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Abstract. Evapotranspiration (ET) is a crucial component of the terrestrial hydrological cycle. Latent heat flux
(LE, equivalent to ET in Wm−2) observed by the eddy covariance (EC) technique, commonly known as LEEC,
has been widely recognized as a highly accurate benchmark for global ET estimation. Currently, there is an
increasing need for long-time-series benchmark data to support climate change analysis, construction of new
models, and validation of new products. However, existing LEEC datasets, like FLUXNET2015, face significant
challenges due to limited observation periods and extensive data gaps, which hinders their application in ET
modeling and global change analysis. To address these issues, we developed a gap-filling and prolongation
framework for LEEC data and established a benchmark dataset for global ET estimation from 2000 to 2022
across 64 sites at various timescales. The framework mainly includes three parts: site selection and data pre-
processing, generation of gap-filled half-hourly/hourly LE data, and generation of prolonged daily LE data. We
selected 64 sites from FLUXNET2015 based on rigorous filtering criteria. A novel bias-corrected random forest
(RF) algorithm was used for gap-filling and prolongation in the framework to produce seamless half-hourly and
daily LE data. After analysis, the framework using the novel bias-corrected RF algorithm achieves excellent
performance in both hourly gap-filling and daily prolongation, with mean root mean square error values of 33.86
and 16.58 W m−2, respectively. The algorithm significantly improves the gap-filling performance for long gaps
and extreme values compared with the original RF and marginal distribution sampling algorithm. The results
demonstrate robust prolongation performance of our framework in both prolongation directions and temporal
stability. Furthermore, our gap-filled dataset demonstrates strong consistency with FLUXNET2015 in terms of
data distribution. In conclusion, we have published the first benchmark dataset for global ET estimation based on
FLUXNET2015 from 2000 to 2022. This dataset can effectively provide data support for ET modeling, water–
carbon cycle monitoring, and climate change analysis. It is made freely available via the following repository:
https://doi.org/10.5281/zenodo.13853409 (Li et al., 2024b).
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1 Introduction

Terrestrial evapotranspiration (ET), which represents the
movement and phase change of water from land to the at-
mosphere, is the second most critical component of the hy-
drological cycle (Zhang et al., 2016; Cui et al., 2021a; Yang
et al., 2023; Song et al., 2024; Tang et al., 2024). It accounts
for more than 60 % of the land surface water derived from
precipitation that returns to the atmosphere (Oki and Kanae,
2006). Therefore, it is essential to accurately estimate the
magnitude and variability of global ET.

Ground-based instruments for observing ET are widely
distributed globally. The eddy covariance technique is the
most commonly used method, providing high-frequency
(10–20 Hz) measurements of vertical wind speed and water
vapor density (Aubinet et al., 2012; Pastorello et al., 2020).
By calculating their covariance, the latent heat flux (LE,
equivalent to ET in Wm−2; hereafter LE is used when de-
scribing ground observations) is derived. The EC technique
offers several advantages, including non-destructive mea-
surement of the underlying surface environment and flexible
installation (Baldocchi, 2020; Pastorello et al., 2020). How-
ever, challenges remain in practical applications given that
LE obtained from the EC technique (LEEC) primarily serves
the following two research communities:

– The global change analysis research community. With
the abundance of remotely sensed and reanalysis data
and the development of ET models, more and more
ET products based on remote sensing or Earth system
model simulation are produced and shared (Mu et al.,
2011; Martens et al., 2017; Zhang et al., 2019; Cui
and Jia, 2021; Zheng et al., 2022). However, their re-
sults differ significantly in average annual totals, tem-
poral trends, and spatial distribution, which prevents us
from properly understanding current changes in ET and
the water–carbon cycle (Chen et al., 2014; Hu et al.,
2021; Cui et al., 2023; Yang et al., 2023; Tang et al.,
2024). Since LEEC data are considered as the ground
truth, researchers are eager to find evidence from ground
observations to support their hypotheses. As the most
widely used LEEC dataset, the FLUXNET2015 dataset
only provides observations up to 2014 (Pastorello et al.,
2020). It cannot support global climate change analysis,
nor can it help resolve discrepancies between different
products.

– The ET modeling community. First of all, many ET
models (such as A-OPTRAM, PML-V2, and ETMon-
itor) require LEEC data for parameter calibration to im-
prove their performance (Zhang et al., 2019; Zheng
et al., 2022; Yao et al., 2024). Second, all ET prod-
ucts must undergo validation by comparison with LEEC
data (Mu et al., 2011; Zhang et al., 2016; Zhang et al.,
2019; Cui et al., 2021b; Zheng et al., 2022). For the lat-
est models developed using new satellite data (such as

SMAP, launched in 2015) there is a particular need to
develop and validate them based on the latest ground-
based benchmark data (Das et al., 2018; Zhang et al.,
2024). However, due to limitations such as data shar-
ing policies, the research community still relies on
FLUXNET2015 as the primary source for calibration
and validation. With the acceleration of the global water
and energy cycle, parameters calibrated using outdated
data may no longer be applicable, and it is difficult to
assess model performance over the past decade. The re-
search community aspires to leverage the most recent,
long-term LEEC data; however, there is a lack of up-to-
date datasets that are readily accessible for their use.

Therefore, the two main issues with LEEC data, such as
those represented by FLUXNET2015, are:

– Extensive data gaps. There is a substantial amount of
missing data in LEEC. The missing rate of hourly data
is around 40 % and can be up to 70 % for some sites.
Long gaps, such as the 30 d gap scenario, account for an
average of 44 % of all missing data in FLUXNET2015.
Although marginal distribution sampling (MDS) is used
as the official gap-filling algorithm, its performance in
filling these long gaps is suboptimal (Foltýnová et al.,
2020; Zhu et al., 2022).

