
Earth Syst. Sci. Data, 17, 2735–2759, 2025
https://doi.org/10.5194/essd-17-2735-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

A continual-learning-based multilayer
perceptron for improved reconstruction

of three-dimensional nitrate concentrations

Xiang Yu1,2, Huadong Guo2, Jiahua Zhang1,2, Yi Ma3, Xiaopeng Wang1, Guangsheng Liu1,
Mingming Xing2, Nuo Xu4, and Ayalkibet M. Seka1,2,5

1Remote Sensing Information and Digital Earth Center, College of Computer Science and Technology,
Qingdao University, Qingdao, 266071, China

2Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
3First Institute of Oceanography Ministry of National Resource, Qingdao, 266061, China

4Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA
5Arba Minch Water Technology Institute, Water Resources Research Center,

Arba Minch University, Arba Minch, Ethiopia

Correspondence: Jiahua Zhang (zhangjh@radi.ac.cn)

Received: 30 October 2024 – Discussion started: 11 November 2024
Revised: 6 March 2025 – Accepted: 25 March 2025 – Published: 18 June 2025

Abstract. Nitrate plays a crucial role in marine ecosystems, as it influences primary productivity. Despite its
ecological significance, accurately mapping its three-dimensional (3D) concentration on a large scale remains
a considerable challenge due to the inherent limitations of existing methodologies. To address this issue, this
study proposes a continual-learning-based multilayer perceptron (MLP) model to reconstruct the 3D ocean ni-
trate concentrations above 2000 m depth over the pan-European coast. The continual-learning strategy enhances
the model generalization by integrating knowledge from Copernicus Marine Environmental Monitoring Ser-
vice (CMEMS) nitrate data, effectively overcoming the spatial limitations of Biogeochemical Argo (BGC-Argo)
observations in comprehensive nitrate characterization. The proposed approach integrates the advantages of ex-
tensive spatial remote sensing observations, the precision of BGC-Argo measurements, and the broad knowledge
from simulated nitrate datasets, exploiting the capacity of neural networks to model their nonlinear relationships
between multisource sea surface environmental variables and subsurface nitrates. The model achieves excellent
performance in profile cross-validation (R2

= 0.98, RMSE= 0.592 µmol kg−1) and maintains robustness across
diverse 3D validation scenarios, suggesting its effectiveness in filling observational gaps and reconstructing the
3D nitrate field. Then, the spatiotemporal distribution of the reconstructed 3D nitrate field from 2010 to 2023
reveals a spatial distribution pattern, an interannual upward trend, and the degree of consistency in vertical vari-
ation. The contributions of all 22 input features to the model’s estimation were quantified using Shapley additive
explanation values. This study reveals the potential of the proposed approach to overcome observational limi-
tations and provide further insights into the 3D ocean condition. The reconstructed 3D nitrate dataset is freely
available at https://doi.org/10.5281/zenodo.14010813 (Yu et al., 2024).
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1 Introduction

In the last decade, the global oceans have absorbed approx-
imately 25 % of the anthropogenic carbon dioxide (CO2)
of the atmosphere, playing a crucial role in mitigating cli-
mate change impacts (Friedlingstein et al., 2020). However,
oceanic changes such as warming and eutrophication may
alter this role, leading to complex effects on marine ecosys-
tems and climate. As the primary limiting nutrient in the up-
per ocean, nitrate is pivotal in regulating primary productiv-
ity, especially new productivity (Bristow et al., 2017; Chen
et al., 2023). This could constitute long-term absorption of
CO2 from the surface to the ocean interior (Eppley and Peter-
son, 1979; Gregg et al., 2003; Joo et al., 2016; Rafter et al.,
2017). Thus, comprehensive understanding of the temporal
and spatial distributions of ocean nitrate is indispensable for
conducting research on marine ecology and the environment.

Most biogeochemical data are collected in situ via coastal
surveillance, oceanographic cruises, offshore platforms, or
autonomous instruments, such as the Global Ocean Data
Analysis Project version 2 (GLODAPv2) database and Bio-
geochemical Argo (BGC-Argo) (Claustre et al., 2020; Lav-
igne et al., 2015; Nittis et al., 2007). However, traditional
in situ measurements alone cannot provide large-scale and
continuous nitrate data. In contrast, remote sensing of-
fers a promising alternative for estimating nitrate due to
its broad spatial coverage, temporal consistency, and cost-
effectiveness (Chang et al., 2013; Pan et al., 2018). Previous
research has successfully utilized it to retrieve water nutri-
ents (Ansper and Alikas, 2019; Du et al., 2020; Mortula et al.,
2020; Yu et al., 2016). Machine learning (ML) technologies
have also been employed for nutrient concentration retrieval
(Huang et al., 2021; Lv et al., 2020; Qun’ou et al., 2021).

Optical satellites face challenges in nitrate retrieval due
to the lack of distinctive nitrate signals (Chen et al., 2023;
Sathyendranath et al., 1991). Previous studies have demon-
strated a strong empirical correlation between sea surface
nitrate (SSN) and certain measurable seawater parameters
(Goes et al., 2000; Joo et al., 2018; Kamykowski et al., 2002;
Silió-Calzada et al., 2008; Switzer et al., 2003). Physical pro-
cesses, biological activity, and chemical reactions like nitri-
fication are commonly recognized as the three principal pro-
cesses in regulating ocean nitrate (Goes et al., 2000, 1999;
Kudela and Dugdale, 2000; Pan et al., 2018). Cold and
nitrate-rich water is transported to the euphotic layer through
physical processes, including upwelling and convective mix-
ing in winter, enriching SSN while decreasing sea surface
temperature (SST) (Kudela and Dugdale, 2000; Pan et al.,
2018). Phytoplankton growth consumes nitrate and converts
it into organic matter, reducing SSN while increasing the
chlorophyll (Chl) concentration (Goes et al., 2000, 1999).
Therefore, various physical and biogeochemical characteris-
tics were frequently utilized as features to establish empirical
connections with SSN. The conventional method for nitrate
retrieval typically relies solely on SST for linear regression,

given its negative relationship with SSN (Sarangi and Devi,
2017; Switzer et al., 2003). Nevertheless, the correlation be-
tween SST and SSN is subject to significant geographical
and temporal variation that is influenced by differing envi-
ronmental conditions across regions (Goes et al., 1999; Silió-
Calzada et al., 2008). Goes et al. (1999) found that incorpo-
rating Chl a alongside SST noticeably improves the accuracy
of SSN retrieval compared to using SST in isolation. Addi-
tionally, colored dissolved organic matter (CDOM) is a feasi-
ble candidate for oceans with considerable river inflow (Pan
et al., 2018).

One primary limitation of remote sensing retrieval is the
challenge of accurately monitoring subsurface environmen-
tal parameters (Akbari et al., 2017; Ali et al., 2004). While
in situ data provide precise measurements of local vertical
conditions, they are inadequate for characterizing ecosys-
tem processes occurring at the extensive temporal and spa-
tial scales involved (Von Schuckmann et al., 2019). Accu-
rate three-dimensional (3D) data acquisition for key variables
over extensive scales is necessary for a deeper understand-
ing of marine ecosystems (Rossi et al., 2021). To address
this issue, various methods such as modeling ecosystems and
ocean dynamics have been explored to estimate biogeochem-
ical variables, with some being widely applied (Baretta et al.,
1995; Bruggeman and Bolding, 2014; Holt et al., 2012; Kay
and Butenschön, 2018). However, these methods require a
thorough representation of physical and biological processes
with highly nonlinear dynamics. While they can simulate en-
vironmental parameters and their distribution mechanisms,
they might not always achieve the accuracy needed for spe-
cific applications (Storto et al., 2019; Tian et al., 2022).

