency’s
Climate Change Initiative (ESA CCI; Dorigo et al., 2017) are
collectively used as the target data for training in ML. The
validations carried out for the GLASS SM product in Zhang
et al. (2023) demonstrated its capability to capture temporal
dynamics of measured soil moisture. Hence, given its nov-
elty in the methodology and high spatial resolution (1 km),
the GLASS SM data are used as one of the benchmarks in
this study.

3.2.7 Gilobal Land Evaporation Amsterdam Model
(GLEAM)

GLEAM (Global Land Evaporation Amsterdam Model; Mi-
ralles et al., 2011) is a state-of-the-art dataset that provides
global estimates of soil moisture, terrestrial evaporation (or
evapotranspiration), and related hydrological components.
GLEAM soil moisture data are derived from satellite obser-
vations and model simulations. It integrates a variety of satel-
lite observations and meteorological data, such as soil mois-
ture from microwave remote sensing, vegetation indices, and
meteorological data on precipitation, air temperature, and ra-
diation. Version 4.1 of GLEAM (Miralles et al., 2025) is used
in our analysis, which is available at 0.1° resolution for the
period of 1980 to 2023.
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3.3 Open-loop and data assimilation simulations

The open-loop simulation (named “OL” hereafter) employs
the configuration noted in Table 2 and spins up between |1
January 2011 and 31 March 2015. It refers to the integration
of the Noah-MP land surface model without any assimilation
of external observations. The long spin-up period (greater
than 4 years) ensures that soil states reach the equilibrium
state before conducting data assimilation (Cosgrove et al.,
2003; Rodell et al., 2005). Since the SMAP SM data are
only available from 31 March 2015 onwards, the DA sim-
ulation started at 00:00 UTC on 1 April 2015 and ended at
00:00UTC on 1 January 2017. The ensemble Kalman fil-
ter (EnKF) assimilation algorithm implemented in the LIS is
utilized to assimilate the SMAP SM retrievals into the Noah-
MP-modeled estimates. The EnKF’s sequential assimilation
algorithms including two main steps (model propagation and
data assimilation update) are coupled with model integration
and executed recursively. Here, Noah-MP is the nonlinear
forward model to advance the propagation step and generate
the prognostic state vector forward in time. The update step
occurs whenever any observations are valid, and the update
of prognostic state variable can be described by the equation
below:

$1 =50+ K (ven = Hen (8841)). M

where % | stands for the analyzed (updated) state of vari-
able x at time step k+1. )2,'2 1 represents the background state
of variable x integrated from time step k. The Kalman gain
matrix K and the innovation vector (yk+1 — Hiyq ()2}3 |\ 1))
are required when updating the background state. Here, yj4|
denotes the observations valid at time step k+ 1, and Hy is
the observation operator that applies conversion and interpo-
lation in time and space to the model state variable in order
to conform with the observable.

The ensemble simulations are required at each propaga-
tion step to provide an estimate of the model spread (uncer-
tainty). Here, the NASA Land Data Toolkit (LDT; Arsenault
et al., 2018) is used to initialize the ensemble simulations
based on the OL simulation restart output file at 23:45 UTC
on 31 March 2015. The initial conditions of those ensem-
ble members are obtained by perturbing atmospheric forcing
variables as listed in Table 4. Perturbation type is grouped
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as either multiplicative (M), sampled from a lognormal dis-
tribution, or additive (A), which is sampled from a normal
distribution.

According to the sensitivity study regarding the impact of
ensemble size in Ahmad et al. (2022), the ensemble spread
(measured by standard deviation across all members) may
be flattened when the number of replicates increases beyond
15. We experimented with 12 and 24 ensemble members,
and the result suggested minor differences in terms of soil
moisture representation. Hence, the DA experiment we show
here has an ensemble size of 12. The model and SMAP
soil moisture retrieval error standard deviations are set as
0.04 m3> m~3. Due to the existence of relative systematic dif-
ferences between SMAP and modeled SM, the cumulative
distribution function (CDF) matching technique (Reichle and
Koster, 2004) is used for bias correction of the SMAP soil
moisture retrievals using Noah-MP model data as the refer-
ence. Monthly CDFs of the SMAP soil moisture retrievals
and the Noah-MP-simulated soil moisture were both gen-
erated using the NASA LDT and used to map the SMAP
SM retrievals into the Noah-MP-modeled soil moisture space
prior to assimilation. The reference period for the monthly
matching is 2 years in total, ranging from 1 January 2015 to
31 December 2016. Since the SMAP SM data are represen-
tative of the top soil layer (~5cm deep from surface), the
topmost soil layer soil moisture is employed as the model
state variable during assimilation. The DA simulation and its
SM data are abbreviated as “SMAPDA” hereafter. A more
detailed discussion regarding its performance for estimated
SM is covered in Sect. 4.