– Limited observation duration. Only 33 % of the sites
have observation periods exceeding 10 years, and few
sites have more than 20 years of observations. After
quality control, less than half of the sites have obser-
vation periods longer than 8 years. The MDS algorithm
can only be used for gap-filling but not for data prolon-
gation. The potential of LEEC data is not fully exploited.
Therefore, there is an urgent need for a long-term ET
benchmark dataset based on ground observations with
temporally continuous and high-quality data.

To address this, we developed a gap-filling and prolonga-
tion framework for LEEC data and established a benchmark
dataset for global ET estimation from 2000 to 2022 across
64 sites. We selected 64 sites out of 206 public sites from
FLUXNET2015 based on rigorous filtering criteria. After
pre-processing the reanalysis and remote sensing data, the
time series data of reference variables for each station were
obtained. Then, a novel bias-corrected random forest (RF)
algorithm was used as the core method of the framework
to produce seamless half-hourly and daily LE data. We de-
signed comprehensive experiments to evaluate our results,
including assessing performance under different gap-length
scenarios for gap-filling, evaluating consistency between for-
ward and backward prolongation, and analyzing the temporal
stability of the prolongation data. This dataset aims to pro-
vide valuable data support for global ET modeling, water–
carbon cycle monitoring, and climate change research.
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2 Data

2.1 FLUXNET2015

The FLUXNET2015 dataset contains land–atmosphere ex-
change data of energy and carbon from 212 globally dis-
tributed sites (206 sites under the CC-BY 4.0 license; https:
//fluxnet.org/data/fluxnet2015-dataset/, last access: 23 July
2025). We primarily used the LE data observed by the EC
technique and some auxiliary meteorological observations.
From the original measurements to the hourly/half-hourly
products, both datasets underwent a strict and uniform pro-
cessing procedure across all sites, with additional scrutiny for
these critical variables (Pastorello et al., 2020). After quality
assurance and quality control (QC), data that did not meet
the standards or were missing due to power failures or sen-
sor malfunctions were filtered out and QC flags were given.
Only data marked as “0” was regarded as reliable ground ob-
servations, while other data were gap-filled by the MDS al-
gorithm, with confidence levels decreasing as the flag num-
ber increased. For our analysis, we exclusively used LE and
meteorological data marked as “0.”

2.2 ERA5-Land

We used the latest Reanalysis v5 dataset (ERA5-Land) pro-
vided by the European Centre for Medium-Range Weather
Forecasts (Muñoz-Sabater et al., 2021) as the source of refer-
ence data (https://www.ecmwf.int/en/era5-land, last access:
23 July 2025). This dataset provides globally seamless mete-
orological data at a spatiotemporal resolution of 0.1°× 0.1°
and 1 h from 1950. The dataset provides meteorological
variables including air temperature (Ta), u-component of
wind(u), v-component of wind (v), dew point temperature,
incoming short-wave radiation (SW_IN), incoming long-
wave radiation (LW_IN), and air pressure (PA). Wind speed
(WS) was calculated using the two components u and v, and
relative humidity (RH) was calculated by the following equa-
tions:

RH=
e

es
× 100%, (1)

es =6.1078× exp
(

a× Ta

Ta+ 273.15− b

)
{
a = 17.27,b = 35.86,Ta > 0

a = 21.87,b = 7.66,Ta ≤ 0
(2)

e =6.1078× exp
(

a× Td

Td+ 273.15− b

)
{
a = 17.27,b = 35.86,Ta > 0

a = 21.87,b = 7.66,Ta ≤ 0
(3)

where es is the saturated vapor pressure (kPa), e is the actual
vapor pressure (kPa), Ta is the air temperature, and Td is the
dew point temperature (°C).

2.3 MODIS

We obtained remotely sensed normalized difference vegeta-
tion index (NDVI) data from the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) MYD13Q1.061 dataset. Its
spatial and temporal resolutions are 250 m and 16 d, respec-
tively. This dataset has proven to be one of the most reliable
NDVI datasets and is widely used in ET modeling.

3 Methodology

The gap-filling and prolongation framework for LEEC data
mainly includes three parts: site selection and data pre-
processing, generation of gap-filled half-hourly or hourly
LE data, and generation of prolonged daily LE data (Fig. 1).
The details are described in this section.

3.1 Site selection and data pre-processing

3.1.1 FLUXNET2015 site selection

We selected 64 sites from 206 open-access FLUXNET2015
sites based on the following filtering criteria: (1) time span –
sites must have ≥ 3 years of observations because sufficient
temporal coverage is essential for reliable data prolongation;
(2) missing data rate – sites must have ≤50 % missing data,
so that there is adequate data availability for half-hourly or
hourly gap-filling; (3) energy balance closure – we calculated
the daily energy balance ratio (EBR) when there were ≥ 36
(18 for hourly data) valid observations in a day. The EBR val-
ues closest to 1 indicate the best agreement with the first law
of thermodynamics, reflecting higher-quality surface energy
data. Sites were retained for analysis only if more than 20 %
of their observation days exhibited EBR values between 0.8
and 1.2. The EBR was calculated as follows:

EBR=
∑n
i=1(LE+H )∑n
i=1(Rn−G)

, (4)

where Rn, G, and H are the net radiation, soil heat flux, and
sensible heat flux, respectively.

Notably, no sites in Africa fully met the specified criteria.
Consequently, we selected two additional sites that substan-
tially met the essential requirements. In total, 64 sites were
selected (Fig. 2). These sites cover most regions, with 49
in the Northern Hemisphere and 15 in the Southern Hemi-
sphere. Sites in Europe and the Americas have longer obser-
vation periods, while those in Asia and Oceania are shorter.
The average duration of observations across all sites is ap-
proximately 8 years. Between 2000 and 2014, observations
were available from approximately 10 to 40 sites per year.
Moreover, these sites represent the majority of vegetated land
cover types. For detailed site information, see Table A1.
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Figure 1. Schematic of the gap-filling and prolongation framework for LEEC data.

