Articles | Volume 17, issue 6
https://doi.org/10.5194/essd-17-2735-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-2735-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A continual-learning-based multilayer perceptron for improved reconstruction of three-dimensional nitrate concentrations
Xiang Yu
Remote Sensing Information and Digital Earth Center, College of Computer Science and Technology, Qingdao University, Qingdao, 266071, China
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
Huadong Guo
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
Jiahua Zhang
CORRESPONDING AUTHOR
Remote Sensing Information and Digital Earth Center, College of Computer Science and Technology, Qingdao University, Qingdao, 266071, China
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
Yi Ma
First Institute of Oceanography Ministry of National Resource, Qingdao, 266061, China
Xiaopeng Wang
Remote Sensing Information and Digital Earth Center, College of Computer Science and Technology, Qingdao University, Qingdao, 266071, China
Guangsheng Liu
Remote Sensing Information and Digital Earth Center, College of Computer Science and Technology, Qingdao University, Qingdao, 266071, China
Mingming Xing
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA
Ayalkibet M. Seka
Remote Sensing Information and Digital Earth Center, College of Computer Science and Technology, Qingdao University, Qingdao, 266071, China
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
Arba Minch Water Technology Institute, Water Resources Research Center, Arba Minch University, Arba Minch, Ethiopia
Related authors
No articles found.
Lamei Shi, Jiahua Zhang, Da Zhang, Jingwen Wang, Xianglei Meng, Yuqin Liu, and Fengmei Yao
Atmos. Chem. Phys., 22, 11255–11274, https://doi.org/10.5194/acp-22-11255-2022, https://doi.org/10.5194/acp-22-11255-2022, 2022
Short summary
Short summary
Dust impacts climate and human life. Analyzing the interdecadal change in dust activity and its influence factors is crucial for disaster mitigation. Based on a linear regression method, this study revealed the interdecadal variability of relationships between ENSO and dust over northwestern South Asia from 1982 to 2014 and analyzed the effects of atmospheric factors on this interdecadal variability. The result sheds new light on numerical simulation involving the interdecadal variation of dust.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Yuqin Liu, Tao Lin, Juan Hong, Yonghong Wang, Lamei Shi, Yiyi Huang, Xian Wu, Hao Zhou, Jiahua Zhang, and Gerrit de Leeuw
Atmos. Chem. Phys., 21, 12331–12358, https://doi.org/10.5194/acp-21-12331-2021, https://doi.org/10.5194/acp-21-12331-2021, 2021
Short summary
Short summary
The four-dimensional variation of aerosol properties over the BTH, YRD and PRD (east China) were investigated using satellite observations from 2007 to 2020. Distinct differences between the aerosol optical depth and vertical distribution of the occurrence of aerosol types over these regions depend on season, aerosol loading and meteorological conditions. Day–night differences between the vertical distribution of aerosol types suggest effects of boundary layer dynamics and aerosol transport.
Cited articles
Akbari, E., Alavipanah, S., Jeihouni, M., Hajeb, M., Haase, D., and Alavipanah, S.: A Review of Ocean/Sea Subsurface Water Temperature Studies from Remote Sensing and Non-Remote Sensing Methods, Water, 9, 936, https://doi.org/10.3390/w9120936, 2017. a
Ali, M. M., Swain, D., and Weller, R. A.: Estimation of Ocean Subsurface Thermal Structure from Surface Parameters: A Neural Network Approach, Geophys. Res. Lett., 31, 2004GL021192, https://doi.org/10.1029/2004GL021192, 2004. a
Altieri, K. E., Fawcett, S. E., Peters, A. J., Sigman, D. M., and Hastings, M. G.: Marine Biogenic Source of Atmospheric Organic Nitrogen in the Subtropical North Atlantic, P. Natl. Acad. Sci. USA, 113, 925–930, https://doi.org/10.1073/pnas.1516847113, 2016. a
Altieri, K. E., Fawcett, S. E., and Hastings, M. G.: Reactive Nitrogen Cycling in the Atmosphere and Ocean, Annu. Rev. Earth Planet. Sci., 49, 523–550, https://doi.org/10.1146/annurev-earth-083120-052147, 2021. a