3.4 Metrics for DA impact measuring and evaluation
3.4.1 Soil moisture analysis increment

To assess the impact of the SMAP SM data assimilation
on the soil moisture estimates, we analyze the soil mois-
ture analysis increments generated from the DA experiment
(SMAPDA). The analysis increment refers to the difference
between the analysis (optimized estimate of the state after
DA) and the background forecast (model state before DA).
It is a measure of how much the model state has been cor-
rected (updated) by incorporating new observations, which
is not only related to the deviation from model background
to observation but also modulated by observation and model
errors. In the EnKF approach, the model error varies in time
and space and is estimated using the ensemble spread (stan-
dard deviation of ensemble simulations). We use the cumula-
tive number and temporal mean of soil moisture analysis in-
crements to indicate the spatial distribution of observational
constraint by the SMAP_L3_E data and highlight the areas
that experience overall wetting or drying due to the cycling
of assimilation. Note that the SMAP_L3_E data were subset
to hourly data and assimilated when they matched the model
time step.
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3.4.2 Evaluation against in situ measurements

The soil moisture estimates generated through different ap-
proaches are evaluated against in situ measurements using
the metrics of anomaly correlation coefficient (ACC), root
mean square error (RMSE), and bias, defined as follows.

1 (1) ()

ACC = - = @)
S (P P) s (- 77

RMSE = \/ %le (P = M) 3)

Bias = %g‘m — M), “

P represents the estimated top-layer soil moisture, and M
stands for corresponding in situ soil moisture measurement.
N is the total number of selected samples. The ACC, rang-
ing from —1 to 1, measures how well the temporal anoma-
lies (departures from the monthly mean) of two time series
(model estimates P’ and observation M’) match each other.
Here in Eq. (2), it is essentially computed as the Pearson
correlation coefficient using the estimated and observed soil
moisture anomaly time series in each location. Since the soil
moisture time series has strong seasonal cycles, the removal
of the seasonal signal when computing ACC helps quantify
the skill in capturing soil moisture temporal variations across
all timescales. The ACC is commonly used to verify the im-
pact of soil moisture data assimilation due to the necessity
of isolating the seasonal cycle, which is highly consistent be-
tween open-loop and assimilation experiments (e.g., Kumar
et al., 2009). While RMSE (Eq. 3) is used to measure the
mean difference between the modeled and in situ SM, bias
(Eq. 4) is computed as the overall deviation (including the
signs) of the modeled SM from in situ SM observations. In
addition, the standard deviation (SD) is also calculated for
each SM dataset to quantify the spatial heterogeneity in SM
across the given sites at different locations:

n

(8:=5). 5)

i=1

Here, S; refers to individual SM data points and S stands
for the mean over the entire dataset.

4 Results

4.1 Increments from SMAP soil moisture data
assimilation

To gauge how much observational information was effec-
tively assimilated into the model, we examined the outputs
of SM analysis increments at the top layer (5 cm depth). Fig-
ure 2 illustrates the maps of the cumulative number (hours)
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Table 4. Description of parameters used in meteorological forcing perturbations for the ensemble simulations.

Perturbed meteorological
forcing type

Perturbation

Standard
deviation

Cross-correlations
with perturbations

SW LW P Ty

Shortwave radiation (SW) M
Longwave radiation (LW) A
Precipitation (P) M
Near-surface air temperature (Ti;) A

02Wm2 1.0 —-03 -05 0.3

30Wm=2  —03 1.0 05 0.6
0.5mm -05 05 1.0 —0.1
05K 03 —06 —0.1 1.0

of SM analysis increments over each of the 3-month-long pe-
riods. Overall, the SMAP SM data assimilation is more effec-
tive in spring, summer, and fall (Fig. 2b, ¢, and d) as opposed
to winter (January—February—March; Fig. 2a). The relatively
small number of analysis increments shown in the Jan—-Feb—
Mar period (Fig. 2a) is likely due to the increased uncertainty
in L-band microwave radiometer SM retrieval as a result of
snow cover and frozen ground in the cold season (e.g., Liu
et al., 2021). While analysis increments are distributed over
the majority of domain, there are grids that received zero
update, especially in the eastern part of the domain. In the
default setting, the LIS would only assimilate observations
where the SMAP data’s retrieval quality is flagged as suc-
cessful. Those zero-update pixels are most likely covered by
dense vegetation. As such, the sensitivity of surface SM is
usually distinctly reduced and thus flagged as unsuccessful
retrievals. Nevertheless, despite generally less effective as-
similation over this region, a few spots in Florida and par-
tially Georgia and South Carolina show that most frequent
updates from DA across the entire domain.

Figure 3 demonstrates the spatial distribution of mean
SM analysis increments over the four seasons. The cal-
culation of mean increment only includes samples with
nonzero increments. While consistently positive increments
are shown in Texas and northern Mexico throughout the
year, seasonal variations are evident in portions of the Great
Plains. For instance, in Kansas, more negative (positive) in-
crements are seen for January—February—March/April-May—
June (Fig. 3a and b) and July—August—September/October—
November—-December (Fig. 3¢ and d), respectively. This sug-
gests that compared to SMAP observations, the model most
likely has a consistent dry bias over part of Texas and the
adjacent Mexican territory, and the biases are more variable
temporally in other parts of the domain including the north-
ern SGP. Possible causes of those DA increments are the
model deficiencies and missing physical processes. For in-
stance, SMAP detects increased soil moisture, which may
be partially due to irrigation, whereas the Noah-MP LSM
used in this study does not explicitly simulate irrigation (e.g.,
Felfelani et al., 2018; Lawston et al., 2017). In addition, prac-
tices like tilling or cover cropping affect surface moisture and
are likely not captured by the model physics. Other miss-
ing/unrealistic model treatments in runoff schemes, dynamic
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groundwater level, seasonal varying vegetation, and root sys-
tems may also modulate the increment patterns. Moreover,
biases in meteorological forcing (e.g., radiation, temperature,
and winds) may also affect how evapotranspiration is esti-
mated and thus the soil moisture. SMAP data assimilation
often compensates for these errors, especially after dry spells
or in transition seasons (spring and fall).