3.1.2 Data pre-processing

We followed the same data pre-processing procedure as Li
et al. (2024a). For the LEEC data, non-observed values were
filtered out based on quality control flags, with the remaining
data used for training and testing datasets. The LEEC data are
reported at local time.

Reference variables, including TA, WS, RH, PA, SW_IN,
LW_IN, and NDVI, were selected based on the Penman–
Monteith (PM) equation (Monteith, 1965). These variables
directly or indirectly influence the parameters in the PM
equation and represent the most suitable variables for charac-
terizing the meteorological and vegetated conditions affect-
ing the ET process (Zhang et al., 2008; Mu et al., 2011; Li
et al., 2024a). The PM equation is expressed as

LE=
1R∗n +

ρcp×VPD
ra

1+ γ
(

1+ rs
ra

) , (5)

VPD= es− e, (6)

where 1 is the slope of the vapor pressure curve, R∗n the net
available radiation at the evaporating surface, ρ the density
of air, cp the specific heat of air at constant pressure, VPD
the air vapor pressure deficit, γ a psychrometric constant, rs
the surface resistance, and ra the aerodynamic resistance.

Reference variables from ERA5-Land and MODIS were
extracted as time-series data at point scale using Google
Earth Engine (https://code.earthengine.google.com/, last ac-
cess: 23 July 2025). Depending on the temporal resolution of
LEEC data records, the hourly time-series data from ERA5-
Land were resampled to a half-hourly scale using linear in-
terpolation, or maintained at an hourly scale. All timestamps
were converted from UTC to local time to match the site-
specific time zone. The NDVI data with a 16 d temporal res-
olution were resampled to a daily frequency using Savitzky–
Golay filtering. The same value was then assigned uniformly
for each day.

3.1.3 Debiasing the ERA5-Land data

To minimize mismatches between in situ and raster data,
the time-series data from ERA5-Land were processed fur-
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Figure 2. Global distribution (a) and information (b, c) of 64 selected FLUXNET2015 sites. The size of the star mark indicates the length of
the data record. Panel (b) shows the number of sites in a year from 2000 to 2022. Panel (c) is the statistic of the length of observation periods
for all sites.

ther. We followed a procedure similar to the official products
(Vuichard and Papale, 2015) and corrected biases between
ground observations and ERA5-Land using a linear correc-
tion method:

Groundi = ki ×EL5i + bi, (7)

where i means different variables, EL5 is the ERA5-
Land data, and Ground is the ground observations from
FLUXNET2015. These variables were filtered by quality
control flags and only valid observations were used. The
ground-observed vapor variable was VPD instead of RH for
some sites. We transferred it to RH using the following equa-
tion:

RH=
(

1−
VPD
es

)
× 100%. (8)

3.2 Generation of gap-filled half-hourly or hourly LE
data

3.2.1 Bias-corrected random forest algorithm

The RF algorithm, used for both classification and regression
tasks, is composed of multiple decision trees, and it com-
bines their predictions to generate the final output (Breiman,
2001). Numerous studies have demonstrated the effective-
ness of machine learning algorithms for gap-filling ground-
based ET data (Moffat et al., 2007; Irvin et al., 2021; Ma-
habbati et al., 2021; Zhu et al., 2022; Li et al., 2024a). The
RF algorithm is considered one of the most robust and ef-
ficient machine learning algorithms for replacing the tradi-
tional MDS algorithm and has significant potential for pro-
longing time series. However, there has been limited research
on prolonging LEEC time series using RF, and no correspond-
ing datasets have been released. Although the performance of
RF in flux data gap-filling has proven to be efficient, it still
faces challenges such as overestimating lower values and un-
derestimating higher values. Therefore, it is necessary to cor-
rect the bias. Here, we chose a novel bias-corrected RF algo-
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Figure 3. Schematic diagram of the bias-corrected RF algorithm. The subscript “train” indicates the training data; the subscript “test”
indicates the test data. The subscript “gaps” indicates the data gap to be filled. LE′ and Bias′ indicate predicted values, whereas LE and bias
indicate ground observations. X indicates the reference variables, including TA, WS, RH, PA, SW_IN, LW_IN, and NDVI. Prolonging daily
data also has the same processing steps.

rithm (Zhang and Lu, 2012). It added a bias correction RF
model to improve the performance compared with the origi-
nal RF (Fig. 3). This algorithm has been used for studies such
as drought monitoring (Feng et al., 2019; Wang et al., 2023).
In this study, the bias-corrected RF model was adapted for
processing flux data, and the detailed procedure of this bias-
correction method is summarized in Fig. 3.

In the model training step we trained one model (includ-
ing RF Model 1 and RF Model 2) for each site, resulting in
a total of 64 models for the data gap-filling task. For each
site, the data were randomly divided into two parts: the train-
ing dataset (80 % of the total dataset) and the test set (the
remaining 20 %). To optimize model performance and avoid
overfitting, we employed a 10-fold cross-validation method
to determine the optimal combination of hyperparameters.
For each site, the training and test dataset were generated
20 times, so we did the 10-fold cross validation 20 times and
gained 20 hyperparameter combinations. We found that, for
each site, the 20 hyperparameter combinations are almost the
same. Therefore, we chose the hyperparameter combination
based on two criteria: (1) achieving optimal model perfor-
mance, and (2) exhibiting the highest frequency of occur-
rence across 20 experimental trials. Consequently, each site
has a site-specific and unique hyperparameter combination.
Finally, we used all valid LE observations to build the model.
See Sect. 3.2.2 for details on how to split the training and test
sets.