Ansper, A. and Alikas, K.: Retrieval of Chlorophyll a from Sentinel-2 MSI Data for the European Union Water Framework Directive Reporting Purposes, Remote Sens., 11, 64, https://doi.org/10.3390/rs11010064, 2019. a
Ascani, F., Richards, K. J., Firing, E., Grant, S., Johnson, K. S., Jia, Y., Lukas, R., and Karl, D. M.: Physical and Biological Controls of Nitrate Concentrations in the Upper Subtropical North Pacific Ocean, Deep-Sea Res. Pt. II, 93, 119–134, https://doi.org/10.1016/j.dsr2.2013.01.034, 2013. a
Asdar, S., Ciani, D., and Buongiorno Nardelli, B.: 3D Reconstruction of Horizontal and Vertical Quasi-Geostrophic Currents in the North Atlantic Ocean, Earth Syst. Sci. Data, 16, 1029–1046, https://doi.org/10.5194/essd-16-1029-2024, 2024. a
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015. a
Baretta, J. W., Ebenhöh, W., and Ruardij, P.: The European Regional Seas Ecosystem Model, a Complex Marine Ecosystem Model, Neth. J. Sea Res., 33, 233–246, https://doi.org/10.1016/0077-7579(95)90047-0, 1995. a
Ben-Ezra, T., Blachinsky, A., Gozali, S., Tsemel, A., Fadida, Y., Tchernov, D., Lehahn, Y., Tsagaraki, T. M., Berman-Frank, I., and Krom, M.: Interannual Changes in Nutrient and Phytoplankton Dynamics in the Eastern Mediterranean Sea (EMS) Predict the Consequences of Climate Change; Results from the Sdot-Yam Time-Series Station 2018–2022, bioRxiv [preprint], https://doi.org/10.1101/2024.06.24.600321, 2024. a
Berglund, S., Döös, K., Groeskamp, S., and McDougall, T.: North Atlantic Ocean Circulation and Related Exchange of Heat and Salt Between Water Masses, Geophys. Res. Lett., 50, e2022GL100989, https://doi.org/10.1029/2022GL100989, 2023. a, b, c
Bishop, C. M.: Neural Networks for Pattern Recognition., Oxford University Press, ISBN 0-19-853864-2, 1995. a
Bittig, H. C., Steinhoff, T., Claustre, H., Fiedler, B., Williams, N. L., Sauzède, R., Körtzinger, A., and Gattuso, J.-P.: An Alternative to Static Climatologies: Robust Estimation of Open Ocean CO2 Variables and Nutrient Concentrations from T, S, and O2 Data Using Bayesian Neural Networks, Front. Mar. Sci., 5, 328, https://doi.org/10.3389/fmars.2018.00328, 2018. a
Bristow, L. A., Mohr, W., Ahmerkamp, S., and Kuypers, M. M.: Nutrients That Limit Growth in the Ocean, Curr. Biol., 27, R474–R478, https://doi.org/10.1016/j.cub.2017.03.030, 2017. a
Bruggeman, J. and Bolding, K.: A General Framework for Aquatic Biogeochemical Models, Environ. Model. Softw., 61, 249–265, https://doi.org/10.1016/j.envsoft.2014.04.002, 2014. a
Buongiorno Nardelli, B.: A Deep Learning Network to Retrieve Ocean Hydrographic Profiles from Combined Satellite and In Situ Measurements, Remote Sens., 12, 3151, https://doi.org/10.3390/rs12193151, 2020. a, b
Cao, Z., Ma, R., Duan, H., Pahlevan, N., Melack, J., Shen, M., and Xue, K.: A Machine Learning Approach to Estimate Chlorophyll-a from Landsat-8 Measurements in Inland Lakes, Remote Sens. Environ., 248, 111974, https://doi.org/10.1016/j.rse.2020.111974, 2020. a
Chang, N.-B., Xuan, Z., and Yang, Y. J.: Exploring Spatiotemporal Patterns of Phosphorus Concentrations in a Coastal Bay with MODIS Images and Machine Learning Models, Remote Sens. Environ., 134, 100–110, https://doi.org/10.1016/j.rse.2013.03.002, 2013. a
Chau, S. L., Hu, R., Gonzalez, J., and Sejdinovic, D.: RKHS-SHAP: Shapley Values for Kernel Methods, arXiv [preprint], https://doi.org/10.48550/arXiv.2110.09167, 2022. a
Chen, S., Hu, C., Barnes, B. B., Xie, Y., Lin, G., and Qiu, Z.: Improving Ocean Color Data Coverage through Machine Learning, Remote Sens. Environ., 222, 286–302, https://doi.org/10.1016/j.rse.2018.12.023, 2019. a
Chen, S., Meng, Y., Lin, S., Yu, Y., and Xi, J.: Estimation of Sea Surface Nitrate from Space: Current Status and Future Potential, Sci. Total Environ., 899, 165690, https://doi.org/10.1016/j.scitotenv.2023.165690, 2023. a, b
Claustre, H., Johnson, K. S., and Takeshita, Y.: Observing the Global Ocean with Biogeochemical-Argo, Annu. Rev. Mar. Sci., 12, 23–48, https://doi.org/10.1146/annurev-marine-010419-010956, 2020. a, b
Copernicus: Global Ocean Biogeochemistry Hindcast, Copernicus [data set], https://doi.org/10.48670/moi-00019, 2024. a
D'Ortenzio, F. and Ribera d'Alcalà, M.: On the Trophic Regimes of the Mediterranean Sea: A Satellite Analysis, Biogeosciences, 6, 139–148, https://doi.org/10.5194/bg-6-139-2009, 2009. a