In contrast, synergizing the extensive coverage of satel-
lite data with the high precision of in situ data represents
an effective approach, enabling the frequent characterization
of the ocean’s vertical structure across an expanded spatial
scope (Buongiorno Nardelli, 2020; Tian et al., 2022; Gao
et al., 2024; Zhou and Zhang, 2023). Empirical models were
widely used to extrapolate important ocean variables from
the surface to deeper layers (Morel and Berthon, 1989; Uitz
et al., 2006), but they were vulnerable to inaccurate esti-
mates due to the intricacy and nonlinearity, particularly in
locations with irregular vertical stratification and small-scale
phenomena (Sammartino et al., 2020). Recent advancements
in neural network (NN) technology have yielded promising
results in addressing this issue (Asdar et al., 2024). For in-
stance, Richardson et al. (2002) pioneered the use of an un-
supervised NN for vertical chlorophyll reconstruction. Su-
pervised NNs are capable of fitting nonlinear relationships
between sea surface environmental variables and deep-sea
conditions and have been applied successfully to the esti-
mation or prediction of various subsurface ocean parameters
such as temperature, salinity (Buongiorno Nardelli, 2020; Qi
et al., 2022; Smith et al., 2023; Su et al., 2021), and den-
sity (Su et al., 2024). Additional studies have supplemented
sea surface parameters with reanalysis or profile data to re-
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construct more subsurface parameters (Hu et al., 2023; Tian
et al., 2022; Zhou and Zhang, 2023). However, due to the
complex mechanisms and heterogeneous distribution of ni-
trate (Webb, 2021), its 3D reconstruction was not developed
as effectively as parameters like temperature, particularly as
the need for concurrent vertical observations of additional
variables persists. Wang et al. (2023) employed a regional-
ized deep neural network (DNN) to estimate nitrate concen-
tration in the northwestern Pacific Ocean. Similar supervised
techniques based on a multilayer perceptron (MLP) have
been utilized to rebuild water column bio-optical and bio-
geochemical variables using remote sensing and BGC-Argo
data (Fourrier et al., 2020; Sauzède et al., 2017). A Bayesian
strategy was proposed to supplement in situ data by inferring
vertical profiles of unmeasured variables (Bittig et al., 2018).
Yang et al. (2024) successfully reconstructed the 3D nitrate
structure of the Indian Ocean from surface data using two
advanced artificial intelligence networks. However, relying
on simulated data rather than actual observations for training
cannot overcome the inherent uncertainties, which may limit
the model’s applicability in real ocean environments.

In this study, we develop an MLP to accurately recon-
struct the 3D nitrate concentration in the upper 2000 m of the
ocean, addressing the aforementioned challenges. Including
vertical profile variables in the features might introduce po-
tential uncertainty and limit the expansion of the estimation
range, so input features are based exclusively on sea surface
environmental variables. The model employs a continual-
learning strategy (Kirkpatrick et al., 2017), initially pre-
training on simulated nitrate data to boost its generalization
capabilities. The 3D nitrate field of the pan-European ocean
from 2010 to 2023 is reconstructed based on this model and
reveals the spatiotemporal distribution and interannual vari-
ations. Additionally, the contribution of each feature to the
model estimates is calculated using Shapley values (Lund-
berg and Lee, 2017; Shapley, 1988), quantifying the effec-
tiveness of the features.

2 Material and methods

2.1 Study area

The study area extends from 30° W to 37° E in latitude and
from 30 to 65° N in longitude, covering the Mediterranean
Sea (MED) and a portion of the northeastern Atlantic (NEA).
This area is considered to be coastal in the pan-European do-
main, as shown in Fig. 1. It represents a critical zone for bio-
geochemical studies due to its extensive BGC-Argo obser-
vations and its unique position as one of the most data-rich
coastal-proximate areas, where some of the continental shelf
seas within this domain exhibit disproportionately high pri-
mary productivity and play a fundamental role in regulating
oceanic biogeochemical cycles (Longhurst et al., 1995; Holt
et al., 2009; Smith and Hollibaugh, 1993).

Nutrients from the open ocean and river runoff create a
general and rapid biogeochemical cycle in the NEA (Gattuso
et al., 1998), in contrast to the MED, which is distinguished
by its semi-enclosed and oligotrophy conditions. This study
aims to develop a robust and generalizable modeling frame-
work by exploring the relationships between multiple vari-
ables and validating its effectiveness in different marine re-
gions.

2.2 Data

2.2.1 The in situ nitrate data

The in situ data of nitrate concentration used
in this study were obtained through BGC-Argo
(https://biogeochemical-argo.org/, last access: 13 June 2025,
and https://www.ocean-ops.org, last access: 13 June 2025),
a network of profiling floats equipped with sensors capable
of monitoring six biogeochemical variables (Claustre et al.,
2020). The time, longitude, latitude, and pressure repre-
senting the depth are also recorded during the observations.
Nitrate concentration is measured using ultraviolet absorp-
tion spectroscopy (Johnson et al., 2024), with an average
accuracy of ±0.5 µmol kg−1 (Johnson et al., 2021, 2017;
Mignot et al., 2019). In this study, a total of 477 870 data
in the study area are used, with 409 011 collected from the
MED and 68 859 from the NEA.

The GLODAPv2 database
(https://doi.org/10.25921/1f4w-0t92, Lauvset et al., 2022b)
provides a uniformly calibrated open-ocean data product
with inorganic carbon and carbon-relevant variables (Lau-
vset et al., 2022a, 2021; Olsen et al., 2020). GLODAPv2
contains 15 cruises within the study area, which are uti-
lized for independent validation of the model’s predictive
performance.

2.2.2 Simulated nitrate data

While the BGC-Argo network provides a significant amount
of in situ data on nitrate concentration, its spatial coverage
remains inadequate for the entirety of the ocean. Notably,
BGC-Argo deployments are sparse in the NEA and coastal
areas, where nitrate concentrations are higher and of greater
environmental concern (Berglund et al., 2023; Moore et al.,
2013). Conventional deep-learning algorithms typically only
perform well when there is great similarity between test and
training datasets. The lack of comprehensive in situ observa-
tions can introduce bias into the training dataset, adversely
affecting the performance and generalization ability of the
model. Hence, integrating BGC-Argo nitrate observations
with broad simulated nitrate data becomes crucial.

Simulated nitrate data are obtained from CMEMS.
The GLOBAL_MULTIYEAR_BGC_001_029
(https://doi.org/10.48670/moi-00019, Copernicus, 2024)
product provides daily and monthly analyses of biogeochem-
ical variables with a horizontal resolution of 0.25°× 0.25°
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Figure 1. The pan-European domain, including the MED and the NEA. The study area is highlighted in blue, with shades of color indicating
ocean depth. The warm-colored grid indicates the number of BGC-Argo observations. The two rectangular boxes are selected as typical data
regions for pattern comparison.

and features 75 vertical levels. These products are based on
the Pelagic Interactions Scheme for Carbon and Ecosystem
Studies (PISCES) biogeochemical model (Aumont et al.,
2015), which is part of the Nucleus for European Modelling
of the Ocean (NEMO) modeling platform (Madec, 2016).
The model can simulate biogeochemical cycles across vari-
ous oceanic provinces and has been employed successfully
in various biogeochemical studies (Tian et al., 2022; Yang
et al., 2024).

2.2.3 Matching sea surface environmental variable
datasets

Sea surface environmental variables (SSEVs) matched to in
situ nitrate data are used as input features for the model,
as detailed in Table 1. The SSEV data all span the pe-
riod from 2010 to 2023, matching the BGC-Argo data
since 2012 and enabling the reconstruction of the 3D nitrate
field since 2010.

The satellite-derived ocean color data were obtained from
the European Space Agency’s Global Color Project (Laven-
der et al., 2009; Stéphane et al., 2010), with a spatial res-
olution of 25 km and a monthly temporal resolution (https:
//hermes.acri.fr, last access: 13 June 2025). The meteorolog-
ical driver data were taken from the ERA5 dataset (Hers-
bach et al., 2020) (https://cds.climate.copernicus.eu, last ac-
cess: 13 June 2025), with a spatial resolution of 0.25° and
the temporal resolution of the monthly averaged reanalysis.
ERA5 is the fifth-generation European Centre for Medium-

Range Weather Forecasts (ECMWF) atmospheric reanalysis
of the global climate. Reanalysis combines model data with
observations in a globally complete and consistent dataset.
CMEMS provides ocean-dynamics-related data, which have
a spatial resolution of 0.25° and a monthly averaged temporal
resolution.

2.3 Methods

Figure 2 depicts the process of estimating nitrate and re-
lated research in this paper. The SSEVs and spatiotem-
poral coordinates undergo data preprocessing and resam-
pling (Sect. 2.3.1) to serve as the feature set for the two-
step training of the MLP model. The simulated and BGC-
Argo nitrate concentrations provide the constructed MLP
model (Sect. 2.3.2) with labels for two-stage continual-
learning (Sect. 2.3.3) training. So far, the MLP has com-
pleted the modeling of the relationship between the surface
environment and the internal ocean nitrate. After undergoing
four kinds of 3D performance validations, the model recon-
structed the 3D nitrate field by inputting iterated spatiotem-
poral coordinates and the corresponding SSEV datasets. The
feature contributions and the potential mechanisms for esti-
mation were evaluated based on the training datasets and the
model (Sect. 2.3.5).
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Table 1. Details of the SSEV dataset.