3.2.2 Artificial gap scenarios

The length of gaps in LEEC data varied significantly, rang-
ing from one single missing record to gaps exceeding 30 d.
To fully evaluate the performance of our model we gener-
ated four gap-length scenarios, covering short to long dura-
tions: 30 min, 1 d, 7 d, and 30 d (Zhu et al., 2022; Li et al.,
2024a). The artificial gaps for each scenario accounted for

approximately 5 % of the total dataset, and all gaps collec-
tively constituted the test set (20 %). After removing these
artificial gaps, the remaining data (80 %) were used to train
the model. Specifically, we used a sliding window approach
to generate gap scenarios. If the valid observed data coverage
within a window exceeded 50 %, the window was marked.
The window automatically moved forward until this crite-
rion was met, and no overlaps among marked sliding win-
dows ensued. The sliding window size was initially set to
30 d. After completing one full round of marking, we ran-
domly selected gaps accounting for 5 % of the total dataset,
and these data were removed. The sliding window size was
then reduced to 7 d and 1 d, and the process was repeated.
Finally, we randomly removed 5 % of the half-hourly data to
create the 30 min scenarios, ensuring five consecutive valid
data points before and after each gap. To ensure robustness
of the results we generated 20 different training–test sets and
repeated the above steps 20 times for each site.

For comparison, we also used the MDS algorithm and
original RF algorithm as the gap-filling algorithm of the
framework. The core of the MDS algorithm is to use a sliding
window approach to find similar meteorological conditions
(Reichstein et al., 2005). It primarily uses SW_IN, VPD, and
TA as reference variables. The larger the sliding window,
the lower the confidence in the gap-filling results. To closely
simulate the official data-production process, this study set
the minimum thresholds for the three variables at 50 Wm−2,
5 hPa, and 2.5 °C, respectively. The MDS algorithm was im-
plemented using REddyProc (R package, v.1.3.3).

3.3 Generation of prolonged daily LE data

Current mainstream ET products are predominantly available
at daily and monthly scales (Zhang et al., 2019; Zheng et al.,
2022; Miralles et al., 2025). Therefore, prolonging daily-
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scale ET data aligns best with current practical application
scenarios.

3.3.1 Data generation

Following half-hourly/hourly gap-filling, we obtained con-
tinuous time-series data. These data were then aggregated
from half-hourly/hourly to daily resolution, with the daily
missing rate included as a QC flag. For data prolongation we
employed the bias-corrected RF algorithm, maintaining the
same model architecture and training procedure described
in Sect. 3.2.1. During model training we trained one model
for each site, selecting all data except those with a miss-
ing rate of 1 (completely missing) for model training. The
10-fold cross-validation method was used to determine the
optimal hyperparameters. Ultimately, the seamless daily LE
data from 2000 to 2022 were produced. The final product has
been deposited at https://doi.org/10.5281/zenodo.13853409
(Li et al., 2024b) and can be downloaded publicly.

3.3.2 Experimental design for evaluating the prolonged
data

Since the number of days with a missing ratio of 0 at the daily
scale is extremely limited, we considered that daily data with
a missing ratio below 10 % could serve as the test data.

The prolongation at the daily scale was conducted in two
time directions: forward and backward. For example, one site
has time cover from 2007 to 2014. Therefore, prolongation
of 2000–2006 is the backward direction, and prolongation of
2015–2022 is the forward direction. We expect that the pro-
longation performance will be consistent in both directions.
To validate the consistency of our method we adopted the
following approach: for backward prolongation, the first 1/3
of the data served as the test set, while the remaining 2/3
was used for training; for forward prolongation, the first 2/3
of the data was used for training, and the last 1/3 served as
the test set. We then compared the performance of both di-
rections.

To assess the temporal stability of the model’s perfor-
mance as the prolongation period increased, we conducted
experiments using two representative observation lengths:
for sites with ≥8 years of observations, we used the first
8 years as the training set and the subsequent years as the
test set. For sites with ≥ 3 years of observations, we used the
first 3 years as the training set and the subsequent years as
the test set.

3.4 Performance metrics

We selected four commonly used performance metrics, in-
cluding the root mean square error (RMSE, Wm−2), bias
(Wm−2), correlation coefficient (CC), and coefficient of
variation (CV). The equations are as follows:

RMSE=

√
1
n

∑n

i=1
(pi − oi)2, (9)

bias=
1
n

∑n

i=1
(pi − oi), (10)

CC=
∑n
i=1 (pi −p) (oi − o)√∑n

i=1(pi −p)2∑n
i=1(oi − o)2

, (11)

CV=
σ

µ
× 100%, (12)

where pi and oi are the values from prediction and observa-
tion, respectively; p denotes the mean predicted value; σ is
the standard deviation of the target data; and µ is the aver-
aged value of the target data.

4 Results

4.1 Evaluation of half-hourly or hourly gap-filled LE data

4.1.1 Gap-filling performance under different gap-length
scenarios

We conducted a comprehensive evaluation of the gap-
filling performance for three algorithms under artificially
constructed gap scenarios, including the official algorithm
(MDS), the widely used RF algorithm, and the novel bias-
corrected RF algorithm. For each site and training–test com-
bination, we computed RMSE, CC, and bias, and visualized
the results in box plots (Figs. 4 and 5).

In general, the results indicate that the gap-filled data ob-
tained using the bias-corrected RF are superior to those ob-
tained using the official (MDS) algorithm, particularly out-
performing it significantly for long gaps. The bias-corrected
RF exhibits the best performance (33.86 Wm−2 and 0.86 in
terms of mean RMSE and CC), with mean RMSE improve-
ments of 0.87 and 0.16 Wm−2 compared to those of MDS
and RF. As for the bias metric, Fig. 5 shows that as the
gap length increases, the uncertainty increases and the bias-
corrected RF provides more robust results.