Du, C., Li, Y., Lyu, H., Liu, N., Zheng, Z., and Li, Y.: Remote Estimation of Total Phosphorus Concentration in the Taihu Lake Using a Semi-Analytical Model, Int. J. Remote Sens., 41, 7993–8013, https://doi.org/10.1080/01431161.2020.1767826, 2020. a
Eppley, R. W. and Peterson, B. J.: Particulate Organic Matter Flux and Planktonic New Production in the Deep Ocean, Nature, 282, 677–680, https://doi.org/10.1038/282677a0, 1979. a
Fisher, R. A. and Russell, E. J.: On the Mathematical Foundations of Theoretical Statistics, Philos. T. Roy. Soc. Lond. A, 222, 309–368, https://doi.org/10.1098/rsta.1922.0009, 1997. a
Fourrier, M., Coppola, L., Claustre, H., D'Ortenzio, F., and Gattuso, J. P.: A Regional Neural Network Approach to Estimate Water-Column Nutrient Concentrations and Carbonate System Variables in the Mediterranean Sea: CANYON-MED, Front. Mar. Sci., 7, 620, https://doi.org/10.3389/fmars.2020.00620, 2020. a
Fourrier, M., Coppola, L., D'Ortenzio, F., Migon, C., and Gattuso, J.-P.: Impact of Intermittent Convection in the Northwestern Mediterranean Sea on Oxygen Content, Nutrients, and the Carbonate System, J. Geophys. Res.-Oceans, 127, e2022JC018615, https://doi.org/10.1029/2022JC018615, 2022. a
Friedlingstein, P., O'sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., and Sitch, S.: Global Carbon Budget 2020, Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, 2020. a
Fripiat, F., Martínez-García, A., Marconi, D., Fawcett, S. E., Kopf, S. H., Luu, V. H., Rafter, P. A., Zhang, R., Sigman, D. M., and Haug, G. H.: Nitrogen Isotopic Constraints on Nutrient Transport to the Upper Ocean, Nat. Geosci., 14, 855–861, https://doi.org/10.1038/s41561-021-00836-8, 2021. a
Gao, H., Huang, B., Chen, G., Xia, L., and Radenkovic, M.: Deep Learning Solver Unites SDGSAT-1 Observations and Navier–Stokes Theory for Oceanic Vortex Streets, Remote Sens. Environ., 315, 114425, https://doi.org/10.1016/j.rse.2024.114425, 2024. a
Gattuso, J.-P., Frankignoulle, M., and Wollast, R.: Carbon and Carbonate Metabolism in Coastal Aquatic Ecosystems, Annu. Rev. Ecol. Syst., 29, 405–434, https://doi.org/10.1146/annurev.ecolsys.29.1.405, 1998. a
Goes, J. I., Saino, T., Oaku, H., and Jiang, D. L.: A Method for Estimating Sea Surface Nitrate Concentrations from Remotely Sensed SST and Chlorophyll Aa Case Study for the North Pacific Ocean Using OCTS/ADEOS Data, IEEE T. Geosci. Remote, 37, 1633–1644, https://doi.org/10.1109/36.763279, 1999. a, b, c, d, e
Goes, J. I., Saino, T., Oaku, H., Ishizaka, J., Wong, C. S., and Nojiri, Y.: Basin Scale Estimates of Sea Surface Nitrate and New Production from Remotely Sensed Sea Surface Temperature and Chlorophyll, Geophys. Res. Lett., 27, 1263–1266, https://doi.org/10.1029/1999GL002353, 2000. a, b, c, d
Gregg, W. W., Conkright, M. E., Ginoux, P., O'Reilly, J. E., and Casey, N. W.: Ocean Primary Production and Climate: Global Decadal Changes, Geophys. Res. Lett., 30, 1089, https://doi.org/10.1029/2003GL016889, 2003. a
Hagan, M. T., Demuth, H. B., and Beale, M.: Neural Network Design, PWS Publishing Co., ISBN 0-534-94332-2, 1997. a
Harkort, L. and Duan, Z.: Estimation of Dissolved Organic Carbon from Inland Waters at a Large Scale Using Satellite Data and Machine Learning Methods, Water Res., 229, 119478, https://doi.org/10.1016/j.watres.2022.119478, 2023. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., and Schepers, D.: The ERA5 Global Reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Holt, J., Harle, J., Proctor, R., Michel, S., Ashworth, M., Batstone, C., Allen, I., Holmes, R., Smyth, T., and Haines, K.: Modelling the Global Coastal Ocean, Philos. T. Roy. Soc. A, 367, 939–951, https://doi.org/10.1098/rsta.2008.0210, 2009. a
Holt, J., Butenschön, M., Wakelin, S. L., Artioli, Y., and Allen, J. I.: Oceanic Controls on the Primary Production of the Northwest European Continental Shelf: Model Experiments under Recent Past Conditions and a Potential Future Scenario, Biogeosciences, 9, 97–117, https://doi.org/10.5194/bg-9-97-2012, 2012. a