Parameter Description Unit Spatial Temporal Data
resolution resolution source

Chl Chlorophyll concentration mg m−3 25 km Monthly Globcolour
NFLH Normalized fluorescence line height mW cm−2 per micrometer per steradian (sr)
CF Cloud fraction %
PAR Photosynthetically available radiation Einstein per square meter per day
CDM Colored dissolved and detrital organic material absorption coefficient at 443 nm m−1

ZHL Heated layer depth m
ZEU Depth of the bottom of the euphotic layer m
ZSD Secchi disk depth m

SST Sea surface temperature K 0.25° Monthly ERA5
SP Surface pressure Pa
TP Total precipitation m
Z Total depth m
U10 10 m U wind component m s−1

V10 10 m V wind component m s−1

S10 10 m wind speed m s−1

SSH Sea surface height m 0.25° Monthly CMEMS
MLD Density ocean mixed-layer thickness m

Figure 2. Workflow for nitrate estimation and research on reconstructed results.

2.3.1 Data preprocessing

The candidate input variables for estimating nitrate are depth,
latitude, longitude, day of the year, and the SSEV data men-
tioned in Sect. 2.2.3. The time variables (day of the year)
and geographical coordinates (latitude, longitude, and depth)
are intended to explain the temporal and spatial variations of
the studied parameters. The characteristics of biogeochem-
istry in the ocean properties are described by SSEVs such as
SST and Chl (D’Ortenzio and Ribera d’Alcalà, 2009). Fur-
thermore, variables such as sea surface height (SSH) provide
insights into the ocean dynamics, which may contribute to
obtaining more accurate vertical stratification.

All these predictor variables are utilized as input features
after preprocessing. By standardizing and resampling, they
were matched to nitrate concentration measurements, serv-
ing as features and labels to train the MLP (Fig. 2b). The po-
tential uncertainty in the input features can be reduced signif-
icantly by implicitly incorporating them into the weights of

the model when utilizing the same data products (Chen et al.,
2019). The gridded SSEV data underwent limited linear in-
terpolation along longitude, latitude, and time, refining local-
ized missing values while filtering out extensive data gaps.
Subsequently, the SSEV feature set was linearly interpolated
and resampled to align with the spatiotemporal coordinates
of nitrate data, ensuring that grid features with missing neigh-
boring coordinates were excluded to prevent low-quality data
from adversely affecting model training.

To utilize the annual period, the sampling dates are pro-
jected onto the circular coordinates as follows:

Jday1= cos(2π · (day of year/365)), (1)
Jday2= sin(2π · (day of year/365)). (2)

The other input features are then normalized by applying Z-
score transformations as follows:
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z (xi)= (xi −µ)/σ, (3)

where µ and i are the mean and standard deviation of each
feature of the training set and xi is the input value of feature i.
Z-score transformation is a linear normalization technique
commonly used in MLP development to align the inputs and
intended outputs within comparable value ranges.

2.3.2 Multilayer perceptron

The study develops an MLP (Bishop, 1995) model, which
is a type of feed-forward neural network that can be used
for various types of input or output mappings (Hagan et al.,
1997). MLPs can approximate any continuous and derivable
function by means of an error backpropagation algorithm
(Rumelhart et al., 1986). An MLP consists of interconnected
neurons organized into input, hidden, and output layers. Each
connection is assigned a weight w, and the output is gen-
erated by combining inputs and weights using an activation
function after adding the neuron’s bias bj . The weights are
iteratively updated during the training epochs to minimize
the loss function, which reduces the quadratic error between
the MLP outputs and labels. This iterative process continues
until a minimum is reached using the approach of error back-
propagation.

The structure of the MLP is determined by a series of
experiments with multiple hidden layers, and it utilizes the
LeakyRelu activation function. The optimal network is de-
termined through multiple trials, where the structure with the
least amount of error in the test dataset and the fewest neu-
rons is selected. The final network was configured as (22-
128-64-16-1), comprising one input layer with 22 inputs,
three hidden layers with 128, 64, and 16 nodes, and one out-
put layer with the nitrate concentration as the output value.

2.3.3 Continual learning

The generalization capability of deep-learning models, in-
cluding MLPs, is highly dependent on the representativeness
of the training data. Insufficient or imbalanced training data
can exacerbate generalization errors and increase the risk of
model overfitting. In the domain of water resource research,
challenges associated with the collection of in situ data have
highlighted the effectiveness of transfer learning (TL) tech-
niques (Cao et al., 2020; Harkort and Duan, 2023; Miao
et al., 2023; Syariz et al., 2020; Zhu et al., 2017). Never-
theless, most TL applications are based on fine-tuning (Ma
et al., 2024), which limits their capacity to integrate knowl-
edge from multiple datasets in a more comprehensive man-
ner (Zhou and Zhang, 2023). To overcome this limitation, we
developed the continual-learning (CL) strategy to improve
the training process of BGC-Argo. CL enables the model to
assimilate new knowledge continually while retaining pre-
viously acquired information, thereby enhancing the robust-
ness and adaptability of the model.

In practice, the simulated nitrate data are initially em-
ployed for pre-training, after which the derived network
weights are transferred to the subsequent training phase su-
pervised by BGC-Argo observations. Ideally, this sequential
process enables the model to capture the general distribu-
tion patterns and underlying variation mechanisms present
in the simulated nitrate data and subsequently to refine its es-
timations to achieve higher accuracy using BGC-Argo mea-
surements. However, when the model undergoes incremen-
tal training through gradient-based updates, it may experi-
ence catastrophic interference or forgetting, leading to the
degradation of previously acquired knowledge (Kirkpatrick
et al., 2017). To address this issue, elastic weight consoli-
dation (EWC), a regularization-based continual-learning al-
gorithm, is applied to constrain weight updates by assign-
ing greater importance to critical network parameters (Kirk-
patrick et al., 2017).

Figure 3 (Kirkpatrick et al., 2017) illustrates the effect of
training strategies on the two-stage training task and how
EWC ensures the retention of knowledge from Task A during
the learning of Task B. Sets A and B represent the solution
spaces for the two training tasks, specifically the simulated
nitrate and BGC-Argo training. After completing Task A,
the parameters are labeled θ∗A, and the three trajectory lines
depict different training processes under varying loss func-
tion constraints. Constraining each weight equally (green ar-
row) imposes excessively rigid restrictions, allowing Task A
to be retained only at the cost of failing to learn Task B. Con-
versely, applying gradient steps based solely on Task B (blue
arrow) effectively minimizes the loss for Task B but com-
promises the knowledge acquired from Task A. Although
BGC-Argo measurements are accurate, they are limited in
their spatiotemporal coverage for nitrate reconstruction stud-
ies, which is insufficient for a comprehensive global charac-
terization of nitrate distributions. Consequently, the center of
Set B represents the optimal solution for model weights in
the BGC-Argo training set, but this is overfitted and subopti-
mal for broader global reconstruction. In contrast, the EWC
trajectory (red line) finds an optimal balance for Task B while
calculating the importance of weights for Task A, thus ensur-
ing minimal loss in Task A’s performance. Robust weights
should lie between Sets A and B, balancing the broad and
generalizable knowledge from simulated nitrate with the pre-
cise measurements from BGC-Argo. This process can be un-
derstood as guiding the model to retain the broad knowl-
edge to enhance the generalization ability of Task B or as
calibrating the simulated nitrate with the precision of BGC-
Argo. Given that simulated nitrate provides concentration
data across the entire ocean, especially in regions not yet
observed by BGC-Argo, this strategy is crucial for enhanc-
ing the generalization capability and robustness of the MLP
model.

EWC relies on the Fisher information matrix (FIM) to es-
timate the importance of each model parameter concerning
previous tasks (Fisher and Russell, 1997). The FIM quan-
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Figure 3. Schematic illustration of how training strategies influence
study trajectories in a two-stage task (Kirkpatrick et al., 2017).

tifies the amount of information that an observable random
variable carries about an unknown parameter, reflecting how
sensitive the likelihood function is to changes in the parame-
ters. The FIM F is defined as

F = Ex,y∼pdata(x,y)

[
∇θ logp(y|x;θ )∇θ logp(y|x;θ )>

]
, (4)

where p(y|x;θ ) is the likelihood of the target y of the given
data x and model parameter θ , and ∇θ logp(y|x;θ ) is the
gradient of the log-likelihood with respect to the parameters.