4.2 Comparison with existing surface SM datasets

To assess the performance of our SM analyses (SMAPDA
and OL) along with other existing SM products, we conduct
a comprehensive intercomparison among all derived datasets
(Table 3) against a collection of in situ measurements from
four observational networks (USCRN, SCAN, OKMet, and
ARM SGP). Note that the assessments were conducted sep-
arately against the USCRN and the SCAN datasets despite
both having well-distributed site locations over the study
domain. This was carried out purposely in order to verify
whether any inconsistency between their instruments and/or
measurements may alternatively bias the validation results.
The following subsections discuss the evaluation results ref-
erenced by using the observations from each network.

4.2.1 Evaluation using USCRN soil moisture
observations

SM estimates from SMAPDA, OL, GLASS SM, ERAS-
Land, GLEAMv4.1, and SMAP AM (the morning overpass
of SMAP_L3_E) are first evaluated using the in situ obser-
vations from the USCRN (Fig. 1). The metrics described in
Sect. 3.4.2 are computed accordingly. Since only SMAPDA
and ERAS5-Land consist of SM representations through the
entire soil column, surface (top-layer) SM representations are
primarily assessed here. To perform one-to-one comparisons
with in situ data, for each SM product, the daily SM time
series data at the grid cells closest to the observational site
locations are extracted. The 2D histograms given in Fig. 4 vi-
sualize the differences between the observations and the esti-
mates and depict the contrasts among the datasets. All scatter
points are grouped by 50 bins (2D pixels), and the contours
are smoothed using the Gaussian filter for an improved visu-
alization. The more samples are concentrated along the diag-
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Figure 2. Maps of the cumulative number of DA SM increments computed for the periods of (a) January—February—March, (b) April-May—
June, (¢) July—August—September, and (d) October—-November—December in 2016.

onal line, the better the estimate would be (placeholder for
root zone SM evaluation).

The results indicate that SMAPDA has the highest ACC
(~0.8) among all SM estimates. While it is slightly higher
than OL in general, Fig. 5b shows that SMAPDA improves
over OL at most of the sites, indicating that SM DA does op-
timize the SM dynamics despite overall minor differences
in RMSE and bias. It also shows that SMAPDA’s RMSE
and bias (0.085 and 0.005 m> m~3) are slightly larger than
what GLASS SM has (0.083 and —0.004 m? m—3). Since the
GLASS SM uses in situ observations including those from
USCRN as the target when training the ML model (i.e., not
independent), it is not surprising the GLASS SM magni-
tudes better align with the USCRN data in general. How-
ever, the GLASS SM has the smallest ACC (0.574) com-
pared to all other estimates. This implies that the ML al-
gorithm may not capture the temporal evolution of SM but
only the instantaneous SM values due to the selected vari-
ables (i.e., absolute SM) in the cost function. At any rate,
these two 1km grid spacing products significantly outper-
form others. Constructed in 0.1° grid spacing, both ERAS-
Land and GLEAMv4.1 (Fig. 4c and f) may partially suffer
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from a relatively coarser resolution in addition to differences
in treatments of physical processes. As a result, their RM-
SEs are all greater than 0.1 m®> m™—3. Meanwhile, relatively
larger biases are also computed (0.017 and —0.006 m®> m~3).
The SMAP AM also has poor skill in SM estimation given
its highly scattered samples in the 2D histogram despite rel-
atively low bias. Although it has the second-highest ACC
overall (0.625), it still underrepresents temporal variability
at the site level when compared with SMAPDA (Fig. Se).

We also note that the cut-in (smallest) values of sur-
face SM vary notably across the SM products. For exam-
ple, GLEAMv4.1 and SMAPDA have relatively larger cut-
in values of ~0.05 to 0.06m3 m~3, whereas the ERA5-
Land and SMAP AM values are valid above approximately
0.02m3 m=3. The GLASS SM has a negligible limit on the
smallest SM value. The differences in these cut-in SM val-
ues may be associated with either the formulations of land
surface models or the observational sensitivities and could at
least partially affect how well each estimate agrees with the
observation.

Figure 6a illustrates the disaggregated RMSEs for
SMAPDA at each USCRN site. The RMSE differences be-
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Figure 3. Similar to Fig. 2, but for mean SM increments.

tween SMAPDA and other estimates are given in Fig. 6b—
f to better visualize relative performance. Not surprisingly,
relatively minor differences between OL and SMAPDA are
analyzed (Fig. 6b). While the RMSE differences are rather
mixed between SMAPDA and GLASS SM (Fig. 6d), dis-
tinct and extensive increases in RMSEs are observed in the
cases of ERA5-Land, SMAP AM, and GLEAMv4.1 (Fig. 6¢,
e, and f), especially for sites in the southeast US and coastal
sites in Florida and Texas.