For short gaps, the bias-corrected RF performs closer to
MDS than the original RF. Specifically, the MDS performs
exceptionally well, with mean values for RMSE and CC of
29.31 Wm−2 and 0.91, respectively, while the original RF
performs the worst. The bias-corrected RF reduces the bias
(0.45 Wm−2 in terms of RMSE), making its performance
closer to that of MDS compared with the original RF. On the
contrary, the performance of MDS deteriorates significantly
with increasing gap length, aligning with previous findings
(Foltýnová et al., 2020; Zhu et al., 2022; Li et al., 2024a). The
bias-corrected RF achieves an 11.16 % lower mean RMSE
(33.44 Wm−2) than that of MDS (37.64 Wm−2). The sliding
window method makes MDS particularly struggle during the
initial observation months, producing nearly identical values
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Figure 4. The gap-filling performance of three algorithms under different gap-length scenarios. The left panels show the results for the root
mean square error (RMSE, Wm−2) and the right panels show the results for the correlation coefficient (CC) between gap-filled values and
observations. Different rows of the figure indicate different land cover types. The three horizontal lines of the boxes indicate the first quartile,
median, and third quartile, and the black dots indicate the means. Data labels in this figure are the mean value of RMSE and CC. MDS:
marginal distribution sampling. RF: random forest.

when early-month data are entirely missing (see Sect. 5.1 for
a detailed analysis).

We further analyzed gap-filling results across differ-
ent land cover types. Based on station count, land cover
characteristics, and prior studies, we categorized the land
surface types into four groups for analysis: CRO, GRA,
DBF/EBF/ENF/MF, and CSH/OSH/SAV/WSA/WET. Over-
all, the bias-corrected RF outperforms the original RF and

performs comparably to MDS across all land cover types.
Notably, it achieves the most significant improvement in
CRO, with a mean RMSE that is 4.26 % lower than that of
MDS. This indicates that incorporating NDVI as a reference
variable can better capture the seasonal dynamics of crops. In
GRA and CSH/OSH/SAV/WSA/WET, the bias-corrected RF
performs comparably to MDS, and both methods outperform
the original RF. Across different gap-length scenarios the
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Figure 5. The bias between gap-filled values and observations of
three methods under different gap-length scenarios. Different rows
of this figure indicate different land cover types. The three horizon-
tal lines of the boxes indicate the first quartile, median, and third
quartile, and the black dots indicate the means. Data labels in this
figure are the mean value of bias. MDS: marginal distribution sam-
pling. RF: random forest.

performance trends are consistent across land cover types.
For short gap lengths the bias-corrected RF demonstrates
performance similar to MDS, and both the RF and bias-
corrected RF significantly outperform the MDS for longer
gap lengths. Given that long gaps comprise 44 % of the
FLUXNET2015 dataset, the bias-corrected RF can serve as

a more reliable alternative to MDS for hourly-scale data gap-
filling, yielding more robust results than those produced by
MDS. Overall, the bias-corrected RF algorithm combines the
superior performance of the original RF algorithm in long-
gap-length scenarios, while providing corrections in cases
where the original RF underperforms.

4.1.2 Examples of gap-filled data under artificial 30 d
gap-length scenario

For the 30 d gap scenario, the bias-corrected RF algorithm
performs better than the MDS algorithm in characterizing
time series. As illustrated in Fig. 6, the bias-corrected RF
demonstrates strong performance across all land cover types
and provides a more accurate representation of daily peri-
odic variations. Although minor biases persist in predicting
certain extreme values, these are generally smaller compared
to those produced by MDS. In contrast, MDS exhibits sig-
nificant gap-filling biases across different land cover types,
resulting in abnormal overestimations and underestimations
(Fig. 6a, b, and i). In some cases it even fails to capture the
daily variations of LE (Fig. 6e), while also distorting irregu-
lar LE changes (Fig. 6c).

4.2 Evaluation of daily prolonged LE

4.2.1 Consistency between forward and backward
prolongation

As shown in Fig. 7a and b, the prolongation performance
in both forward and backward directions exhibits high con-
sistency. The results have good accuracy, with RMSE (CC)
values of 16.58 Wm−2 (0.91) for forward and 17.35 Wm−2

(0.90) for backward. The slight difference may be mainly
due to a higher volume of missing data in the first two-
thirds of the data compared to the last two-thirds for sites of
these land cover types (see Sect. 5.1). There are slight vari-
ations in prolongation results for different land cover types
(Fig. 7c and d). Performance of CRO and DBF/EBF/EN-
F/MF is almost the same in both directions. Similar to the
half-hourly data gap-filling, our results also demonstrate ex-
cellent performance in cropland, with a CC of 0.93 in both
directions. GRA and CSH/OSH/SAV/WSA/WET perform
slightly worse (2.46 and 3.74 Wm−2 higher) in the backward
direction.

Figure 2b indicates that the need for forward prolongation
is significantly greater than that for backward prolongation
from 2000 to 2022. Therefore, the validation in the following
sections will only focus on the forward direction.