Hu, Q., Chen, X., Bai, Y., He, X., Li, T., and Pan, D.: Reconstruction of 3-D Ocean Chlorophyll a Structure in the Northern Indian Ocean Using Satellite and BGC-Argo Data, IEEE T. Geosci. Remote, 61, 1–13, https://doi.org/10.1109/TGRS.2022.3233385, 2023. a, b
Huang, J., Wang, D., Gong, F., Bai, Y., and He, X.: Changes in Nutrient Concentrations in Shenzhen Bay Detected Using Landsat Imagery between 1988 and 2020, Remote Sens., 13, 3469, https://doi.org/10.3390/rs13173469, 2021. a
Hutchins, D. A. and Capone, D. G.: The Marine Nitrogen Cycle: New Developments and Global Change, Nat. Rev. Microbiol., 20, 401–414, https://doi.org/10.1038/s41579-022-00687-z, 2022. a
Johnson, K., Maurer, T., Plant, J., Bittig, H., Schallenberg, C., and Schmechtig, C.: BGC-Argo Quality Control Manual for Nitrate Concentration, ARCHIMER, https://doi.org/10.13155/84370, 2021. a
Johnson, K. S., Plant, J. N., Coletti, L. J., Jannasch, H. W., Sakamoto, C. M., Riser, S. C., Swift, D. D., Williams, N. L., Boss, E., Haëntjens, N., Talley, L. D., and Sarmiento, J. L.: Biogeochemical Sensor Performance in the SOCCOM Profiling Float Array, J. Geophys. Res.-Oceans, 122, 6416–6436, https://doi.org/10.1002/2017JC012838, 2017. a
Johnson, K. S., Plant, J. N., Sakamoto, C., Maurer, T. L., Pasqueron De Fommervault, O., Serra, R., D'Ortenzio, F., Schmechtig, C., Claustre, H., and Poteau, A.: Processing BGC-Argo Nitrate Concentration at the DAC Level, ARCHIMER, https://doi.org/10.13155/46121, 2024. a
Joo, H., Son, S., Park, J.-W., Kang, J. J., Jeong, J.-Y., Lee, C. I., Kang, C.-K., and Lee, S. H.: Long-Term Pattern of Primary Productivity in the East/Japan Sea Based on Ocean Color Data Derived from MODIS-aqua, Remote Sens., 8, 25, https://doi.org/10.3390/rs8010025, 2016. a
Joo, H., Lee, D., Kang, J. J., Lee, J. H., Jeong, J.-Y., Son, S.-H., Kwon, J.-I., and Lee, S. H.: Inter-Annual Variation of the Annual New Production of Phytoplankton in the Southwestern East/Japan Sea Estimated from Satellite-Derived Surface Nitrate Concentration, J. Coast. Res., 85, 336–340, https://doi.org/10.2112/SI85-068.1, 2018. a
Kamykowski, D., Zentara, S.-J., Morrison, J. M., and Switzer, A. C.: Dynamic Global Patterns of Nitrate, Phosphate, Silicate, and Iron Availability and Phytoplankton Community Composition from Remote Sensing Data, Global Biogeochem. Cy., 16, 25-1–25-29, https://doi.org/10.1029/2001GB001640, 2002. a
Kay, S. and Butenschön, M.: Projections of Change in Key Ecosystem Indicators for Planning and Management of Marine Protected Areas: An Example Study for European Seas, Estuar. Coast. Shelf Sci., 201, 172–184, https://doi.org/10.1016/j.ecss.2016.03.003, 2018. a
Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., Hassabis, D., Clopath, C., Kumaran, D., and Hadsell, R.: Overcoming Catastrophic Forgetting in Neural Networks, P. Natl. Acad. Sci. USA, 114, 3521–3526, https://doi.org/10.1073/pnas.1611835114, 2017. a, b, c, d, e
Kudela, R. M. and Dugdale, R. C.: Nutrient Regulation of Phytoplankton Productivity in Monterey Bay, California, Deep-Sea Res. Pt. II, 47, 1023–1053, https://doi.org/10.1016/S0967-0645(99)00135-6, 2000. a, b, c
Lauvset, S. K., Lange, N., Tanhua, T., Bittig, H. C., Olsen, A., Kozyr, A., Álvarez, M., Becker, S., Brown, P. J., Carter, B. R., Cotrim Da Cunha, L., Feely, R. A., Van Heuven, S., Hoppema, M., Ishii, M., Jeansson, E., Jutterström, S., Jones, S. D., Karlsen, M. K., Lo Monaco, C., Michaelis, P., Murata, A., Pérez, F. F., Pfeil, B., Schirnick, C., Steinfeldt, R., Suzuki, T., Tilbrook, B., Velo, A., Wanninkhof, R., Woosley, R. J., and Key, R. M.: An Updated Version of the Global Interior Ocean Biogeochemical Data Product, GLODAPv2.2021, Earth Syst. Sci. Data, 13, 5565–5589, https://doi.org/10.5194/essd-13-5565-2021, 2021. a
Lauvset, S. K., Lange, N., Tanhua, T., Bittig, H. C., Olsen, A., Kozyr, A., Alin, S., Álvarez, M., Azetsu-Scott, K., Barbero, L., Becker, S., Brown, P. J., Carter, B. R., Da Cunha, L. C., Feely, R. A., Hoppema, M., Humphreys, M. P., Ishii, M., Jeansson, E., Jiang, L.-Q., Jones, S. D., Lo Monaco, C., Murata, A., Müller, J. D., Pérez, F. F., Pfeil, B., Schirnick, C., Steinfeldt, R., Suzuki, T., Tilbrook, B., Ulfsbo, A., Velo, A., Woosley, R. J., and Key, R. M.: GLODAPv2.2022: The Latest Version of the Global Interior Ocean Biogeochemical Data Product, Earth Syst. Sci. Data, 14, 5543–5572, https://doi.org/10.5194/essd-14-5543-2022, 2022a. a