Likewise, the biases are displayed in Fig. 7. In all SM
datasets, a wet bias is more evident in the southeastern US
sites than others, whereas a dry bias is distinct across many
sites in the northern and eastern Great Plains despite variabil-
ity in their magnitudes. This consistent bias pattern implies
that these SM estimates may share common sources of uncer-
tainties in observational data and/or treatments in the models.
Further model improvements may be carried out to focus on
the correction of this common issue.

To further examine the potential errors in common among
the six SM estimates, we calculated the RMSE anomaly for
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each dataset. The RMSE anomaly is obtained by subtracting
annual mean RMSE from the daily time series of each es-
timate. It extracts intrinsic variation in SM errors from the
original SM time series and thus facilitates bias-free inter-
comparison. A diverse variation among the datasets is shown
in Fig. 8. Despite relatively large day-to-day variability in the
SMAP AM time series than other datasets, the multiday vari-
ability in SMAP AM is similar to GLEAMv4.1. For example,
both of them show much larger SM errors from January to
April and relatively smaller errors present in late spring and
summer. The errors increase when it transitions into late fall
and early winter. There is also a high level of similarity be-
tween the ERAS5-Land and GLASS SM time series. Despite
minor discrepancies, compared to other datasets, they both
show relatively smaller variation over the 1-year period with
slightly larger errors in April, June, and July. These results
are not surprising as SMAP data are one of the ingredients
of GLEAMv4.1 (Miralles et al., 2025), whereas GLASS SM
adopts ERA5-Land soil moisture as the SM input data in the
ML model (Zhang et al., 2023). Figure 8 also indicates that
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Figure 4. 2D histograms summarizing the evaluation results using the observational data measured by the USCRN. Panels (a) to (f) represent
results of SMAPDA, OL, ERAS5-Land, GLASS SM, SMAP AM, and GLEAMv4.1. A total of 50 bins are used to generate the 2D histograms.
The anomaly correlation coefficient (CC), RMSE, and bias are given in the upper left corner of each panel.
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Figure 5. (a) Site-wise SM ACC computed for SMAPDA using the USCRN observations. The ACC differences subtracting SMAPDA
results from (b) OL, (¢) ERA5-Land, (d) GLASS SM, (e) SMAP AM, and (f) GLEAMv4.1 are also illustrated.
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Figure 7. Site-wise bias computed using the USCRN observations. Results for (a) SMAPDA, (b) OL, (c) ERAS5-Land, (d) GLASS SM,
(e) SMAP AM, and (f) GLEAMv4.1 are illustrated.

SMAPDA demonstrates a unique trend, with the smallest er-
rors before June and peak errors occurring in early July and
late November.

4.2.2 Evaluation using SCAN soil moisture observations

Along the same line as discussed in Sect. 4.2.1, we exam-
ined the SM 2D histograms as referenced by the SCAN

https://doi.org/10.5194/essd-17-4587-2025

observations (Fig. S2). Overall, similar conclusions can be
drawn from the comparisons, implying that the evaluation
is robust with very little dependence on selected reference
SM observations. For example, SMAPDA further improves
ACC on top of OL (Fig. Sla and b), showcasing the posi-
tive impact on capturing SM variability in time. Moreover,
SMAPDA and GLASS SM remain the top two performers
among the SM products in terms of low RMSE (0.089 and
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Figure 8. The SM RMSE anomaly time series computed against
USCRN observations during 2016. Results of SMAP AM, OL,
SMAPDA, ERA5-Land, GLEAMv4.1, and GLASS SM are denoted
by colored lines as indicated in the legend.

0.095m> m~3) and bias (0.001 and —0.006 m® m~3). But
again, despite better alignment with the diagonal in general,
GLASS SM has much smaller ACC than SMAPDA. It also
suggests that GLASS SM has more off-diagonal samples
than the SMAPDA, likely due in part to the use of ERAS-
Land as the initial SM guess for GLASS SM. Since ERAS-
Land has relatively scattered samples in the 2D histogram
(Fig. S2¢) and the ML algorithm does not overfit by design
(Zhang et al., 2023), some pixels may receive less correc-
tion than others. The estimate from GLEAMv4.1 (Fig. S2f)
suffers from generally smaller SM estimates (capped around
~0.38m?> m~3), which potentially causes severe underesti-
mation. SMAP AM has the least bias among all estimates
(Fig. S2e). However, it also owns many samples far off the
diagonal, which lowers the overall skill scores. As a result,
the RMSEs are all greater than 0.11 m3 m~3, which is about
20 % more than what is computed for SMAPDA.

The site-wise ACC and RMSEs given in Figs. S3 and S4
confirm that SMAPDA is the top performer among the SM
estimates in general as it shows consistency in producing
more realistic temporal evolution and relatively small error
across the SCAN sites. Excessive SM errors (positive dif-
ferences) are found at several sites in the southeastern US
when evaluating the ERA5-Land and SMAP AM. Despite
small contrast in RMSE differences across the SCAN sites,
the estimates from GLEAMv4.1 show extensively larger er-
rors at more locations, leading to a nontrivial mean RMSE
of 0.112m3 m—3. Figure S5 shows that, regardless of the in
situ observations, the bias pattern of each SM estimate re-
sembles those given in Fig. 7, suggesting that the analyzed
biases should be rather robust and representative.