In practical applications, computing the full FIM is com-
putationally expensive, particularly for large neural net-
works. To simplify the computation, it is often assumed that
the FIM is diagonal, effectively ignoring dependencies be-
tween parameters. In MLPs, the diagonal elements of the
FIM can be approximated as follows:

Fi ≈ Ex,y∼pdate(x,y)

[(
∂ logp(y|x,θ )

∂θi

)2
]
. (5)

Since the true distribution of the data is unavailable, the train-
ing data are typically used for estimation:

Fi ≈
1
N

N∑
n=1

(
∂ logp (yn|xn,θ )

∂θi

)2

, (6)

where N is the number of training samples, (xn yn) are the
data samples, and θi is the ith parameter of the model.

In regression tasks using MLPs, we model the output y as

y = f (x;θ )+ ε, ε ∼N
(

0,σ 2
)
. (7)

Assuming Gaussian noise with a constant variance σ 2, the
diagonal elements of the FIM can be approximated based on
the gradients of the model’s output with respect to its param-
eters. Specifically, we compute Fi as

Fi ≈
1
N

N∑
n=1

(
∂f (xn;θ )
∂θi

)2

, (8)

where xn is the nth input sample and ∂f (xn;θ )
∂θi

is the partial
derivative of the model output with respect to parameter θi .
This approximation allows efficient computation of Fi during
training.

In the Bayesian framework, the goal is to find the parame-
ter θ that maximizes the posterior probability given both the
previous task data DA and the new task data DB:

p (θ |DA,DB)∝ p (DB|θ )p (θ |DA) . (9)

Since directly computing p(θ |DA) is intractable, we approxi-
mate it using a Gaussian distribution centered at the previous
optimal parameters θ∗A, with the precision given by the FIM
(MacKay, 1992):

p (θ |DA)≈N
(
θ∗A,F

−1
)
. (10)

Taking the negative logarithm of the posterior and ignoring
constants independent of θ , we obtain the total loss function:

LEWC(θ )= LB(θ )+
λ

2

∑
i

Fi
(
θi − θ

∗

A,i
)2
, (11)

where LB(θ ) is the loss for the new task only, i is each pa-
rameter, Fi is the FIM of the previous task, θ∗A is the opti-
mal parameter value after training on the previous task, and
λ is a hyperparameter controlling the tradeoff between per-
formance of the new task and retention of the previous task’s
knowledge.

2.3.4 Model validation

Nitrate concentrations derived from the identical vertical ob-
servations by BGC-Argo exhibit a strong correlation and a
gradual variation with increasing depth. Conventional meth-
ods that divide the entire dataset proportionally can result in
highly similar data appearing in both the training and test
sets, thereby leading to an exaggerated model performance
(Salazar et al., 2022). Hence, it is imperative to partition
the BGC-Argo dataset based on the observation period, with
each period referred to as a profile (Sammartino et al., 2020;
Sauzède et al., 2017). This division method ensures the iden-
tical distribution and independence of the training and test
sets. Furthermore, the spatial generalization capabilities of
the model can be assessed further by partitioning the dataset
based on devices.

A five-fold cross-validation approach is employed to eval-
uate the model performance using independent test data; this
is widely used in machine learning. The BGC-Argo dataset
was evenly divided into five subsets based on profiles or sites.
In five distinct cycles, each subset (approximately 20 % of
the total dataset) served as the test set for one fold, with the
remaining four subsets used to train the MLP model. Upon
completion of the five folds, all BGC-Argo data were used
for one test and four training sessions. This process mitigates
the influence of data partitioning bias on performance valida-
tion, ensuring maximal data utilization and providing a more
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robust evaluation of the model’s generalization capability. In
the test set, the MLP performance was evaluated by com-
paring the estimated values with in situ nitrate values, using
statistical metrics such as the determination coefficient (R2),
mean bias error (MBE), mean square error (MSE), root mean
square error (RMSE), mean absolute error (MAE), and me-
dian absolute error (MedAE).

2.3.5 Evaluating the contribution of inputs

Another major limitation of MLPs and deep-learning net-
works is the lack of interpretability, which makes it challeng-
ing to evaluate the estimation processes and mechanisms.
However, it is essential to assess the validity of environmen-
tal parameters for estimating nitrate concentration, especially
since their influence and interactions are not fully elucidated.

Shapley values (Shapley, 1988) form a method in coalition
game theory that effectively describes how benefits are fairly
distributed among contributions by the difference between
the predicted and average predicted values in each case. The
Shapley value of a feature is its weighted and summed con-
tribution to the output over all possible feature combinations:

φj (val)=
∑

S⊆{1, ..., p
}\{j}

|S| !(p− |S| − 1)!
p!

(val(S ∪ {j})− val{S}), (12)

where φj is the contribution of the j th feature to the results.
S is a subset of the model’s features, and p is the total number
of features. val(S) is the prediction for feature values in S that
are marginalized over features not included in S.

Shapley additive explanations (SHAP) (Lundberg and
Lee, 2017) form a method for explaining individual estima-
tion results based on Shapley values, which have been ap-
plied successfully to evaluate predictors using machine learn-
ing algorithms in environmental research (Hu et al., 2023).
The purpose of SHAP is to compute the contribution of each
feature to the result to explain an instance. Shapley values
are depicted as a linear additive feature attribution approach.
SHAP specifies the explanation as

g(x′)= φ0+

M∑
j=1

φj , (13)

where g is the model to be explained, M is the size of the
feature space, and φj ∈ R is the feature contribution for fea-
ture j , which is the same as the Shapley values of j .

We can calculate SHAP to quantify the contribution of
each feature to the prediction results of a black-box model
in different samples. The feature tends to increase the output
result when SHAP is positive. Conversely, the feature tends
to decrease the output result when SHAP is negative. The ab-
solute SHAP value (ASV) indicates the degree to which the
feature affects the output. To observe the overall significance,

the mean of the ASV for each feature in the data is therefore
defined as

Ij =
1
n

n∑
i=1

∣∣∣φ(i)
j

∣∣∣ , (14)

where i represents the data samples and j represents the fea-
tures.

3 Results and discussion

3.1 Model performance

In the five-fold profile-based cross-validation, all of the data
are used once in the test set. As illustrated in Fig. 4, the
model performance is evaluated by comparing estimated val-
ues with BGC-Argo observations. The model demonstrates
high accuracy in estimating nitrate concentration, with esti-
mated values generally aligning along the 1 : 1 line. Impor-
tantly, to ensure a comprehensive dataset and to enhance the
stability of the reconstruction process, we retained all of the
measured labels, including negative values. Furthermore, a
Softplus activation function was applied to the model’s out-
put layer to guarantee non-negative predictions, albeit at the
expense of some degradation in statistical performance met-
rics. Considering the significant differences between the two
regions of the study area, Fig. 4b and c show the test results
for the MED and NEA. Compared to the NEA, the MED
exhibits a smaller range of nitrate variations and stronger es-
timation performance. The MED records account for 86 %
of the total dataset, whereas the NEA contributes only 14 %.
This data imbalance likely contributes to the more consistent
performance in the MED compared to the NEA.

While the model has shown satisfactory overall perfor-
mance, it is critical that the accuracy remains consistently
desirable in the vertical dimension. Only then can the model
fulfill its intended purpose of estimating and reconstructing
the entire 3D ocean nitrate field. Figure 5 illustrates the ver-
tical distribution of the primary statistical metrics and their
comparison with simulated nitrate. The model maintains ro-
bust performance in the vertical dimension, with no signifi-
cant fluctuations in RMSE and MBE, which is vital for accu-
rately estimating nitrate profiles. The model exhibits slightly
superior performance in the MED compared to the NEA at
most depths. The RMSE in both the MED and NEA is higher
between 0 and 150 m, with a notable peak at 60 m depth,
reaching about 0.8 and 1.4 µmol kg−1, respectively. Further-
more, the RMSE of the MED remains at a low level and
slowly decreases as depth increases. In contrast, the RMSE of
the NEA varies drastically, accompanied by a larger overall
error, particularly in the 400–700 m depth range. As shown
in Fig. 5b, MBE values are negative for most depth ranges in
the NEA, suggesting a slight overall underestimation of ni-
trate concentrations, while a slight overestimation occurs in
the upper-ocean layers of both subregions.
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Figure 4. Estimation performance on the test set validated by BGC-Argo measurements (a). The test set results are further divided into the
MED (b) and NEA (c) regions. The red line indicates the fitted trend of the data, while the black dashed line denotes the 1 : 1 parity line.

Figure 5. Vertical profiles of the RMSE (a) and MBE (b) for modeled and simulated nitrate compared to BGC-Argo measurements.

