Articles | Volume 17, issue 6
https://doi.org/10.5194/essd-17-2735-2025
https://doi.org/10.5194/essd-17-2735-2025
Data description paper
 | 
18 Jun 2025
Data description paper |  | 18 Jun 2025

A continual-learning-based multilayer perceptron for improved reconstruction of three-dimensional nitrate concentrations

Xiang Yu, Huadong Guo, Jiahua Zhang, Yi Ma, Xiaopeng Wang, Guangsheng Liu, Mingming Xing, Nuo Xu, and Ayalkibet M. Seka

Related authors

What caused the interdecadal shift in the El Niño–Southern Oscillation (ENSO) impact on dust mass concentration over northwestern South Asia?
Lamei Shi, Jiahua Zhang, Da Zhang, Jingwen Wang, Xianglei Meng, Yuqin Liu, and Fengmei Yao
Atmos. Chem. Phys., 22, 11255–11274, https://doi.org/10.5194/acp-22-11255-2022,https://doi.org/10.5194/acp-22-11255-2022, 2022
Short summary
Overview: Recent advances in the understanding of the northern Eurasian environments and of the urban air quality in China – a Pan-Eurasian Experiment (PEEX) programme perspective
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022,https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Multi-dimensional satellite observations of aerosol properties and aerosol types over three major urban clusters in eastern China
Yuqin Liu, Tao Lin, Juan Hong, Yonghong Wang, Lamei Shi, Yiyi Huang, Xian Wu, Hao Zhou, Jiahua Zhang, and Gerrit de Leeuw
Atmos. Chem. Phys., 21, 12331–12358, https://doi.org/10.5194/acp-21-12331-2021,https://doi.org/10.5194/acp-21-12331-2021, 2021
Short summary
Satellite-based estimate of the variability of warm cloud properties associated with aerosol and meteorological conditions
Yuqin Liu, Jiahua Zhang, Putian Zhou, Tao Lin, Juan Hong, Lamei Shi, Fengmei Yao, Jun Wu, Huadong Guo, and Gerrit de Leeuw
Atmos. Chem. Phys., 18, 18187–18202, https://doi.org/10.5194/acp-18-18187-2018,https://doi.org/10.5194/acp-18-18187-2018, 2018
RESEARCH ON HIGH ACCURACY DETECTION OF RED TIDE HYPERSPECRRAL BASED ON DEEP LEARNING CNN
Y. Hu, Y. Ma, and J. An
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 573–577, https://doi.org/10.5194/isprs-archives-XLII-3-573-2018,https://doi.org/10.5194/isprs-archives-XLII-3-573-2018, 2018

Related subject area

Domain: ESSD – Ocean | Subject: Chemical oceanography
An updated synthesis of ocean total alkalinity and dissolved inorganic carbon measurements from 1993 to 2023: the SNAPO-CO2-v2 dataset
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, Bruno Bombled, Jacqueline Boutin, Yann Bozec, Steeve Comeau, Pascal Conan, Laurent Coppola, Pascale Cuet, Eva Ferreira, Jean-Pierre Gattuso, Frédéric Gazeau, Catherine Goyet, Emilie Grossteffan, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Coraline Leseurre, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Peggy Rimmelin-Maury, Jean-François Ternon, Franck Touratier, Aline Tribollet, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 17, 1075–1100, https://doi.org/10.5194/essd-17-1075-2025,https://doi.org/10.5194/essd-17-1075-2025, 2025
Short summary
A global monthly 3D field of seawater pH over 3 decades: a machine learning approach
Guorong Zhong, Xuegang Li, Jinming Song, Baoxiao Qu, Fan Wang, Yanjun Wang, Bin Zhang, Lijing Cheng, Jun Ma, Huamao Yuan, Liqin Duan, Ning Li, Qidong Wang, Jianwei Xing, and Jiajia Dai
Earth Syst. Sci. Data, 17, 719–740, https://doi.org/10.5194/essd-17-719-2025,https://doi.org/10.5194/essd-17-719-2025, 2025
Short summary
Mapping the global distribution of lead and its isotopes in seawater with explainable machine learning
Arianna Olivelli, Rossella Arcucci, Mark Rehkämper, and Tina van de Flierdt
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-17,https://doi.org/10.5194/essd-2025-17, 2025
Revised manuscript accepted for ESSD
Short summary
The high-resolution global shipping emission inventory by the Shipping Emission Inventory Model (SEIM)
Wen Yi, Xiaotong Wang, Tingkun He, Huan Liu, Zhenyu Luo, Zhaofeng Lv, and Kebin He
Earth Syst. Sci. Data, 17, 277–292, https://doi.org/10.5194/essd-17-277-2025,https://doi.org/10.5194/essd-17-277-2025, 2025
Short summary
A machine-learning reconstruction of sea surface pCO2 in the North American Atlantic Coastal Ocean Margin from 1993 to 2021
Zelun Wu, Wenfang Lu, Alizée Roobaert, Luping Song, Xiao-Hai Yan, and Wei-Jun Cai
Earth Syst. Sci. Data, 17, 43–63, https://doi.org/10.5194/essd-17-43-2025,https://doi.org/10.5194/essd-17-43-2025, 2025
Short summary

Cited articles

Akbari, E., Alavipanah, S., Jeihouni, M., Hajeb, M., Haase, D., and Alavipanah, S.: A Review of Ocean/Sea Subsurface Water Temperature Studies from Remote Sensing and Non-Remote Sensing Methods, Water, 9, 936, https://doi.org/10.3390/w9120936, 2017. a
Ali, M. M., Swain, D., and Weller, R. A.: Estimation of Ocean Subsurface Thermal Structure from Surface Parameters: A Neural Network Approach, Geophys. Res. Lett., 31, 2004GL021192, https://doi.org/10.1029/2004GL021192, 2004. a
Altieri, K. E., Fawcett, S. E., Peters, A. J., Sigman, D. M., and Hastings, M. G.: Marine Biogenic Source of Atmospheric Organic Nitrogen in the Subtropical North Atlantic, P. Natl. Acad. Sci. USA, 113, 925–930, https://doi.org/10.1073/pnas.1516847113, 2016. a
Altieri, K. E., Fawcett, S. E., and Hastings, M. G.: Reactive Nitrogen Cycling in the Atmosphere and Ocean, Annu. Rev. Earth Planet. Sci., 49, 523–550, https://doi.org/10.1146/annurev-earth-083120-052147, 2021. a
Ansper, A. and Alikas, K.: Retrieval of Chlorophyll a from Sentinel-2 MSI Data for the European Union Water Framework Directive Reporting Purposes, Remote Sens., 11, 64, https://doi.org/10.3390/rs11010064, 2019. a
Download
Short summary
Mapping the 3D distribution of oceanic nitrate is challenging. We developed a continual-learning-based multilayer perceptron, integrating prior knowledge from numerical models and BGC-Argo validation to reconstruct a pan-European 3D nitrate field from 2010 to 2023 (0–2000 m depth, monthly, 0.25° horizontal resolution) using sea surface environmental features. This dataset helps bridge observational gaps and enhances understanding of the ocean's interior environment.
Share
Altmetrics
Final-revised paper
Preprint