4.2.2 Temporal stability of the prolongation

We used data from the first 3 years and the first 8 years
for training, and evaluated the prolongation performance
for each subsequent year. Three years of data represents
an extreme case of the minimum training data volume in
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Figure 6. Time series of gap-filled results obtained from the bias-corrected RF algorithm compared to those from the MDS algorithm under
an artificial 30 d gap-length scenario across different land cover types. The blue dashed boxes indicate scenarios where the MDS gap-filling
results are significantly biased. The sites corresponding to each land cover type are: US-ARM, CN-Cng, FR-Fon, BR-Sa1, RU-Fyo, CA-Gro,
US-KS2, ES-LJu, SD-Dem, AU-How, and US-Myb.
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Figure 7. The consistency of forward and backward prolongation. (a) and (b) show scatterplots of predicted daily LE against observations
for forward and backward prolongation, respectively. (c) and (d) are the specific performance of different land cover types.

this dataset, while eight years of data reflects a typical sce-
nario within the dataset. Figure 8 shows that our prolonga-
tion results exhibit minimal performance degradation over
time. The greater the amount of training data, the higher
the temporal stability. Specifically, the model trained us-
ing the first three years yields CVs of RMSE and CC of
only 3.29 % and 3.83 %, respectively. The model trained us-
ing the first 8 years yields CVs of RMSE and CC of only
3.24 % and 1.75 %, respectively. The bias fluctuates within a
small range around zero each year, indicating that our es-
timation bias is relatively robust. For different land cover
types, DBF/EBF/ENF/MF shows good stability, while GRA
and CSH/OSH/SAV/WSA/WET show more noticeable fluc-
tuations over time but do not experience significant perfor-
mance degradation. Overall, our model demonstrates excel-
lent temporal stability in both extreme and typical cases.

4.2.3 Demonstration of daily- and monthly-scale
prolonged time series

Due to the scarcity of days with a missing data rate be-
low 10 %, we chose to compare the prolonged results from

Sect. 4.2.2 with the daily data aggregated from the hourly
gap-filled data. We plotted the results obtained in Sect. 4.2.2
as time series graphs and compared the prolonged results
with the aggregated daily data from hourly gap-filled results.
As shown in Figs. 9 and 10, our prolongation algorithm ef-
fectively captures the seasonal variation of LE, aligning well
with hourly gap-filled results in both magnitude and trend.
The model performs excellently in both extreme (3 year data)
and typical (8 year data) cases, particularly for sites with
CRO land cover type. For evergreen vegetation sites (ENF
and EBF) and sparse vegetation sites (SAV and OSH), the
lack of vegetation change information leads to unclear influ-
encing factors on LE variation, resulting in underestimation
of some extreme high values. However, our algorithm still
performs well in capturing daily fluctuations.

Given that many global change studies focus on monthly
scales, we aggregated the daily data to assess the perfor-
mance. As shown in Fig. 11, the monthly scale results meet
the requirements of related research. Both the trend and mag-
nitude align well with hourly gap-filled results. The CRO
sites match almost perfectly with the hourly gap-filled re-
sults, while the ENF and EBF sites, which performed slightly
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Figure 8. The temporal stability of the prolongation algorithm for different land cover types. (a), (c), and (e) show the median of RMSE,
CC, and bias obtained from the model trained by the first 3 years data, respectively. (b), (d), and (f) show the median of RMSE, CC, and bias
obtained from the model trained by the first 8 years data, respectively.

worse at the daily scale, accurately capture subtle fluctua-
tions at the monthly scale.

5 Discussions

5.1 Comparison between FLUXNET2015 and our
dataset

After extensive analysis of the experimental design results
in Sect. 4, we have demonstrated excellent gap-filling and
prolongation performance at the methodological level. To
evaluate our released dataset, we compared it with the of-
ficial dataset from FLUXNET2015, as missing data in ob-
servations cannot provide verifiable truth. Figure 12 shows
the data distribution results of gap-filled data at both hourly
and daily scales for the two datasets. The results indicate
a high consistency in data distribution between our dataset
and FLUXNET2015. At the hourly scale, the median and
quartiles of both datasets are nearly identical. For CRO,
FLUXNET2015 exhibits slightly higher values compared to
our dataset, while for GRA and CSH/OSH/SAV/WSA/WET
its estimates are slightly lower. At the daily scale the consis-
tency is even greater, with almost identical data distributions
across all land surface types.

Additionally, we compared the differences between the
two datasets aggregated to monthly and yearly scales. As
shown in Fig. 13, the data from both datasets distributes
along the 1 : 1 line at both monthly and yearly scales. Al-
though some months and years exhibited discrepancies be-
tween the two datasets, it still demonstrates a high degree of
consistency. Specifically, at the monthly scale we observed
instances where some LE data of FLUXNET2015 show close
values, while our predictions demonstrate clear distinctions.
When aggregated to the yearly scale, these discrepancies
manifested as outliers. This instance arises because many
FLUXNET2015 sites experienced complete data loss for the
first four to eight months (e.g., AU-ASM from January to
August 2010, CA-Gro from January to July 2003, US-UMd
from January to April 2007, among others). Due to the lack
of neighboring information in the sliding window, the MDS
algorithm struggled to provide effective gap-filling, result-
ing in nearly identical gap-filled values for those months.
Consequently, these months could not be included in the us-
able data range, rendering the aggregated results at the yearly
scale unreliable. In contrast, our algorithm can utilize the ref-
erence data for each specific moment to predict the corre-
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Figure 9. Time series of daily prolonged results obtained from the model trained using the first three years across different land cover types.
The sites corresponding to each land cover type are: US-Ne1, AU-DaP, FR-Fon, BR-Sa1, RU-Fyo, CA-Gro, US-KS2, US-Whs, SD-Dem,
AU-How, and US-Myb.
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Figure 10. Time series of daily prolonged results obtained from the model trained using the first eight years across different land cover types.
The sites corresponding to each land cover type are: US-Ne1, US-Var, FR-Fon, BR-Sa1, RU-Fyo, CA-Gro, ES-LJu, and AU-How.

sponding LE, so we can provide more accurate gap-filling
results.

5.2 Reference variable importance analysis

Figure 14 presents the results of reference variable im-
portance using the permutation feature importance tech-
nique. Each input feature is randomly shuffled to cal-
culate the performance deterioration. For half-hourly or
hourly gap-filling, the order of variable importance is
SW_IN>NDVI>TA>LW_IN>RH>WS>PA. Consis-
tent with earlier research (Irvin et al., 2021; Zhu et al., 2022;
Li et al., 2024a), SW_IN is the key variable that signifi-
cantly influences LE variations across terrestrial ecosystems.