The model excels in the deep ocean layers beyond 800 m
depth, where nitrates are characterized by low variability
and minimal feedback from the sea surface environment.
Nonetheless, through the use of temporal and spatial coor-
dinates and a dual training process, the model accurately es-
timates nitrate concentrations. The model’s relatively weak
performance is observed at the upper 100 m depths, which
could be attributed to the sensitivity of the surface layer to
external nitrate inputs (Altieri et al., 2021), thus leading to
deviations from the model-fitted relationship between nitrate
and SSEVs. Furthermore, the ocean at these depths is usu-
ally influenced by both the euphotic layer and mixed layers,
where complex interactions between ecosystem and ocean

dynamics occur, such as water transport, plankton consump-
tion, and decomposition. Hence, predicting parameters at this
depth has usually presented the biggest challenge in vertical
dimension estimation (Sammartino et al., 2020).

In contrast, simulated nitrate exhibits instability in describ-
ing the vertical distribution of nitrate concentration. Firstly,
simulated nitrate produces significant errors at the ocean sur-
face, possibly due to the limitations of biogeochemical mod-
els in simulating complex boundary interactions. However,
the estimation error here has been significantly ameliorated
by the MLP owing to the strong correlation between SSEVs
and SSN. Secondly, the characterization of nitrate vertical
changes by simulated nitrate is not precise enough. The ver-
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Figure 6. Illustration of model performance and spatial generalization in site-based cross-validation (a) and spatial error distributions (b),
compared with the case without CL (c, d) and the case of simulated nitrate itself (e, f). The subplots show (a) the test performance with CL,
(b) the spatial distribution of model accuracy, (c) the test performance without CL, (d) the distribution of RMSE increases (non-CL relative
to CL), (e) the validation performance of simulated nitrate concentrations, and (f) the spatial distribution of RMSE increases (simulated
nitrate relative to models with CL).

tical inaccuracy may result in disparities in the characteri-
zation of the changes, thus placing a limitation on small-
scale biogeochemical research. An evident instance can be
observed in the mesopelagic zone (MZ), ranging from 200 to
1000 m in the NEA. Simulated nitrate faced challenges in
accurately describing the vertical rate of nitrate variations
in this range, resulting in a notable overestimation of nitrate
concentrations (Fig. 5b). This is also reflected in the distinct
step-like pattern observed at nitrate concentrations of 10–

15 µmol kg−1 (Fig. 6a) and the overestimation in the vertical
pattern (Fig. 8e). Furthermore, the MLP and simulated ni-
trate present similarities in the vertical profiles of the RMSE,
while the MLP consistently outperforms simulated nitrate.
This also demonstrates that the MLP has improved perfor-
mance from incorporating prior knowledge from simulated
nitrate through CL.
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3.2 Spatial generalization ability and enhancement of
continual learning

Due to the limited monitoring range of BGC-Argo, the spa-
tial generalization ability of the model is crucial for accu-
rately reconstructing the complete nitrate concentration field.
Therefore, this section adopts a more rigorous validation pro-
cedure by partitioning the BGC-Argo dataset according to
device sites and performing the five-fold cross-validation as
outlined in Sect. 2.3.4. Under these circumstances, the spa-
tial disparity between the training and test sets grows sig-
nificantly, aiding in the assessment of the model’s predictive
performance across unknown marine regions and amplifying
the comparative impact of CL on spatial generalization.

Figure 6e illustrates the accuracy of simulated nitrate
concentrations by interpolating gridded simulated nitrate
data across longitude, latitude, depth, and time to match
the spatiotemporal coordinates of BGC-Argo observations,
thereby approximating and validating the simulated values.
The results indicate that simulated nitrate tends to form
stepwise clusters due to its inertia and lack of variabil-
ity in representing localized nitrate fluctuations (Fig. 8),
leading to similar y values within subsets that should cor-
respond to x-direction gradients. Nevertheless, the overall
agreement between the two datasets remains strong. The
simulated nitrate achieves an acceptable accuracy (R2

=

0.826, RMSE= 1.882 µmol kg−1), making it a valuable prior
dataset. This compatibility is crucial, and given that simu-
lated nitrate can provide data of comparable accuracy across
the entire ocean, its shows great potential as a complement to
BGC-Argo data. Simulated nitrate aids in understanding the
large-scale distribution of nitrate, offering extensive insights
that serve as a beneficial foundation for enhancing fitting re-
lationships during subsequent CL training phases.

Figure 6a illustrates the spatial generalization test perfor-
mance of the model, demonstrating that CL leads to en-
hanced test performance, as marked by an increase in R2

of 0.051 and a decrease in RMSE of 0.343 µmol kg−1, com-
pared to the non-CL results shown in Fig. 6c. Specifically, the
MLP model without CL significantly underestimates high ni-
trate concentration samples, primarily due to its limited gen-
eralization ability in unfamiliar regions of the NEA during
site-specific cross-validation. The introduction of CL effec-
tively mitigates this limitation, allowing the model to main-
tain stable generalized estimates, even for high nitrate con-
centration samples. Furthermore, the majority of the samples
exhibit a more consistent fit to the 1 : 1 line, significantly re-
ducing the episodic uncertainty associated with simulated ni-
trate and the generalization error of the non-CL MLP model.
Notably, coupling with CL retains the influence of prior
knowledge from simulated nitrate, resulting in localized vari-
ability differences. For instance, the densely packed high-
concentration samples in warm colors transitioned from sym-
metric fitting (Fig. 6c) to step-like clustering (Fig. 6a) while
achieving a closer fit and overall improved performance. The

extent of this transformation is influenced by the EWC pa-
rameter λ.

Figure 6b presents the horizontal distribution of the
RMSE. The predictions exhibit the highest accuracy in the
central MED, while larger RMSE values are observed in
the NEA and peripheral regions of the MED. The sub-
stantial variability in nitrate concentrations in the NEA is
largely attributable to the active exchange of eutrophic sea-
water. Furthermore, the sparse distribution of BGC-Argo
measurements in the NEA results in significant deviations
from the training data, posing substantial challenges to accu-
rate cross-validation in this region. Overall, high error rates
are frequently observed in coastal locations, particularly in
the western Strait of Gibraltar and the southern parts of the
MED. These areas are more susceptible to anthropogenic in-
fluences and complex land–sea interactions, which compli-
cate prediction efforts. Additionally, the shallower topogra-
phy of these regions contributes to increased errors in the
vertical water column, particularly in the error-prone ocean
surface layer (Fig. 5a).

Notably, regional disparities introduced by CL are evi-
dent in Fig. 6d. When the peripheral regions are used as
test sets, the discrepancies between training and test data dis-
tributions become more pronounced. This sparsity of BGC-
Argo data poses a considerable challenge for model estima-
tion in regions lacking sufficient global training on similar
datasets, leading to reduced performance metrics. However,
CL significantly enhances the model’s estimation capabili-
ties in sparsely observed regions, particularly in areas with
high RMSE values near the boundaries of BGC-Argo cov-
erage. This suggests that CL helps reduce model instabil-
ity when generalizing to unfamiliar regions by incorporat-
ing prior knowledge from simulated nitrate. For instance, in
the western Strait of Gibraltar, complex environmental in-
teractions and similarities in spatial coordinates to the MED
present significant estimation challenges. Nevertheless, the
model demonstrates substantial improvements in both accu-
racy and generalization stability compared to the MLP with-
out CL. Moreover, the model achieves more accurate esti-
mates by fitting BGC-Argo data, showing a comprehensive
improvement over simulated nitrate (Fig. 6f), which is crit-
ical for reconstructing the 3D nitrate field. Interestingly, in
data-dense regions such as parts of the Mediterranean, the
incorporation of CL results in a slight increase in the RMSE.
This phenomenon occurs because, in well-sampled regions,
prior knowledge may interfere with the MLP’s fitting pro-
cess. However, the influence of this prior knowledge can
be optimized by regionally adjusting the EWC parameter λ.
Currently, this parameter is selected to achieve an overall op-
timal performance.

In conclusion, it is reasonable to infer that CL enhances the
overall model performance and generalization capability in
regions not covered by BGC-Argo by incorporating relevant
knowledge and patterns from simulated nitrate. This process
is influenced by data distribution and weighting parameters.
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Figure 7. Accuracy comparison between MLP-estimated nitrate (a) and simulated nitrate (b), using GLODAPv2 measurements for vali-
dation, with the colors denoting individual cruises. The subplots show (a) validation of MLP-estimated nitrate, (b) validation of simulated
nitrate, and (c) the spatial RMSE distribution of MLP-estimated nitrate, where the errors are derived from the average vertical measurement
error at each cruise sampling location.