Lauvset, S. K., Lange, N., Tanhua, T., Bittig, H. C., Olsen, A., Kozyr, A., Alin, S. R., Álvarez, M., Azetsu-Scott, K., Barbero, L., Becker, S., Brown, P. J., Carter, B. R., Cotrim da Cunha, L., Feely, R. A., Hoppema, M., Humphreys, M. P., Ishii, M., Jeansson, E., Jiang, L.-Q., Jones, S. D., Lo Monaco, C., Murata, A., Müller, J. D., Pérez, F. F., Pfeil, B., Schirnick, C., Steinfeldt, R., Suzuki, T., Tilbrook, B., Ulfsbo, A., Velo, A., Woosley, R. J., and Key, R. M.: Global Ocean Data Analysis Project version 2.2022 (GLODAPv2.2022) (NCEI Accession 0257247), NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/1f4w-0t92, 2022b. a
Lavender, S., Antoine, D., Maritorena, S., Morel, A., Barrot, G., Demaria, J., and Pinnock, S.: GlobColour – The European Service for Ocean Colour, in: Proceedings of the 2009 IEEE International Geoscience & Remote Sensing Symposium, 12–17 July 2009, Cape Town, South Africa, 12–17, 2009. a
Lavigne, H., D'ortenzio, F., Ribera D'Alcalà, M., Claustre, H., Sauzède, R., and Gacic, M.: On the Vertical Distribution of the Chlorophyll a Concentration in the Mediterranean Sea: a Basin-Scale and Seasonal Approach, Biogeosciences, 12, 5021–5039, https://doi.org/10.5194/bgd-12-4139-2015, 2015. a
Liu, Y., Tang, D., and Evgeny, M.: Chlorophyll Concentration Response to the Typhoon Wind-Pump Induced Upper Ocean Processes Considering Air–Sea Heat Exchange, Remote Sens., 11, 1825, https://doi.org/10.3390/rs11151825, 2019. a
Longhurst, A., Sathyendranath, S., Platt, T., and Caverhill, C.: An Estimate of Global Primary Production in the Ocean from Satellite Radiometer Data, J. Plankt. Res., 17, 1245–1271, https://doi.org/10.1093/plankt/17.6.1245, 1995. a
Lv, Q., Wang, D., Gong, F., Bai, Y., and He, X.: Nitrate Inversion Based on Remote Sensing in the Pearl River Estuary, China, in: IOP Conference Series: Earth and Environmental Science, IOP Publishing, 502, 012027, https://doi.org/10.1088/1755-1315/502/1/012027, 2020. a
Ma, Y., Chen, S., Ermon, S., and Lobell, D. B.: Transfer Learning in Environmental Remote Sensing, Remote Sens. Environ., 301, 113924, https://doi.org/10.1016/j.rse.2023.113924, 2024. a
MacKay, D. J. C.: Bayesian Interpolation, Neural Comput., 4, 415–447, https://doi.org/10.1162/neco.1992.4.3.415, 1992. a
Macovei, V. A., Torres-Valdés, S., Hartman, S. E., Schuster, U., Moore, C. M., Brown, P. J., Hydes, D. J., and Sanders, R. J.: Temporal Variability in the Nutrient Biogeochemistry of the Surface North Atlantic: 15 Years of Ship of Opportunity Data, Global Biogeochem. Cy., 33, 1674–1692, https://doi.org/10.1029/2018GB006132, 2019. a
Madec, G.: NEMO Reference Manual 3_6_STABLE: NEMO Ocean Engine, Note du Pôle modél, IPSL – Inst. Pierre-Simon Laplace, France, https://www.nemo-ocean.eu/doc/ (last access: 13 June 2025), 2016. a
Miao, Y., Zhang, X., Li, Y., Zhang, L., and Zhang, D.: Monthly Extended Ocean Predictions Based on a Convolutional Neural Network via the Transfer Learning Method, Front. Mar. Sci., 9, 1073377, https://doi.org/10.3389/fmars.2022.1073377, 2023. a
Mignot, A., D'Ortenzio, F., Taillandier, V., Cossarini, G., and Salon, S.: Quantifying Observational Errors in Biogeochemical-Argo Oxygen, Nitrate, and Chlorophyll a Concentrations, Geophys. Res. Lett., 46, 4330–4337, https://doi.org/10.1029/2018GL080541, 2019. a
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd, P. W., Galbraith, E. D., Geider, R. J., Guieu, C., and Jaccard, S. L.: Processes and Patterns of Oceanic Nutrient Limitation, Nat. Geosci., 6, 701–710, https://doi.org/10.1038/ngeo1765, 2013. a
Morel, A. and Berthon, J.-F.: Surface Pigments, Algal Biomass Profiles, and Potential Production of the Euphotic Layer: Relationships Reinvestigated in View of Remote-sensing Applications, Limnol. Oceanogr., 34, 1545–1562, https://doi.org/10.4319/lo.1989.34.8.1545, 1989. a
Mortula, M., Ali, T., Bachir, A., Elaksher, A., and Abouleish, M.: Towards Monitoring of Nutrient Pollution in Coastal Lake Using Remote Sensing and Regression Analysis, Water, 12, 1954, https://doi.org/10.3390/w12071954, 2020. a