Figure S6 shows that the SM RMSE anomaly of SMAPDA
is very similar to those of GLASS SM (light blue) and even
SMAP AM (light gray) when assessed using the SCAN data.
ERAS5-Land and GLEAMv4.1 exhibit trends partially differ-
ent from the other three estimates. Specifically, ERA5-Land
(GLEAMV4.1) has relatively smaller (larger) errors than the
other three estimates from January to April and tends to
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produce rather larger (smaller) errors from October to De-
cember. Despite the differences in these results and those
from the comparison against USCRN (Fig. 8), similarities
in RMSE anomalies among the analyses remain clear. This
is most likely due to the various SM estimates using dupli-
cate sources of SM data, even though different methods are
employed to arrive at the final estimates.

4.2.3 Regional assessment over the Southern Great
Plains

The Southern Great Plains (SGP), including Oklahoma, has
been recognized as one of the hotspots for strong land—
atmosphere coupling (LAC; Santanello et al., 2009; Tao et
al., 2019). Earlier studies revealed the key physical processes
that modulate the strength of LAC and how LAC influences
the life cycle of convective clouds using model and observa-
tional datasets generated for this region. For instance, Fast et
al. (2018) investigated the impact of SM spatial heterogene-
ity on simulated convective clouds near the ARM SGP site
using a large eddy simulation model for a selected event dur-
ing the 2016 HI-SCALE field campaign. They found that the
scales of SM gradient in the model can significantly affect
the presence of simulated cloud populations even with iden-
tical atmospheric conditions. Sakaguchi et al. (2022) further
analyzed the LES model data produced by Fast et al. (2019)
using spectral analysis and demonstrated that the SM spatial
heterogeneity may strengthen secondary circulations and ex-
tend their spatial scales. Both studies concluded that a more
realistic and high-resolution representation of SM is desired
to better understand LAC at local to regional scales (~ 1 km
and greater). This motivates us to examine how SMAPDA
SM estimates perform in this region in comparison to other
datasets, and the evaluations are carried out by leveraging
highly concentrated observations measured by the OKMet
(Fig. 1).

As shown in Fig. 9, the performance of GLASS SM de-
grades when evaluated against the OKMet data. The 2D his-
togram shows that most samples occur in the bins above
the diagonal, meaning that GLASS SM (Fig. 9d) generally
underestimates SM (mean bias: —0.038 m m—3), whereas
when compared with data from USCRN and SCAN (Figs. 4d
and S1d), GLASS SM has much better agreement with the
observations. This is most likely due to the exclusion of OK-
Met data in the ML training process. Since ML is purely
data-driven, the skill of ML-based SM estimates highly
depends on the availability of in situ observations. Con-
versely, SMAPDA exhibits the lowest annual mean RMSE
(0.087m3>m™3) in general in comparison to the other four
datasets (0.106, 0.107, 0.104, and 0.112 m? m—3 for ERA5-
Land, GLASS SM, SMAP_AM, and GLEAMv4.1, respec-
tively). The annual mean RMSE for SMAPDA stays close
to the RMSEs obtained when compared to the USCRN
and SCAN observations (0.084 and 0.0894 m3m3, re-
spectively). This demonstrates that a physically constrained
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Figure 9. Similar to Figs. 4 and S1, but for results computed against the OKMet observations.

model tends to perform more consistently and mitigate soil
moisture biases despite uncertain and neglected/unresolved
physical processes in the model.

The relatively dense spatial distribution of the OKMet sites
enables further investigation into the realism of estimated SM
spatial heterogeneity. We computed the daily standard devi-
ation (SD) across all OKMet sites for each SM estimate as a
way to quantify the spatial SM heterogeneity (meaning how
spread the SM values are in space). Figure 10 shows that ob-
served SD (magenta) is mostly larger than what is estimated
by any of the derived SM approaches over the year despite
notable day-to-day variations. Even though SMAPDA and
GLASS SM top the others in SM estimates based on the eval-
uations shown earlier, they both underestimate the SM spatial
heterogeneity with an averaged SD of ~ 0.6 m3> m~3, which
is about 25 % less than observed. GLEAMv4.1 and SMAP
AM have even smaller SDs over the period. While ERAS5-
Land tends to have larger and more comparable variances as
observed, it does not accurately distribute those SM values in
space (Fig. S7).

In addition to soil moisture, the ARM SGP facility
(through instruments of STAMP and ECOR) has collected
soil temperature and surface heat flux (latent and sensible)
measurements that are critical for land—atmosphere coupling
research as these quantities directly modulate the strength
of turbulent mixing in the atmospheric boundary layer. Here
we primarily assess how SMAPDA represents SM, soil tem-
perature (ST), latent heat flux (LHF), and sensible heat flux
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Figure 10. Daily time series of SM standard deviation across OK-
Met sites computed for each SM estimate.

(SHF) using the concurrent measurements collected across
six ARM SGP sites (E31, E33, E37, E38, E39, and E41) as
denoted in Fig. 1a. Note SM and ST data from the STAMP
are not valid in January.