3.3 Independent validation with GLODAPv2

To further ensure a more stable assessment of the model’s
generalization ability in data-sparse regions while avoiding
potential autocorrelation within the BGC-Argo dataset, the
GLODAPv2 database was employed for independent vali-
dation, which was not part of the training. Fifteen cruises
measuring nitrate concentrations at depths ranging from 0 to
2000 m in the study area were selected, and their measure-
ments were compared against model estimates and simulated
nitrate. Figure 7c illustrates that a significant portion of the
GLODAPv2 data is located in the NEA, thereby allowing for
an effective assessment of the model’s performance in un-
dersampled regions. The results indicate a strong correlation
with the GLODAPv2 nitrate concentrations, as evidenced by
an R2 value of 0.94 (Fig. 7a).

Figure 7c also depicts the regional distribution of errors,
revealing that model performance varies significantly across
different regions. The lowest errors are observed in the west-
ern MED and the southern NEA, whereas larger errors are
concentrated in areas with sparse BGC-Argo observations.
This distribution pattern and its underlying causes align with
the spatial performance in site-based cross-validation, as
shown in Fig. 5b. Factors such as enhanced water exchange
dynamics (Berglund et al., 2023), intricate land–sea inter-
actions, and shallow topography contribute additional com-
plexities. Moreover, several expeditions north of 50° N took
place in 2010–2012 and 2015, while most BGC-Argo ob-
servations in the same region were made after 2020. The
pronounced variability of nitrate concentrations in the NEA,
coupled with limited observations and temporal discrepan-
cies, diminishes the data representativeness, leading to an in-
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Figure 8. Comparison of monthly vertical patterns of nitrate in the designated region between BGC-Argo, the MLP model, and the simulated
climatology. Panels (a), (c), and (e) correspond to the box MED, while panels (b), (d), and (f) correspond to the box NEA. The black dashed
lines represent the average MLD from the CMEMS dataset.

creased RMSE. Overall, the error margins are deemed ac-
ceptable and still outperform the validation accuracy of the
simulated nitrate (Fig. 7b).

3.4 Validation of the 3D nitrate pattern

To thoroughly examine and contrast the seasonal vertical pat-
terns of BGC-Argo, modeled, and simulated nitrate, two rep-
resentative regions depicted in Fig. 1 were selected to facili-
tate a comprehensive evaluation of the model’s efficacy. The
box NEA, located at 14–19° W and 46–53° N, and the box
MED, located at 26–30° E and 32–36° N, were chosen due to
their frequent BGC-Argo sampling, which ensures great con-

sistency between measured data and observed vertical pat-
terns. The vertical distribution of nitrate is depicted in Fig. 8
for these two regions, where the MLP model, simulated ni-
trate, and BGC-Argo observations are juxtaposed for com-
parison.

The reconstructed vertical nitrate profiles derived from the
MLP model demonstrate greater consistency and robustness
compared to the BGC-Argo data, whereas the profiles from
simulated nitrate still exhibit significant discrepancies in cap-
turing seasonal variations. The MLP model has shown a re-
markable ability to capture medium-scale features, such as
the seasonal increase during winter and decrease during sum-
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mer, aligning well with the BGC-Argo data and effectively
depicting seasonal variations in the upper ocean. Further-
more, the MLP model is consistent with BGC-Argo in rep-
resenting depth-dependent variability within the MZ while
bridging gaps left by the intermittent nature of BGC-Argo
measurements. In contrast, simulated nitrate tends to under-
estimate concentrations in the upper ocean (Fig. 5b) and
shows relatively sluggish seasonal variations, including the
absence of a pronounced increase during winter in the box
NEA and insufficient representation of seasonal changes in
the upper layers of the box MED.

As discussed previously, the model’s estimation results
demonstrate satisfactory accuracy and strong performance in
the test dataset. Additionally, the model’s predictions have
been analyzed comprehensively across the vertical, hori-
zontal, and temporal dimensions, all indicating high per-
formance. To ensure robust generalization across diverse
oceanic environments, the joint model was employed to es-
timate nitrate concentrations in both the MED and NEA, de-
spite facing specific challenges. Given the complexity of the
marine environment and the fact that the NEA represents
only 14 % of the dataset, a higher error rate in this region
is acceptable. Despite increased errors in some challenging
cases, the model generally proves to be reliable for recon-
structing the 3D nitrate concentration field.

3.5 Spatial and temporal distribution of the
reconstructed nitrate field

The reconstruction of the 3D nitrate field from 2010 to 2023
was done using the MLP model combined with the SSEV for
the corresponding period. The reconstructed field features a
monthly temporal resolution, a horizontal spatial resolution
of 0.25°, and 63 depth levels, with vertical intervals rang-
ing from 5 to 50 m. Figure 9 illustrates the spatial distribu-
tions of the reconstructed nitrate at various depths across the
pan-European region, with representative profiles selected at
depths of 0, 50, 100, 150, and 500 m.

The reconstructed nitrate field reveals substantial spatial
variability, with a clear increasing trend in nitrate concentra-
tions with depth. The MED was identified as an oligotrophic
region and generally exhibits nitrate concentrations below
5 µmol kg−1 at depths between 0 and 150 m. Unlike the NEA,
the MED nitrate concentrations are less influenced by sea-
sonal dynamics, primarily due to the region’s enclosed nature
and restricted seawater exchange. The oligotrophic charac-
teristics of the MED intensify from west to east, with more
pronounced differences evident in the deeper ocean layers
(Pujo-Pay et al., 2011; Ribera d’Alcalà et al., 2003). In con-
trast, the NEA is characterized by higher nitrate concentra-
tions and pronounced seasonal variability, which is largely
driven by the influx of nutrient-rich water masses from the
open ocean (Berglund et al., 2023). The highest nitrate con-
centrations are found in the NEA seawaters, which form a
typical eutrophic region. The spatial pattern of the recon-

structed results overall aligns well with that of the simulated
nitrate dataset (Fig. S1 in the Supplement), including exten-
sive regions not covered by BGC-Argo, such as the coastal
waters of the UK and Norway. Meanwhile, discrepancies are
observed in certain small-scale 3D structures between the
reconstruction and the simulated nitrate field. These differ-
ences have the potential to provide valuable data foundations
and insights for further ecological research.

Figure 10 presents the time–depth profiles of nitrate con-
centration as a function of the month in both the MED and
NEA, allowing for a more detailed examination of their tem-
poral patterns. The seasonal variability of nitrate in the MED
is relatively subtle. During winter, upwelling of nutrient-rich
cold water elevates nitrate concentrations in the upper ocean,
with a marked increase observed from October to February
of the following year. After reaching this peak, nitrate levels
decline due to phytoplankton uptake during spring, followed
by a secondary rise in fall as phytoplankton biomass decays
(Severin et al., 2017). Conversely, the NEA exhibits a pro-
nounced temporal pattern in nitrate concentration that is pri-
marily governed by ocean dynamics. In the mixed layer, from
the surface to a depth of approximately 100 m, nitrate levels
increase from October to March and subsequently decrease
from April to August. The temporal pattern in the NEA re-
sembles the winter increase observed in the MED but lacks
a distinct secondary peak, instead showing a more sustained
high-nutrient period.

Figure 11 illustrates the interannual anomalies of nitrate
concentrations across the study area, derived by subtract-
ing the annual mean nitrate value for each year from the
monthly nitrate concentrations. In most instances, nitrate
anomalies exhibit consistency throughout the vertical profile,
with this uniformity being more pronounced in the MED.
Additionally, episodic discontinuities are often detected at
depths around 100 and ≈ 500 m, corresponding to the mix-
ing layer and certain pycnoclines. In the NEA, where seawa-
ter exchange is more dynamic, discontinuities in nitrate con-
centration are more prevalent. Compared with existing data
sources, although BGC-Argo and simulated nitrate represent
some of the most advanced nitrate data available from cur-
rent observational and numerical models, they still face sig-
nificant challenges in depicting interannual trends (Fig. S2).
Due to the varying geographical locations of BGC-Argo ob-
servations over time, regional differences in nutrient levels
introduce considerable interference and fluctuations into the
calculation of interannual trends. Consequently, the trends
presented by BGC-Argo appear to be more radical and may
even be reversed if the sampling locations encompass both
high- and low-nutrient regions. As for CMEMS nitrate, its
response to mesoscale nitrate variations is relatively slug-
gish, leading to an overly homogeneous trend that is likely
more conservative than the actual scenario. Nevertheless, its
overall trend can serve as a reference for multiyear scale vari-
ations, such as the increasing nitrate levels in the MED and
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Figure 9. Spatial distribution of the reconstructed nitrate field, with the columns representing the four seasons and the rows representing the
five depth slices.

the intensified downward deposition of upper-ocean nitrate
in the NEA (Fig. S2).