Nittis, K., Tziavos, C., Bozzano, R., Cardin, V., Thanos, Y., Petihakis, G., Schiano, M. E., and Zanon, F.: The M3A Multi-Sensor Buoy Network of the Mediterranean Sea, Ocean Sci., 3, 229–243, https://doi.org/10.5194/os-3-229-2007, 2007. a
Olsen, A., Lange, N., Key, R. M., Tanhua, T., Bittig, H. C., Kozyr, A., Álvarez, M., Azetsu-Scott, K., Becker, S., Brown, P. J., Carter, B. R., Cotrim Da Cunha, L., Feely, R. A., Van Heuven, S., Hoppema, M., Ishii, M., Jeansson, E., Jutterström, S., Landa, C. S., Lauvset, S. K., Michaelis, P., Murata, A., Pérez, F. F., Pfeil, B., Schirnick, C., Steinfeldt, R., Suzuki, T., Tilbrook, B., Velo, A., Wanninkhof, R., and Woosley, R. J.: An Updated Version of the Global Interior Ocean Biogeochemical Data Product, GLODAPv2.2020, Earth Syst. Sci. Data, 12, 3653–3678, https://doi.org/10.5194/essd-12-3653-2020, 2020. a
Padin, X. A., Velo, A., and Pérez, F. F.: ARIOS: A Database for Ocean Acidification Assessment in the Iberian Upwelling System (1976–2018), Earth Syst. Sci. Data, 12, 2647–2663, https://doi.org/10.5194/essd-12-2647-2020, 2020. a
Pauthenet, E., Bachelot, L., Balem, K., Maze, G., Tréguier, A.-M., Roquet, F., Fablet, R., and Tandeo, P.: Four-Dimensional Temperature, Salinity and Mixed-Layer Depth in the Gulf Stream, Reconstructed from Remote-Sensing and in Situ Observations with Neural Networks, Ocean Sci., 18, 1221–1244, https://doi.org/10.5194/os-18-1221-2022, 2022. a
Pujo-Pay, M., Conan, P., Oriol, L., Cornet-Barthaux, V., Falco, C., Ghiglione, J.-F., Goyet, C., Moutin, T., and Prieur, L.: Integrated Survey of Elemental Stoichiometry (C, N, P) from the Western to Eastern Mediterranean Sea, Biogeosciences, 8, 883–899, https://doi.org/10.5194/bg-8-883-2011, 2011. a
Qi, J., Liu, C., Chi, J., Li, D., Gao, L., and Yin, B.: An Ensemble-Based Machine Learning Model for Estimation of Subsurface Thermal Structure in the South China Sea, Remote Sens., 14, 3207, https://doi.org/10.3390/rs14133207, 2022. a
Qun'ou, J., Lidan, X., Siyang, S., Meilin, W., and Huijie, X.: Retrieval Model for Total Nitrogen Concentration Based on UAV Hyper Spectral Remote Sensing Data and Machine Learning Algorithms – A Case Study in the Miyun Reservoir, China, Ecol. Indic., 124, 107356, https://doi.org/10.1016/j.ecolind.2021.107356, 2021. a
Rafter, P. A., Sigman, D. M., and Mackey, K. R.: Recycled Iron Fuels New Production in the Eastern Equatorial Pacific Ocean, Nat. Commun., 8, 1–10, https://doi.org/10.1038/s41467-017-01219-7, 2017. a
Reale, M., Cossarini, G., Lazzari, P., Lovato, T., Bolzon, G., Masina, S., Solidoro, C., and Salon, S.: Acidification, Deoxygenation, and Nutrient and Biomass Declines in a Warming Mediterranean Sea, Biogeosciences, 19, 4035–4065, https://doi.org/10.5194/bg-19-4035-2022, 2022. a
Ribera d'Alcalà, M., Civitarese, G., Conversano, F., and Lavezza, R.: Nutrient Ratios and Fluxes Hint at Overlooked Processes in the Mediterranean Sea, J. Geophys. Res.-Oceans, 108, 8106, https://doi.org/10.1029/2002JC001650, 2003. a
Richardson, A. J., Pfaff, M. C., Field, J. G., Silulwane, N. F., and Shillington, F. A.: Identifying Characteristic Chlorophyll a Profiles in the Coastal Domain Using an Artificial Neural Network, J. Plankt. Res., 24, 1289–1303, https://doi.org/10.1093/plankt/24.12.1289, 2002. a
Rossi, P., Ponti, M., Righi, S., Castagnetti, C., Simonini, R., Mancini, F., Agrafiotis, P., Bassani, L., Bruno, F., Cerrano, C., Cignoni, P., Corsini, M., Drap, P., Dubbini, M., Garrabou, J., Gori, A., Gracias, N., Ledoux, J.-B., Linares, C., Mantas, T. P., Menna, F., Nocerino, E., Palma, M., Pavoni, G., Ridolfi, A., Rossi, S., Skarlatos, D., Treibitz, T., Turicchia, E., Yuval, M., and Capra, A.: Needs and Gaps in Optical Underwater Technologies and Methods for the Investigation of Marine Animal Forest 3D-Structural Complexity, Front. Mar. Sci., 8, 591292, https://doi.org/10.3389/fmars.2021.591292, 2021. a
Rumelhart, D. E., Hinton, G. E., and Williams, R. J.: Learning Representations by Back-Propagating Errors, Nature, 323, 533–536, https://doi.org/10.1038/323533a0, 1986. a
Salazar, J. J., Garland, L., Ochoa, J., and Pyrcz, M. J.: Fair Train-Test Split in Machine Learning: Mitigating Spatial Autocorrelation for Improved Prediction Accuracy, J. Petrol Sci. Eng., 209, 109885, https://doi.org/10.1016/j.petrol.2021.109885, 2022. a