Results show that SMAPDA reproduces the observed
monthly trends in SM and slightly overestimates SM (annual
mean model-observation difference of 4+ 0.04 m> m—?) with
larger positive biases in winter months (Fig. 11a). The annual
mean ST is warmer in SMAPDA than observed (difference:
+0.84 K), which can be attributed to a relatively distinct
warm bias in summer months (June—September) (Fig. 11b).
While LHF has an annual mean difference of —12.14 W m—2
when compared to the observations (Fig. 11c¢), it is consid-
ered minor as annual LSM error can be approximately —
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from SMAPDA simulations (ARM SGP observations (STAMP/ECOR)) as computed across six ARM SGP sites (Fig. 1a).
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20 W m~2 based on earlier studies (ARM, 2014). In the case
of SHF, SMAPDA tends to underestimate for most of the
months (Fig. 11d). This is likely due to a consistent wet bias
in SM throughout the year (Fig. 11a), leading to increased
energy partitioning in latent heat and a corresponding reduc-
tion in sensible heat. Distinct positive biases even appear over
summer months (June and July) despite higher simulated ST
(Fig. 11b).
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4.2.4 Regional analysis associated with 2016 drought in
the southeastern US

The southeastern US experienced one of the most significant
drought events in the region during the fall of 2016 (peaked in
October and November) based on the historical record (Park
Williams et al., 2017). It primarily affected parts of Georgia,
Alabama, Tennessee, and the Carolinas. The drought reached
extreme and exceptional levels, especially in northern Geor-
gia and Alabama, where some areas experienced their dri-
est conditions in history. A combination of factors, including
below-average rainfall during the spring and summer months
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and unusually high temperatures, led to increased evapora-
tion and reduced soil moisture and thereby the drought condi-
tions in fall. The drought severely impacted agriculture, lead-
ing to reduced crop yields, and contributed to widespread
wildfires in the Appalachian region. The strained water re-
sources also posed a great challenge to water availability for
communities and industries. Hence, we aim to explore the
representativeness of the SMAPDA SM estimate under the
extreme drought conditions in the southeastern US.

The subdomain “AL”, which covers Alabama (as denoted
in Fig. 1a), was chosen for conducting the following analy-
ses since the in situ measurements from USCRN and SCAN
are relatively denser in Alabama than in other areas in the
southeastern US (Fig. 1a). In addition to the spatial variabil-
ity of soil types (Fig. 12a), the relatively large fraction of
forest cover (Fig. 12b) can further complicate how soil mois-
ture is distributed through hydraulic processes such as evap-
otranspiration (ET), interception, infiltration, runoff, ground-
water recharge, and hydraulic redistribution due to the pres-
ence of root systems and tree canopies. Here, we selec-
tively examine the relationship between SM and ET under
the drought conditions by comparing the SMAPDA output
with the GLEAMv4.1 data. GLEAMv4.1 was chosen for
this specific comparison as it is the only product among
all benchmark datasets that concurrently provides SM and
observation-constrained ET representations.

To assess whether the two datasets (SMAPDA and
GLEAMv4.1) represent the drought event, we first use the
5-year (2012-2016) soil moisture data from OL simulation
to infer the monthly climatological mean and standard de-
viation at each pixel over the area. Based on the clima-
tological baseline, the standardized soil moisture anomaly
(SMA) can then be computed to better quantify the sever-
ity of drought conditions. According to Ontel et al. (2021),
Jiménez-Donaire et al. (2020), and Tian et al. (2022), when
SMA is between 0 and —1, the drought is considered a mild
drought. Moderate drought occurs if SMA lies between —1
and —2. Lastly, when SMA falls below —2, a severe drought
condition is defined. Both SMAPDA and GLEAMv4.1 sug-
gest that moderate to severe drought conditions occurred in
this region during the months of September, October, and
November (Fig. 13). Due to the contrast in sample size,
SMAPDA demonstrates more spatial heterogeneity in SMA
compared to GLEAMv4.1. Otherwise, the result reconfirms
the drought period as defined in other relevant studies.

The monthly statistics from both SMAPDA and
GLEAMv4.1 are given in Fig. 14. Both estimates ex-
hibit a decreasing trend in SM over the summer months
(JJA) as well as a steeper decline in fall (SON) over the
AL subdomain (Fig. 14a). Except in winter months (DJF)
when the SM estimate is slightly larger in SMAPDA than
in GLEAMv4.1, soil conditions produced by SMAPDA
are consistently drier than GLEAMv4.1. Both datasets
suggest increases in ET before June with similar magnitudes
(Fig. 14c), mostly due to the seasonal increase in the solar

https://doi.org/10.5194/essd-17-4587-2025

4603

[ SMAPDA [ GLEAMv4.1

AR g

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month in 2016

Standardized SM Anomaly [-]

Figure 13. Box-and-whisker plot for monthly standardized SM
anomaly (SSA) computed for SMAPDA and GLEAMv4.1 data in
2016 referenced by their own climatology (2012-2016). Dashed
lines denote the thresholds for the defined drought conditions.

insolation as well as the leaf area. However, in summer (JJA),
SMAPDA produces much larger ET than GLEAMv4.1 does,
which leads to much drier soil conditions concurrently. This
then facilitates the intensification of drought conditions in
the fall, leading to further reduction in water availability
through the soil columns, which significantly limits the
amount of ET in contrast to GLEAMv4.1.

