Articles | Volume 17, issue 8
https://doi.org/10.5194/essd-17-3835-2025
https://doi.org/10.5194/essd-17-3835-2025
Data description paper
 | 
08 Aug 2025
Data description paper |  | 08 Aug 2025

A benchmark dataset for global evapotranspiration estimation based on FLUXNET2015 from 2000 to 2022

Wangyipu Li, Zhaoyuan Yao, Yifan Qu, Hanbo Yang, Yang Song, Lisheng Song, Lifeng Wu, and Yaokui Cui

Related authors

Enhanced understanding of dominant drivers of Water Yield change across China through the improved coupled carbon and water model
Huilan Shen, Hanbo Yang, and Changming Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-2152,https://doi.org/10.5194/egusphere-2025-2152, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
The general formulation for runoff components estimation and attribution at mean annual time scale
Yufen He, Changming Li, and Hanbo Yang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-349,https://doi.org/10.5194/hess-2024-349, 2024
Preprint under review for HESS
Short summary
Estimating the sensitivity of the Priestley–Taylor coefficient to air temperature and humidity
Ziwei Liu, Hanbo Yang, Changming Li, and Taihua Wang
Hydrol. Earth Syst. Sci., 28, 4349–4360, https://doi.org/10.5194/hess-28-4349-2024,https://doi.org/10.5194/hess-28-4349-2024, 2024
Short summary
A high-quality gap-filled daily ETo dataset for China during 1951–2021 from synoptic stations using machine learning models
Ning Shan Zhou, Li Feng Wu, Qi Liang Yang, Jianhua Dong, Ling Yang, and Yue Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-229,https://doi.org/10.5194/essd-2024-229, 2024
Manuscript not accepted for further review
Short summary
CAMELE: Collocation-Analyzed Multi-source Ensembled Land Evapotranspiration Data
Changming Li, Ziwei Liu, Wencong Yang, Zhuoyi Tu, Juntai Han, Sien Li, and Hanbo Yang
Earth Syst. Sci. Data, 16, 1811–1846, https://doi.org/10.5194/essd-16-1811-2024,https://doi.org/10.5194/essd-16-1811-2024, 2024
Short summary

Related subject area

Domain: ESSD – Land | Subject: Hydrology
Northern Hemisphere in situ snow water equivalent dataset (NorSWE, 1979–2021)
Colleen Mortimer and Vincent Vionnet
Earth Syst. Sci. Data, 17, 3619–3640, https://doi.org/10.5194/essd-17-3619-2025,https://doi.org/10.5194/essd-17-3619-2025, 2025
Short summary
OLIGOTREND, a global database of multi-decadal chlorophyll a and water quality time series for rivers, lakes, and estuaries
Camille Minaudo, Andras Abonyi, Carles Alcaraz, Jacob Diamond, Nicholas J. K. Howden, Michael Rode, Estela Romero, Vincent Thieu, Fred Worrall, Qian Zhang, and Xavier Benito
Earth Syst. Sci. Data, 17, 3411–3430, https://doi.org/10.5194/essd-17-3411-2025,https://doi.org/10.5194/essd-17-3411-2025, 2025
Short summary
A 3 h, 1 km surface soil moisture dataset for the contiguous United States from 2015 to 2023
Haoxuan Yang, Jia Yang, Tyson E. Ochsner, Erik S. Krueger, Mengyuan Xu, and Chris B. Zou
Earth Syst. Sci. Data, 17, 3391–3409, https://doi.org/10.5194/essd-17-3391-2025,https://doi.org/10.5194/essd-17-3391-2025, 2025
Short summary
Comprehensive inventory of large hydropower systems in the Italian Alpine Region
Andrea Galletti, Soroush Zarghami Dastjerdi, and Bruno Majone
Earth Syst. Sci. Data, 17, 3353–3373, https://doi.org/10.5194/essd-17-3353-2025,https://doi.org/10.5194/essd-17-3353-2025, 2025
Short summary
An integrated high-resolution bathymetric model for the Danube Delta system
Lauranne Alaerts, Jonathan Lambrechts, Ny Riana Randresihaja, Luc Vandenbulcke, Olivier Gourgue, Emmanuel Hanert, and Marilaure Grégoire
Earth Syst. Sci. Data, 17, 3125–3140, https://doi.org/10.5194/essd-17-3125-2025,https://doi.org/10.5194/essd-17-3125-2025, 2025
Short summary

Cited articles

Aubinet, M., Vesala, T., and Papale, D.: Eddy covariance: A practical guide to measurement and data analysis, Springer Science & Business Media, https://doi.org/10.1007/978-94-007-2351-1, 2012. 
Baldocchi, D. D.: How eddy covariance flux measurements have contributed to our understanding of global change biology, Glob. Change Biol., 26, 242–260, https://doi.org/10.1111/gcb.14807, 2020. 
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Chen, Y., Xia, J., Liang, S., Feng, J., Fisher, J. B., Li, X., Li, X., Liu, S., Ma, Z., and Miyata, A.: Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in china, Remote Sens. Environ., 140, 279–293, https://doi.org/10.1016/j.rse.2013.08.045, 2014. 
Cui, N., He, Z., Jiang, S., Wang, M., Yu, X., Zhao, L., Qiu, R., Gong, D., Wang, Y., and Feng, Y.: Inter-comparison of the Penman-Monteith type model in modeling the evapotranspiration and its components in an orchard plantation of southwest china, Agr. Water Manage., 289, 108541, https://doi.org/10.1016/j.agwat.2023.108541, 2023. 
Download
Short summary
Due to shortcomings such as extensive data gaps and limited observation durations in current ground-based latent heat flux (LE) datasets, we developed a novel gap-filling and prolongation framework for ground-based LE observations, establishing a benchmark dataset for global evapotranspiration (ET) estimation from 2000 to 2022 across 64 sites at various timescales. This comprehensive dataset can strongly support ET modeling, water–carbon cycle monitoring, and long-term climate change analysis.
Share
Altmetrics
Final-revised paper
Preprint