Sammartino, M., Nardelli, B., Marullo, S., and Santoleri, R.: An Artificial Neural Network to Infer the Mediterranean 3D Chlorophyll-a and Temperature Fields from Remote Sensing Observations, Remote Sens., 12, 4123, https://doi.org/10.3390/rs12244123, 2020. a, b, c
Sarangi, R. and Devi, K. N.: Space-Based Observation of Chlorophyll, Sea Surface Temperature, Nitrate, and Sea Surface Height Anomaly over the Bay of Bengal and Arabian Sea, Adv. Space Res., 59, 33–44, https://doi.org/10.1016/j.asr.2016.08.038, 2017. a, b, c
Sathyendranath, S., Platt, T., Horne, E. P., Harrison, W. G., Ulloa, O., Outerbridge, R., and Hoepffner, N.: Estimation of New Production in the Ocean by Compound Remote Sensing, Nature, 353, 129–133, https://doi.org/10.1038/353129a0, 1991. a
Sauzède, R., Bittig, H. C., Claustre, H., Pasqueron de Fommervault, O., Gattuso, J.-P., Legendre, L., and Johnson, K. S.: Estimates of Water-Column Nutrient Concentrations and Carbonate System Parameters in the Global Ocean: A Novel Approach Based on Neural Networks, Front. Mar. Sci., 4, 128, https://doi.org/10.3389/fmars.2017.00128, 2017. a, b
Severin, T., Kessouri, F., Rembauville, M., Sánchez-Pérez, E. D., Oriol, L., Caparros, J., Pujo-Pay, M., Ghiglione, J.-F., D'Ortenzio, F., Taillandier, V., Mayot, N., Durrieu De Madron, X., Ulses, C., Estournel, C., and Conan, P.: Open-ocean Convection Process: A Driver of the Winter Nutrient Supply and the Spring Phytoplankton Distribution in the Northwestern Mediterranean Sea, J. Geophys. Res.-Oceans, 122, 4587–4601, https://doi.org/10.1002/2016JC012664, 2017. a
Silió-Calzada, A., Bricaud, A., and Gentili, B.: Estimates of Sea Surface Nitrate Concentrations from Sea Surface Temperature and Chlorophyll Concentration in Upwelling Areas: A Case Study for the Benguela System, Remote Sens. Environ., 112, 3173–3180, https://doi.org/10.1016/j.rse.2008.03.014, 2008. a, b
Smith, P. A. H., Sørensen, K. A., Buongiorno Nardelli, B., Chauhan, A., Christensen, A., St. John, M., Rodrigues, F., and Mariani, P.: Reconstruction of Subsurface Ocean State Variables Using Convolutional Neural Networks with Combined Satellite and in Situ Data, Front. Mar. Sci., 10, 1218514, https://doi.org/10.3389/fmars.2023.1218514, 2023. a
Smith, S. V. and Hollibaugh, J. T.: Coastal Metabolism and the Oceanic Organic Carbon Balance, Rev. Geophys., 31, 75–89, https://doi.org/10.1029/92rg02584, 1993. a
Stéphane, M., Fanton d'Andon, O. H., Mangin, A., and Siegel, D. A.: Merged Satellite Ocean Color Data Products Using a Bio-Optical Model: Characteristics, Benefits and Issues, Remote Sens. Environ., 114, 1791–1804, https://doi.org/10.1016/j.rse.2010.04.002, 2010. a
Storto, A., Alvera-Azcárate, A., Balmaseda, M. A., Barth, A., Chevallier, M., Counillon, F., Domingues, C. M., Drevillon, M., Drillet, Y., Forget, G., Garric, G., Haines, K., Hernandez, F., Iovino, D., Jackson, L. C., Lellouche, J.-M., Masina, S., Mayer, M., Oke, P. R., Penny, S. G., Peterson, K. A., Yang, C., and Zuo, H.: Ocean Reanalyses: Recent Advances and Unsolved Challenges, Front. Mar. Sci., 6, 418, https://doi.org/10.3389/fmars.2019.00418, 2019. a
Su, H., Zhang, T., Lin, M., Lu, W., and Yan, X.-H.: Predicting Subsurface Thermohaline Structure from Remote Sensing Data Based on Long Short-Term Memory Neural Networks, Remote Sens. Environ., 260, 112465, https://doi.org/10.1016/j.rse.2021.112465, 2021. a
Su, H., Qiu, J., Tang, Z., Huang, Z., and Yan, X.-H.: Retrieving Global Ocean Subsurface Density by Combining Remote Sensing Observations and Multiscale Mixed Residual Transformer, IEEE T. Geosci. Remote, 62, 1–13, https://doi.org/10.1109/TGRS.2024.3350346, 2024. a
Switzer, A. C., Kamykowski, D., and Zentara, S.-J.: Mapping Nitrate in the Global Ocean Using Remotely Sensed Sea Surface Temperature, J. Geophys. Res.-Oceans, 108, 2000JC000444, https://doi.org/10.1029/2000JC000444, 2003. a, b
Syariz, M. A., Lin, C.-H., Nguyen, M. V., Jaelani, L. M., and Blanco, A. C.: WaterNet: A Convolutional Neural Network for Chlorophyll-a Concentration Retrieval, Remote Sens., 12, 1966, https://doi.org/10.3390/rs12121966, 2020. a