Although in situ ET observations are not available through
the USCRN and SCAN measurements, the SM observations
(Fig. 14b) suggest that while SMAPDA overall captures how
SM evolves over time, GLEAMv4.1 gives much weaker re-
sponses to the SM drying process than SMAPDA. This ulti-
mately produces an overall much larger wet bias in SM for
GLEAMv4.1 than for SMAPDA in the fall. Whether data
from all grid cells in the AL subdomain (Fig. 14a and c) or
only the 17 grid cells nearest to the in situ measurements
(Fig. 14b and d) are used, the trends in both SM and ET
are very similar. This suggests that the evaluations illustrated
in Fig. 14b and d are representative for the subdomain. As
we investigate in more detail through comparison at each
individual site (Fig. 15), we find that most of the large er-
rors in SMAPDA’s SM estimate can be attributed to sites’
soil properties (Fig. 15), specifically where clay soil types
are present (site #3 and 5: clay; site #7: silty clay). At those
sites, the enhanced temporal variability in SM is distinct but
underestimated by both SMAPDA and GLEAMv4.1. This
suggests that both approaches are unable to capture the dras-
tic changes in SM, likely due in part to the nature of clay
soil texture. The conclusion regarding soil-texture-dependent
errors seems to hold even when we extend the analysis to
all sites (USCRN and SCAN) located in the study domain
(Fig. S8). The relatively weaker dependency on land cover
types illustrated in Fig. S9 confirms that the errors are much
more sensitive to soil textures than land cover types. Over-
all, it shows that although the sample sizes vary among soil
types, the soil moisture error remains relatively higher at sites
with clay soil than other soil types. This echoes what was re-
ported in Colliander et al. (2022), stressing that further model

Earth Syst. Sci. Data, 17, 45874611, 2025



4604

S.-L. Tai et al.: A 1 km soil moisture dataset over eastern CONUS

(a) AL Subdomain (b) In-situ Locations
0.5 05 +——= 15.0
—e— SMAPDA —e— GLEAMv4.1 —e— OBS
0.4 0.4 1255
7 10038
£ 0.3 0.3 =
T T J_ 75 5
E 0.2 0.2 1 éc"r;
= 5.0 &
0.1 0.14 T 1 s 2
0.0 T T T T T T 0.0 T T T T T T 0.0
5 (c) AL Subdomain 5 (d) In-situ Locations
— 4 44
T
T 3 31
o
£
E 21 21
'_
w
14 1+

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month in 2016

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month in 2016
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correspondingly.

refinements may be needed to improve treatments in resolv-
ing hydraulic processes for the variants of clay soil.

5 Data availability

The  dataset  generated  and
the current study is available Zenodo at
https://doi.org/10.5281/zenodo.14370563  (Tai et al.,
2024). The software package of the NASA Land In-
formation System (LIS) can be downloaded through
https://github.com/NASA-LIS/LISF  (NASA-LIS, 2025;
Kumar et al., 2006; Peters-Lidard et al., 2007). The en-
hanced SMAP Level 3 soil moisture product is accessible
at https://doi.org/10.5067/M200XIZHY3RJ (SPL3SMP_E;
O’Neill et al., 2023). The NLDAS-2 data (Xia et al., 2012)
are archived at https://disc.gsfc.nasa.gov/datasets/NLDAS _
FORAO0125_H_2.0/summary?keywords=NLDAS?2.

The Stage IV QPE product (Lin and Mitchelll,
2005) is accessible at https://data.ucar.edu/dataset/
ncep-emc-4km-gridded-data- grib-stage-iv-data. The
USCRN and SCAN data are acquired from the International
Soil Moisture Network (ISMN; https://ismn.earth/en/,
Dorigo et al.,, 2021b). The Oklahoma Mesonet soil
moisture observations (OKMet; McPherson et al.,
2007) were acquired from the ARM discovery website:
https://doi.org/10.5439/1027361 (Giangrande et al., 2020).
For all other SM datasets please refer to Table 3. The
STAMP  (https://doi.org/10.5439/1238260, Kyrouac et
al., 2016) and ECOR (https://doi.org/10.5439/1097546,
Gaustad, 2003) data were sourced from the Atmospheric
Radiation Measurement (ARM) user facility.

analyzed
on

during
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6 Summary and discussion

To facilitate an improved representation of local- to regional-
scale SM distribution, we generated a high-resolution SM
dataset at a 1 km grid spacing by assimilating the 9 km SMAP
SM data into the Noah-MP land surface model. The dataset
has spatial coverage over the east CONUS and a frequency
of 6h for the entire year of 2016. The SMAP SM data as-
similation is accomplished under the framework of NASA’s
Land Information System using the EnKF algorithm. In the
DA simulation, 12 ensemble members were initialized by
perturbing the selected variables in meteorological forcing
data (NLDAS-2 and Stage IV). The subset of daily SMAP
SM overpasses is assimilated hourly when applicable. The
generated SM estimate is comprehensively assessed by us-
ing the in situ SM observations collected in the networks
of USCRN, SCAN, OKMet, and ARM SGP and compared
with the performance of other existing SM datasets such as
the morning overpass of SMAP (SPL3SMP_E) data, ERAS-
Land, GLASS SM, and GLEAMv4.1.