It provides energy for the ET process. Throughout the day,
SW_IN exhibits significant diurnal variation. NDVI is the
second most important variable, but its influence varies be-
tween sites. This explains why the performance of the two
land cover types in Sect. 4.2.3 is slightly inferior to that
of other types. For sites with evergreen vegetation, seasonal
changes in vegetation are not pronounced, making NDVI less
effective in providing clear information to the model. For
daily prolongation, the order of variable importance is dif-
ferent. The importance of SW_IN decreases significantly be-
cause daily LE variation is more closely related to NDVI,
which reflects seasonal changes. Similar to the hourly scale,
NDVI also shows inconsistencies between sites for the same
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Figure 11. Time series of monthly aggregated results obtained from
the model trained using the first three years across different land
cover types. The stations corresponding to each land cover type are:
US-Ne1, AU-DaP, FR-Fon, BR-Sa1, RU-Fyo, CA-Gro, US-KS2,
US-Whs, SD-Dem, AU-How, and US-Myb.

reasons. Additionally, TA, as the third most important vari-
able, provides critical information at sites dominated by soil
evaporation. Variables like LW_IN, RH, WS, and PA hold
comparable significance as minor factors, offering insights
into the meteorological background conditions.

5.3 Advantages and disadvantages

Our study presents several notable advantages. The bias-
corrected RF shows better performance than the official
MDS approach, especially for filling very long gaps (up
to 30 d). Additionally, it allows for temporal prolongation,
which the MDS method cannot achieve. Furthermore, our
method enables the incorporation of a broader range of refer-
ence variables to establish a more robust non-linear relation-
ship between LE and its drivers.

Compared to the FLUXNET2015 dataset, our hourly gap-
filled data show improved quality and simpler implementa-
tion. The daily prolonged data provide extended temporal
coverage (2000–2022) that is particularly valuable for ET
modeling and global-scale studies. However, some limita-
tions in terms of variable importance, sensitivity, and stabil-
ity merit further discussion. The variable importance analysis
(Sect. 5.2) indicates that our method exhibits strong sensi-
tivity to SW_IN data for gap-filling and to NDVI for pro-
longation. While we implemented bias correction between
ground observations and ERA5-Land data, potential quality
issues in SW_IN and NDVI inputs may still affect final re-
sults. Future improvements could incorporate higher-quality
input data with more stable biases to enhance result reliabil-
ity.

6 Data availability

Our released dataset mainly contains four types of data:

– Half-hourly or hourly gap-filled data. The data were
gap-filled using the novel bias-corrected RF algorithm.
Filenames include “HH” for half-hourly or “HR” for
hourly data. The time format follows FLUXNET2015
standards, with paired timestamps recorded in local
time. The start and end times align with the observation
period at each site. For QC flags, a value of 0 indicates
observed data, while 1 indicates gap-filled data.

– Aggregated daily data. This daily dataset was aggre-
gated from the gap-filled half-hourly data to a daily
scale. The start and the end times match the observation
period at each site. QC flags represent the percentage of
valid hourly observations for each day.

– Prolonged daily data. This dataset provides the pro-
longed daily data using the novel bias-corrected RF al-
gorithm. The seamless data spans 18 February to 31 De-
cember 2022. For the prolonged part, the quality flag is
set to 2. The rest is consistent with the aggregated daily
data.

– Aggregated monthly and yearly data. These datasets
were aggregated from the prolonged daily data. QC
flags indicate the proportion of days with > 90 % valid
hourly observations per month or year. No distinction is
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Figure 12. Distribution of gap-filled data at (a) half-hourly and (b) daily scales for our dataset and FLUXNET2015 dataset.

Figure 13. Scatterplot of LE data of our dataset against that of FLUXNET2015 dataset.

made between prolonged data and completely missing
daily data. The time span for the monthly data is March
2000 to December 2022, and that for the yearly data is
2001–2022.

All files are formatted as .csv files. NDVI and debi-
ased reference variables from ERA5-Land are also provided
in our released data. The product has been deposited at
https://doi.org/10.5281/zenodo.13853409 (Li et al., 2024b)
and can be downloaded publicly.

7 Conclusions

The current LEEC data are increasingly insufficient to
meet the growing demand for long time-series benchmark
data to support climate change studies, model develop-
ment, and product validation. To address these limitations in
FLUXNET2015, we developed a gap-filling and prolonga-
tion framework for LEEC data and established a benchmark
dataset for ground-based ET (2000–2022) across 64 global
sites. The results indicate:
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Figure 14. Variable importance for half-hourly or hourly gap-filling
and daily prolongation.

– Hourly gap-filling: the novel bias-corrected RF algo-
rithm demonstrates excellent performance, achieving a
mean RMSE of 33.86 Wm−2. It improves the origi-
nal RF algorithm’s poor performance for short gaps,
approaching the performance of the official algorithm
(MDS). For long gaps, it significantly outperforms the
MDS algorithm by 11.16 %. The algorithm more accu-
rately predicts extreme values, thereby reducing result
uncertainty compared to MDS. It performs consistently
well across various land surface types, with the most no-
table improvements observed in cropland. Additionally,
our gap-filled data distribution shows strong agreement
with official products.

– Daily prolongation: our method exhibits robust perfor-
mance in both forward and backward directions (16.58
and 17.35 Wm−2, respectively). The method shows
slight variations in performance across different land
surface types, with the best performance for cropland. In
terms of temporal stability, our results maintain excel-
lent performance under both extreme conditions (train-
ing with the first three years of data) and typical condi-
tions (training with the first eight years of data). The
time series effectively captures seasonal variations in
LE, aligning well with observations.