Tian, T., Cheng, L., Wang, G., Abraham, J., Wei, W., Ren, S., Zhu, J., Song, J., and Leng, H.: Reconstructing Ocean Subsurface Salinity at High Resolution Using a Machine Learning Approach, Earth Syst. Sci. Data, 14, 5037–5060, https://doi.org/10.5194/essd-14-5037-2022, 2022. a, b, c, d
Tuerena, R. E., Williams, R. G., Mahaffey, C., Vic, C., Green, J. M., Naveira-Garabato, A., Forryan, A., and Sharples, J.: Internal Tides Drive Nutrient Fluxes into the Deep Chlorophyll Maximum over Mid-ocean Ridges, Global Biogeochem. Cy., 33, 995–1009, https://doi.org/10.1029/2019gb006214, 2019. a
Uitz, J., Claustre, H., Morel, A., and Hooker, S. B.: Vertical Distribution of Phytoplankton Communities in Open Ocean: An Assessment Based on Surface Chlorophyll, J. Geophys. Res.-Oceans, 111, C08005, https://doi.org/10.1029/2005JC003207, 2006. a
Von Schuckmann, K., Le Traon, P.-Y., Smith, N., Pascual, A., Djavidnia, S., Gattuso, J.-P., Grégoire, M., Nolan, G., Aaboe, S., and Aguiar, E.: Copernicus Marine Service Ocean State Report, J. Oper. Oceanogr., 12, S1–S123, https://doi.org/10.1080/1755876X.2019.1633075, 2019. a
Wang, L., Xu, Z., Gong, X., Zhang, P., Hao, Z., You, J., Zhao, X., and Guo, X.: Estimation of Nitrate Concentration and Its Distribution in the Northwestern Pacific Ocean by a Deep Neural Network Model, Deep-Sea Res. Pt. I, 195, 104005, https://doi.org/10.1016/j.dsr.2023.104005, 2023. a
Wang, T., Chai, F., Xing, X., Ning, J., Jiang, W., and Riser, S. C.: Influence of Multi-Scale Dynamics on the Vertical Nitrate Distribution around the Kuroshio Extension: An Investigation Based on BGC-Argo and Satellite Data, Prog. Oceanogr., 193, 102543, https://doi.org/10.1016/j.pocean.2021.102543, 2021. a
Webb, P.: Introduction to Oceanography, Roger Williams University, https://rwu.pressbooks.pub/webboceanography/ (last access: 13 June 2025), 2021. a
Yang, G. G., Wang, Q., Feng, J., He, L., Li, R., Lu, W., Liao, E., and Lai, Z.: Can Three-Dimensional Nitrate Structure Be Reconstructed from Surface Information with Artificial Intelligence? – a Proof-of-Concept Study, Sci. Total Environ., 924, 171365, https://doi.org/10.1016/j.scitotenv.2024.171365, 2024. a, b, c
Yu, X., Yi, H., Liu, X., Wang, Y., Liu, X., and Zhang, H.: Remote-Sensing Estimation of Dissolved Inorganic Nitrogen Concentration in the Bohai Sea Using Band Combinations Derived from MODIS Data, Int. J. Remote Sens., 37, 327–340, https://doi.org/10.1080/01431161.2015.1125555, 2016. a
Yu, X., Chen, S., and Chai, F.: Remote Estimation of Sea Surface Nitrate in the California Current System From Satellite Ocean Color Measurements, IEEE T. Geosci. Remote, 60, 1–17, https://doi.org/10.1109/TGRS.2021.3095099, 2022. a
Yu, X., Guo, H., Zhang, J., Ma, Y., Wang, X., Liu, G., Xing, M., Xu, N., and Seka, A. M.: The Reconstructed Three-Dimensional Nitrate Field Dataset for the Pan-European Ocean Using a Continual Learning-Based Multilayer Perceptron, Zenodo [data set], https://doi.org/10.5281/zenodo.14010813, 2024. a, b
Zakem, E. J., Al-Haj, A., Church, M. J., Van Dijken, G. L., Dutkiewicz, S., Foster, S. Q., Fulweiler, R. W., Mills, M. M., and Follows, M. J.: Ecological Control of Nitrite in the Upper Ocean, Nat. Commun., 9, 1206, https://doi.org/10.1038/s41467-018-03553-w, 2018. a
Zhou, L. and Zhang, R.-H.: A Self-Attention–Based Neural Network for Three-Dimensional Multivariate Modeling and Its Skillful ENSO Predictions, Sci. Adv., 9, eadf2827, https://doi.org/10.1126/sciadv.adf2827, 2023. a, b, c
Zhu, X. X., Tuia, D., Mou, L., Xia, G.-S., Zhang, L., Xu, F., and Fraundorfer, F.: Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources, IEEE Geosci. Remote Sens. Mag., 5, 8–36, https://doi.org/10.1109/MGRS.2017.2762307, 2017. a
Short summary
Mapping the 3D distribution of oceanic nitrate is challenging. We developed a continual-learning-based multilayer perceptron, integrating prior knowledge from numerical models and BGC-Argo validation to reconstruct a pan-European 3D nitrate field from 2010 to 2023 (0–2000 m depth, monthly, 0.25° horizontal resolution) using sea surface environmental features. This dataset helps bridge observational gaps and enhances understanding of the ocean's interior environment.
Mapping the 3D distribution of oceanic nitrate is challenging. We developed a...
Altmetrics
Final-revised paper
Preprint