Overall, the evaluation result suggests that the result-
ing soil moisture estimate through DA, which we refer to
as SMAPDA, exhibits the top performance among the ex-
amined datasets. It improves SM temporal variability in
most of the evaluated sites when compared with the es-
timate from the OL simulation (experiment without DA).
While the SMAPDA and GLASS SM are considered the
top two SM estimates based on the skill metrics computed
against USCRN and SCAN observations (e.g., CCs are ~ 0.8
and ~ 0.7 and RMSEs are ~0.08 and ~0.09 m3m~3, re-
spectively), SMAPDA surpasses GLASS SM when vali-
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Figure 15. SM daily time series comparison at each in situ observation location. The numbers given in the title above each panel correspond
to the locations as marked by the numbered white circles in Fig. 12. The site names and the corresponding observational networks (as
indicated by either U (USCRN) or S (SCAN) in parentheses) are readable from the titles. Soil texture type is indicated by green text in the

top right corner of each panel.

dated against OKMet data (independent observations for
both SMAPDA and GLASS SM). Being a fully data-driven
ML product, the GLASS SM achieves a better one-to-one
alignment with the observations than SMAPDA when evalu-
ated by the in situ data used in its training process (USCRN
and SCAN). However, the relative accuracy of GLASS SM
and SMAPDA is reverse when compared with the indepen-
dent observations from OKMet, which implies the inclusion
of physical constraints could be vital for a more consistent
performance in SM estimate using the ML approach. From
the analysis in anomalous errors, we show similar intrinsic
errors among the selected SM datasets in some cases, which
is most likely driven by overlapping data sources. Referenced
to the OKMet observations, an investigation of the realism of
estimated SM spatial heterogeneity indicates that all SM esti-
mates, including the SMAPDA and GLASS SM, persistently
underestimate the observed variances (~ 25 % less) across
the sites over the study period. While ERAS-Land estimate
shows larger and more comparable variances as observed, it
does not accurately represent those SM values individually.

https://doi.org/10.5194/essd-17-4587-2025

In addition to SM data, we showed that SMAPDA data
reasonably represent ST and even surface heat fluxes when
compared against the observations measured in ARM SGP
sites. This suggests that the suite of the SMAPDA dataset is
useful in characterizing land—atmosphere interactions. More-
over, it is also analyzed with respect to the response to a
drought that occurred over the southeastern US during the
fall of 2016. As one of the key components contributing to
the drought, the reduction in SM is usually accompanied by
increased evaporation in a water-limited scenario, which may
potentially amplify and increase wildfire activity as well as
stressing agricultural production until new precipitation. We
explored the relationships between SM and ET with a focus
on Alabama quantitatively, utilizing concurrent GLEAMv4.1
data as the reference. Results indicate that both datasets show
declined SM in summer and fall, with SMAPDA consistently
displaying drier soil conditions compared to GLEAMv4.1.
ET trends from both datasets were relatively close until June
but diverged in summer, with SMAPDA estimating higher
ET, exacerbating the drought conditions. Data also high-
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lighted that model discrepancies, particularly in clay-rich
soils, suggest the need for refined treatments of hydraulic
processes in models for accurate SM estimates.

A few uncertainties in our analysis are worth noting. For
example, the evaluation result is most likely dependent on
the data resolutions. Coarse-resolution SM estimates such as
ERAS-Land, GLEAMv4.1, and SMAP AM suffer from in-
sufficient representativeness of subgrid SM variability, un-
derscoring the necessity of high resolution to better charac-
terize highly heterogeneous SM distributions. The mismatch
of spatial resolutions among different data sources likely in-
troduces uncertainty in their intercomparison. More sophis-
ticated upscale/interpolation algorithms may be employed to
further mitigate the issue (Crow et al., 2012; Gruber et al.,
2020; Quiring et al., 2016); however, as these methods in-
troduce their own uncertainties, we opted not to use them
for our evaluations. In addition, unresolved natural and an-
thropogenic processes such as surface and subsurface lateral
flow (e.g., Yang et al., 2021), root water uptake and redistri-
bution (e.g., Zeng, 2001), dynamic groundwater water table
and capillary rise (e.g., Miguez-Macho and Fan, 2012), and
irrigation (e.g., Yang et al., 2020) can potentially shift the
SM estimates under various conditions. Along this line, the
estimates in root zone SM would be worth validating to fur-
ther constrain the overall performance. While our SM dataset
encompassing much of the eastern CONUS is restricted to
a l-year period (2016), our results demonstrate a promising
approach that can be applied to any local domain of interest
with potentially longer analysis periods. This dataset could
be used as lower boundary conditions to drive other mete-
orological model experiments that investigate the impact of
land—atmosphere coupling on boundary layer properties and
clouds. Lastly, there are many more ML algorithms, such
as neural networks, random forests, and support vector ma-
chines, that have been applied to enhance the spatial and tem-
poral resolution of soil moisture datasets and further improve
accuracy in data-sparse regions (e.g., O and Orth, 2021; Han
et al., 2023; Lei et al., 2022; Zhang et al., 2023). However,
such approaches lack the inherent physical constraints of a
data assimilation approach. Future studies may include more
ML-based products in the assessment and discuss the impacts
of physical constraints on estimated SM as suggested in this
study.
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