This study identifies three significant temporal trends.
Firstly, there is a discernible overall increase in nitrate con-
centrations that is characterized by more frequent positive
anomalies, particularly since 2021. This trend indicates an
increasing fluctuation in nitrate levels and an escalation in
eutrophication within the study area. The reconstruction out-
comes align closely with trends observed in various case
studies and extend these observations by providing results
on a broader scale with more detailed quantification.

The MED exhibits a notably regular upward trend. BGC-
Argo sequence analyses from the Sicily Channel revealed
a slightly negative nitrate trend from 2011 to 2016, shift-

ing to a positive trajectory thereafter until 2020 (Four-
rier et al., 2022). In simulations employing physical–
biogeochemical models under Representative Concentration
Pathway (RCP) 4.5 and 8.5 scenarios for the northwestern
MED, nutrients displayed a general ascending pattern that
was notably more pronounced in deeper ocean layers than in
surface waters (Reale et al., 2022). Remarkably, an anoma-
lous nutrient surge after 2022 could potentially be linked to
the severe winter storm Carmel in 2021. A detailed time se-
ries analysis over 4 years at the Levantine basin site demon-
strated substantial replenishment of marine nitrates during
the 2021 winter storm, reversing a declining trend that be-
gan in 2018 (Ben-Ezra et al., 2024). By contrast, interan-
nual anomalies in the NEA are significantly more volatile.
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Figure 10. Monthly distribution profiles of nitrate concentrations in the MED (a) and NEA (b). The black dashed lines represent the average
MLD from the CMEMS dataset.

Figure 11. Interannual anomaly profiles of reconstructed nitrate concentrations in the MED (a) and NEA (b).
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Although certain hypotheses suggest that intensified ocean
stratification due to climate warming could limit nutrient
availability in the upper-ocean layers, recent findings indi-
cate that this limitation primarily affects phosphates, whereas
nitrates continue to exhibit frequent and pronounced local
fluctuations. The reconstruction results provide meticulous
trend characterizations consistent with documented positive
anomalies observed in the NEA’s upper-ocean layers be-
tween 2010 and 2014 (Macovei et al., 2019), together with
the identified growth patterns within the Iberian upwelling
system (Padin et al., 2020).

Secondly, while vertical consistency of nitrate anoma-
lies is stronger in the MED compared to the NEA, a de-
cline in upper-ocean nitrate concentrations is evident in the
NEA. Ocean warming has hindered the upward transport of
nutrient-rich cold water, modifying the vertical nitrate distri-
bution in the NEA. Moreover, no consistent overall trend of
anomalies is apparent in surface nitrate concentrations in the
NEA, which may be driven by complex ocean–atmosphere
interactions and anthropogenic influences. Thirdly, the tran-
sition period of nitrate anomalies appears to be lengthening.
The duration of individual positive or negative anomalies has
extended from a few months at the beginning of the study pe-
riod to several months or even over 1 year. This lengthening
may indicate irreversible shifts in the marine environment or
a decline in the ocean’s self-regulatory capacity.

Furthermore, interannual anomaly trends must be inter-
preted cautiously due to their dependence on SSEVs and
specific weights of the model, and their reliability requires
further research. For instance, the reconstructed results may
overestimate anomalies in the bathypelagic zone (> 1000 m).
At these depths, nitrate concentrations are relatively sta-
ble (Fig. 10) and are not effectively represented by SSEVs.
Nonetheless, the model’s estimates are inevitably influenced
by the SSEV signal. The accuracy of these anomalies is sig-
nificantly influenced by both the generalization capacity of
the model and the stability of the input features. Despite the
model’s proven reliability, particularly with the MEB per-
formance most relevant to anomaly calculations consistently
maintaining an excellent level of ±0.04 µmol kg−1 across
multiple validations, small-scale findings still require further
corroboration through targeted case studies. Overall, com-
pared to the limitations posed by the discontinuous discrete
observations from BGC-Argo and the inadequacies of sim-
ulated nitrate in capturing fine-scale variability, the recon-
structed dataset offers an encouraging and comprehensive
perspective for trend analysis.

3.6 Contribution of features to the model output

The current model is established based on all available fea-
tures in the dataset, but given the redundancy among these
features, the model may require fewer of the most efficient
features. There are two benefits to entering all of the men-
tioned features. The ability of the MLP to automatically ex-

Figure 12. Heatmap for the matrix of Pearson correlation coeffi-
cients between nitrate and input variables. The size of the cell rep-
resents the absolute value of the correlation coefficient.

tract features ensures that the model will be enhanced and
minimally affected by feature redundancy. In particular, the
utilization of large-scale simulated nitrate data has signifi-
cantly contributed to the model’s ability to capture nonlinear
relationships between multiple features, thus enabling it to
effectively monitor nitrate concentration across a wide range
of SSEV scenarios. On the other hand, analyzing the impor-
tance of each feature based on the model with all of the input
features is crucial for further studies of nitrate estimation.

Figure 12 depicts the Pearson correlation coefficients
among the features. Nitrate has been found to be positively
correlated with depth and Chl and negatively correlated with
SST (Yu et al., 2022). Furthermore, nitrate is positively
correlated with features such as colored dissolved material
(CDM), normalized fluorescence line height (NFLH), and
10 m wind speed (S10) and negatively correlated with fea-
tures such as bottom euphotic layer depth (ZEU), heated
layer depth (ZHL), and Secchi disk depth (ZSD). The spa-
tial distribution is characterized by a positive correlation with
latitude and a negative correlation with longitude, since ni-
trate concentrations in the NEA are generally higher than in
the MED. Diverse relationships between the input features
suggest the potential for feature redundancy, as exemplified
by the marked positive correlation between SST and ZHL
and the negative correlation between ZSD and Chl. The cor-
relation coefficient can only capture linear relationships be-
tween variables, while MLP is a model to fit nonlinear re-
lationships. Therefore, the contribution of features to the re-
sults cannot be determined solely based on correlation coef-
ficients. The contributions of features based on SHAP values
are discussed next.
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Figure 13. Probability distribution of SHAP values representing
the impact of each feature on the model output. The y axis shows
the input features, sorted by the total magnitude of Ij , while the
shaded area in the x-axis direction represents the distribution of the
SHAP values, scaled due to the wide range. The numbers on the
left show the mean of the raw SHAP values, while those on the
right show the mean of the ASV. The black vertical dashed lines
represent the median and quartiles of the SHAP values.

Given the high computational cost of SHAP (Chau et al.,
2022) and the sufficient representativeness of a smaller
sample (Pauthenet et al., 2022), we randomly selected
200 000 samples to estimate feature contributions. Figure 13
illustrates the probability distribution of the SHAP values for
each feature, with the features ranked according to their av-
erage ASV. Given the different mechanisms by which the
features affect the ocean at various depths, it is divided into
two layers in the contribution discussion. Bounded by 200 m
depth, the upper layer is the epipelagic zone (EZ), and the
deeper layer of 200–2000 m is the mesopelagic zone and part
of the bathypelagic zone.

The input spatial features include depth, longitude, and
latitude. Of these, depth is consistently identified as the
strongest feature extracted by the model, which corresponds
to the pattern of variations in the vertical distribution of ni-
trate, as depth uniquely facilitates the mapping of nitrate pro-
files (Fig. S3). Particularly in the EZ, the contribution of
depth features is extremely significant, with IEZ

Depth = 2.36,
surpassing that of other features and by far that of the contri-
bution at depths of 200–2000 m. This is attributed to the fact

that the increase in nitrate concentration with depth is most
pronounced in the EZ. The nitrate concentration at 200 m
depth may be several times higher than that at the sea sur-
face. Although such a trend is also observed at depths of
200–2000 m, the magnitude of this change is relatively small.
Hence, depth always remains the most crucial feature, espe-
cially in the EZ.

Furthermore, longitude is the second essential feature in
the model. Nitrate concentration in the MED and NEA dif-
fers greatly, resulting in longitude being more vital than lat-
itude. At 200–2000 m depths, the contribution proportion of
spatiotemporal coordinates increases, while the contributions
of other SSEV features decrease. On the one hand, nitrate
concentration in the surface ocean is more susceptible to
SSEVs. On the other hand, nitrate in the deep ocean exhibits
low seasonal variability but stable regional characteristics,
and its concentration is primarily related to its location. The
estimation process in the deeper ocean mainly relies on spa-
tiotemporal coordinates supplemented by subtle adjustments
to environmental variables.