– For hourly data gap-filling, SW_IN is the most impor-
tant factor, while NDVI plays a decisive role in daily
prolongation. In cases where the land surface is domi-
nated by evergreen or sparse vegetation, the importance
of NDVI significantly decreases.

Overall, our proposed gap-filling and prolongation frame-
work for LEEC data is robust and a benchmark dataset for
global ET estimation based on FLUXNET2015 from 2000 to
2022 is established. It can provide essential data support for
ET modeling, water–carbon cycle studies, and climate im-
pact assessments.
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Appendix A

Table A1. Site information.

Site IGBP Latitude Longitude Start year End year Time cover after 2000 Hourly missing ratio

AU-ASM SAV −22.283 133.249 2010 2014 5 0.37
AU-Cpr SAV −34.0021 140.5891 2010 2014 5 0.28
AU-DaP GRA −14.0633 131.3181 2007 2013 7 0.36
AU-DaS SAV −14.1593 131.3881 2008 2014 7 0.21
AU-Dry SAV −15.2588 132.3706 2008 2014 7 0.45
AU-Gin WSA −31.3764 115.7138 2011 2014 4 0.44
AU-How WSA −12.4943 131.1523 2001 2014 14 0.35
AU-Rig GRA −36.6499 145.5759 2011 2014 4 0.26
AU-Stp GRA −17.1507 133.3502 2008 2014 7 0.29
AU-TTE GRA −22.287 133.64 2012 2014 3 0.40
AU-Whr EBF −36.6732 145.0294 2011 2014 4 0.32
AU-Wom EBF −37.4222 144.0944 2010 2014 5 0.41
BR-Sa1 EBF −2.8567 −54.9589 2002 2011 10 0.27
BR-Sa3 EBF −3.018 −54.9714 2000 2004 5 0.47
CA-Gro MF 48.2167 −82.1556 2003 2014 12 0.24
CA-NS2 ENF 55.9058 −98.5247 2001 2005 5 0.49
CA-NS3 ENF 55.9117 −98.3822 2001 2005 5 0.33
CA-Oas DBF 53.6289 −106.1978 1996 2010 11 0.17
CA-Qfo ENF 49.6925 −74.3421 2003 2010 8 0.23
CA-SF1 ENF 54.485 −105.8176 2003 2006 4 0.37
CA-SF2 ENF 54.2539 −105.8775 2001 2005 5 0.35
CA-SF3 OSH 54.0916 −106.0053 2001 2006 6 0.36
CA-TP1 ENF 42.6609 −80.5595 2002 2014 13 0.47
CA-TP3 ENF 42.7068 −80.3483 2002 2014 13 0.41
CA-TP4 ENF 42.7102 −80.3574 2002 2014 13 0.18
CG-Tch SAV −4.2892 11.6564 2006 2009 4 0.57
CN-Cha MF 42.4025 128.0958 2003 2005 3 0.24
CN-Cng GRA 44.5934 123.5092 2007 2010 4 0.27
CN-Din EBF 23.1733 112.5361 2003 2005 3 0.31
CN-Ha2 WET 37.6086 101.3269 2003 2005 3 0.17
CN-Qia ENF 26.7414 115.0581 2003 2005 3 0.21
DE-Obe ENF 50.7867 13.7213 2008 2014 7 0.18
DE-Tha ENF 50.9626 13.5651 1996 2014 15 0.13
ES-Amo OSH 36.8336 −2.2523 2007 2012 6 0.38
ES-LJu OSH 36.9266 −2.7521 2004 2013 10 0.27
FR-Fon DBF 48.4764 2.7801 2005 2014 10 0.18
GF-Guy EBF 5.2788 −52.9249 2004 2014 11 0.24
MY-PSO EBF 2.973 102.3062 2003 2009 7 0.21
RU-Fyo ENF 56.4615 32.9221 1998 2014 15 0.22
SD-Dem SAV 13.2829 30.4783 2005 2009 5 0.64
US-AR1 GRA 36.4267 −99.42 2009 2012 4 0.23
US-AR2 GRA 36.6358 −99.5975 2009 2012 4 0.33
US-ARM CRO 36.6058 −97.4888 2003 2012 10 0.15
US-Blo ENF 38.8953 −120.6328 1997 2007 8 0.36
US-Goo GRA 34.2547 −89.8735 2002 2006 5 0.40
US-KS2 CSH 28.6086 −80.6715 2003 2006 4 0.27
US-Me2 ENF 44.4526 −121.5589 2002 2014 13 0.14
US-Me3 ENF 44.3154 −121.6078 2004 2009 6 0.26
US-MMS DBF 39.3232 −86.4131 1999 2014 15 0.34
US-Myb WET 38.0499 −121.765 2010 2014 5 0.32
US-Ne1 CRO 41.1651 −96.4766 2001 2013 13 0.15
US-Ne2 CRO 41.1649 −96.4701 2001 2013 13 0.23
US-Ne3 CRO 41.1797 −96.4397 2001 2013 13 0.21
US-NR1 ENF 40.0329 −105.5464 1998 2014 15 0.22
US-SRC OSH 31.9083 −110.8395 2008 2014 7 0.38
US-SRG GRA 31.7894 −110.8277 2008 2014 7 0.14
US-SRM WSA 31.8214 −110.8661 2004 2014 11 0.12
US-Ton WSA 38.4309 −120.966 2001 2014 14 0.31
US-Twt CRO 38.1087 −121.6531 2009 2014 6 0.36
US-UMB DBF 45.5598 −84.7138 2000 2014 15 0.23
US-UMd DBF 45.5625 −84.6975 2007 2014 8 0.17
US-Var GRA 38.4133 −120.9508 2000 2014 15 0.21
US-Whs OSH 31.7438 −110.0522 2007 2014 8 0.16
US-Wkg GRA 31.7365 −109.9419 2004 2014 11 0.16
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