The feature ranking in Fig. 13 aligns closely with that in
Table S1 in the Supplement, though there are some minor
differences. Both discuss the importance of features, but the
SHAP values in Fig. 13 focus on the contributions of fea-
tures, while the RMSE changes in Table S1 emphasize the
irreplaceability of the features. For example, Z (total terrain
depth), which provides a unique perspective, has a small con-
tribution but significantly impacts the model when excluded.
Furthermore, when excluding features, we combined Jday1
(the cosine function of the Julian day) and Jday2 (the sine
function of the Julian day), which have a high contribution
but a minimal impact on model performance when excluded.
This is because Jday is a heuristic feature that, while useful
for providing temporal information, can be inferred through
the periodic variation of other variables. Figure 12 shows the
correlation heatmap between nitrate and all of the input vari-
ables. The current feature combination is sufficient and po-
tentially redundant; some highly correlated features can sub-
stitute one another to some extent, which is why the RMSE
increase after excluding high-contribution features like pho-
tosynthetically available radiation (PAR) is relatively small.
However, the comparison experiments in Table 1 confirm that
the model can accommodate these correlated features and en-
hance their performance.

The residual features comprise environmental parameters,
which encompass diverse facets of climate, biology, and
ocean dynamics. Of these parameters, SSH exhibited a no-
tably higher Ij value and demonstrated the most significant
impact on model performance when excluded (Table S1).
SSH reflects various dynamic effects of ocean circulation,
mixing layers, and eddies, which together influence the hor-
izontal and vertical transport of nitrates (Ascani et al., 2013;
Fripiat et al., 2021; Sarangi and Devi, 2017; Wang et al.,
2021). SSH reflects the influence of ocean dynamic variabil-
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ity on nitrate concentrations, typically exhibiting opposing
impacts between the EZ and the deeper ocean.

Another set of critical features comprises SST-related vari-
ables. SST exhibits strong correlations with ZHL, PAR, and
ZSD (Fig. 12), each concurrently presenting high Ij values
and underscoring the dominant role that SST-related features
play in nitrate estimation processes. Highly correlated fea-
tures may dilute their individual contributions to the results,
and SST may therefore play a more significant role than de-
picted in Fig. 13.

Previous studies have established SST as a principal envi-
ronmental factor in nitrate retrieval, highlighting the fact that
upwelling and winter convective mixing constitute two cru-
cial physical processes that drive the transportation of cold,
nitrate-rich waters into the euphotic layer, thereby boosting
SSN and simultaneously reducing SST (Kudela and Dug-
dale, 2000; Pan et al., 2018). Since SST and SSH pro-
vide information on vertical mixing, their contribution in the
deep ocean remains significant compared to other SSEVs. Of
these, ZEU, PAR, NLFH, and CF are indicative of the opti-
cal environment, which is probably related to the oxidation of
nitrogen by light inhibition and the activity of phytoplankton
(Hutchins and Capone, 2022; Zakem et al., 2018). Further-
more, ocean dynamic parameters (e.g., MLD and S10) con-
tribute to nitrate estimation by influencing nutrients in multi-
ple ways (Tuerena et al., 2019; Liu et al., 2019).

Notably, Chl has previously been employed as another
pivotal variable for SSN retrieval (Goes et al., 1999; Pan
et al., 2018; Sarangi and Devi, 2017). However, in the EZ
and the deeper layers, its average contribution remains rel-
atively low, exhibiting instead a distribution characterized
by a long tail of positive values. This phenomenon aligns
closely with feature assessments of nitrate reconstruction in
the Indian Ocean (Yang et al., 2024) and dissolved organic
nitrogen studies in the Atlantic Ocean (Altieri et al., 2016).
The predominant limiting factor is the confined spatiotem-
poral scope; although Chl is intrinsically linked to nitrate, its
positive contributions are restricted primarily to vertical bi-
ologically productive upper layers and horizontally confined
nutrient-rich regions, which only comprise a small portion
of the oceanic 3D field. Consequently, regions minimally
influenced by Chl dilute the average contribution of phyto-
plankton across broader oceanic estimations. Figure 14 il-
lustrates the distribution of Chl contributions across specific
samples. In the majority of cases, low chlorophyll concen-
trations yield negligible effects, while slight increases in Chl
typically exert a negative influence, as phytoplankton growth
consumes available nitrates (Goes et al., 2000). Conversely,
exceedingly high chlorophyll levels significantly enhance ni-
trate estimation, potentially signaling eutrophication events.
Furthermore, during training, the model seemingly captures
more valuable Chl-related information from alternative fea-
tures such as CDM, redistributing Chl’s overall contribution
to 3D nitrate estimations.

Figure 14. Scatterplot of Chl contribution values across the data
samples. The x axis represents SHAP contribution values, while the
y axis represents depth. The colors of the scatter points indicate the
Chl feature values in each sample.

As described above, the SHAP approach can explain the
effect of each feature on the MLP output from both holis-
tic and individual perspectives. This approach enables com-
prehension of the role played by features in deep-learning
black-box models. The ASV distribution of most features ex-
hibits a long tail (Fig. 13), suggesting that even features with
a low Ij can have a significant impact on model estimation
in extreme environments. Nevertheless, the SHAP contribu-
tion is solely based on mathematical models and data-driven
interpretations, which may result in conclusions that deviate
from physical processes. Although it has been confirmed ex-
perimentally that removing features with a lower Ij results in
less decline in model accuracy, the evaluation of the features
still requires caution.

4 Data availability

The reconstructed 3D nitrate concentration dataset pre-
sented in this paper can be accessed via Zenodo at
https://doi.org/10.5281/zenodo.14010813 (Yu et al., 2024).
Here we provide a nitrate concentration gridded product for
the pan-European ocean at 0.25°× 0.25° horizontal resolu-
tion at 63 vertical levels from 0 to 2000 m and at a monthly
resolution from 2010 to 2023.

5 Code availability

All the code used in the current study is available from the
corresponding author upon reasonable request.
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6 Conclusions

This study developed a continual-learning-based MLP model
tailored to estimating the 3D ocean nitrate concentration. The
model was cross-validated by independent in situ data pro-
files and demonstrated satisfactory performance, achieving
an R2 of 0.98, a RMSE of 0.592 µmol kg−1, and a MAE of
0.398 µmol kg−1. It also exhibited robust and reliable per-
formance in both site-based cross-validation and indepen-
dent cruise observations. Contrasting experiments show that
the model’s generalization is notably enhanced by employ-
ing continual learning from simulated nitrate, especially in
regions with limited data availability. The estimation accu-
racy generally remains stable across all dimensions, with the
more significant error occurring within the vertical range of
60–100 m and in the sparse region of the observations.

The 3D spatiotemporal distribution of nitrate is analyzed
based on the reconstruction results. The findings indicate a
progressive increase in oligotrophy from the western to east-
ern regions of the study area. Nitrate concentration shows
significant seasonal variability in the vertical dimension
driven by seawater exchange and biological processes. From
an interannual perspective, a discernible increase in nitrate
concentrations was noted, especially since 2021. In addition,
vertical consistency in interannual anomalies within the NEA
was lacking, with discrepancies commonly observed around
depths of 100 and 500 m.

The contribution of each feature is calculated to gain in-
sight into their influence on nitrate estimation. The results
reveal that spatial coordinates such as depth, longitude, and
environmental variables represented by SSH and SST exert
the most significant influence. Meanwhile, certain features
with low average contributions can still play vital roles in
specific instances involving high anomalies.

The model still has certain limitations that require further
improvements. Although its generalization ability has been
enhanced, the nitrate distribution and trends in data-sparse
regions should still be evaluated with caution. Due to the
sparsity of BGC-Argo and the computational cost of CL,
the model is limited to reconstructing water column profiles
without incorporating large-scale spatiotemporal global fea-
tures, which may prevent it from fully leveraging the poten-
tial of deep-learning models. The structure of the CL strategy
imposes strict requirements on the datasets used for the two-
stage training and may be affected by multiple sources of
uncertainty, highlighting the need for higher-quality datasets
in the future. Additionally, the current CL approach may in-
troduce potential disturbances and performance fluctuations
in regions with extensive BGC-Argo sampling. Future im-
provements could mitigate this limitation through dynamic
weight parameters or additional modules.

From future perspectives, integrating remote sensing with
deep learning to estimate oceanic 3D conditions has signifi-
cant research potential. Continual learning allows for the in-
corporation of numerical model knowledge to address the

limitations of sparse in situ measurements and can be cou-
pled to any deep-learning model, making it a promising
paradigm for reconstructing ocean datasets. Given the chal-
lenges of continuous high-resolution ocean monitoring, this
approach can serve as an alternative solution to bridge the ob-
servation gap. Leveraging remote sensing expands retrieved
variables and adds vertical dimension insights, supporting
further research into the marine environment.

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/essd-17-2735-2025-supplement.
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