Articles | Volume 17, issue 5
https://doi.org/10.5194/essd-17-2193-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-2193-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
CCD-Rice: a long-term paddy rice distribution dataset in China at 30 m resolution
Ruoque Shen
School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, Guangdong, China
Qiongyan Peng
School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, Guangdong, China
Xiangqian Li
School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, Guangdong, China
Xiuzhi Chen
School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, Guangdong, China
Wenping Yuan
CORRESPONDING AUTHOR
Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Related authors
Ruoque Shen, Qiongyan Peng, Xiangqian Li, Xiuzhi Chen, and Wenping Yuan
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-147, https://doi.org/10.5194/essd-2024-147, 2024
Manuscript not accepted for further review
Short summary
Short summary
Rice is a vital staple crop that plays a crucial role in food security in China. However, long-term high-resolution rice distribution maps in China are lacking. This study developed a new rice mapping method using to address the challenges of cloud contamination and missing data in optical remote sensing observations. The resulting dataset, CCD-Rice (China Crop Dataset-Rice), achieved high accuracy and showed strong correlation with statistical data.
Ruoque Shen, Baihong Pan, Qiongyan Peng, Jie Dong, Xuebing Chen, Xi Zhang, Tao Ye, Jianxi Huang, and Wenping Yuan
Earth Syst. Sci. Data, 15, 3203–3222, https://doi.org/10.5194/essd-15-3203-2023, https://doi.org/10.5194/essd-15-3203-2023, 2023
Short summary
Short summary
Paddy rice is the second-largest grain crop in China and plays an important role in ensuring global food security. This study developed a new rice-mapping method and produced distribution maps of single-season rice in 21 provincial administrative regions of China from 2017 to 2022 at a 10 or 20 m resolution. The accuracy was examined using 108 195 survey samples and county-level statistical data, and we found that the distribution maps have good accuracy.
Yi Zheng, Ruoque Shen, Yawen Wang, Xiangqian Li, Shuguang Liu, Shunlin Liang, Jing M. Chen, Weimin Ju, Li Zhang, and Wenping Yuan
Earth Syst. Sci. Data, 12, 2725–2746, https://doi.org/10.5194/essd-12-2725-2020, https://doi.org/10.5194/essd-12-2725-2020, 2020
Short summary
Short summary
Accurately reproducing the interannual variations in vegetation gross primary production (GPP) is a major challenge. A global GPP dataset was generated by integrating the regulations of several major environmental variables with long-term changes. The dataset can effectively reproduce the spatial, seasonal, and particularly interannual variations in global GPP. Our study will contribute to accurate carbon flux estimates at long timescales.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique M. Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda R. Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul K. Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Xin Lan, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick C. McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data, 17, 965–1039, https://doi.org/10.5194/essd-17-965-2025, https://doi.org/10.5194/essd-17-965-2025, 2025
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and datasets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Xueqin Yang, Qingling Sun, Liusheng Han, Wenping Yuan, Jie Tian, Liyang Liu, Wei Zheng, Mei Wang, Yunpeng Wang, and Xiuzhi Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-64, https://doi.org/10.5194/essd-2025-64, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Understanding how leaves absorb carbon from the atmosphere is essential for predicting changes in global forests. Young leaves play a key role in this process, but their efficiency has been difficult to measure at large scales. Using satellite data, we developed a new method to track the seasonal patterns of young leaves’ photosynthetic capacity from 2001 to 2018. Our dataset helps scientists better understand forest growth and how ecosystems respond to climate change.
Yangyang Fu, Xiuzhi Chen, Chaoqing Song, Xiaojuan Huang, Jie Dong, Qiongyan Peng, and Wenping Yuan
Earth Syst. Sci. Data, 17, 95–115, https://doi.org/10.5194/essd-17-95-2025, https://doi.org/10.5194/essd-17-95-2025, 2025
Short summary
Short summary
This study proposed the Winter-Triticeae Crops Index (WTCI), which had great performance and stable spatiotemporal transferability in identifying winter-triticeae crops in 66 countries worldwide, with an overall accuracy of 87.7 %. The first global 30 m resolution distribution maps of winter-triticeae crops from 2017 to 2022 were further produced based on the WTCI method. The product can serve as an important basis for agricultural applications.
Sylvain Schmitt, Fabian Fischer, James Ball, Nicolas Barbier, Marion Boisseaux, Damien Bonal, Benoit Burban, Xiuzhi Chen, Géraldine Derroire, Jeremy Lichstein, Daniela Nemetschek, Natalia Restrepo-Coupe, Scott Saleska, Giacomo Sellan, Philippe Verley, Grégoire Vincent, Camille Ziegler, Jérôme Chave, and Isabelle Maréchaux
EGUsphere, https://doi.org/10.5194/egusphere-2024-3106, https://doi.org/10.5194/egusphere-2024-3106, 2024
Short summary
Short summary
We evaluate the capability of TROLL 4.0, a simulator of forest dynamics, to represent tropical forest structure, diversity and functioning in two Amazonian forests. Evaluation data include forest inventories, carbon and water fluxes between the forest and the atmosphere, and leaf area and canopy height from remote-sensing products. The model realistically predicts the structure and composition, and the seasonality of carbon and water fluxes at both sites.
Ruoque Shen, Qiongyan Peng, Xiangqian Li, Xiuzhi Chen, and Wenping Yuan
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-147, https://doi.org/10.5194/essd-2024-147, 2024
Manuscript not accepted for further review
Short summary
Short summary
Rice is a vital staple crop that plays a crucial role in food security in China. However, long-term high-resolution rice distribution maps in China are lacking. This study developed a new rice mapping method using to address the challenges of cloud contamination and missing data in optical remote sensing observations. The resulting dataset, CCD-Rice (China Crop Dataset-Rice), achieved high accuracy and showed strong correlation with statistical data.
Daju Wang, Peiyang Ren, Xiaosheng Xia, Lei Fan, Zhangcai Qin, Xiuzhi Chen, and Wenping Yuan
Earth Syst. Sci. Data, 16, 2465–2481, https://doi.org/10.5194/essd-16-2465-2024, https://doi.org/10.5194/essd-16-2465-2024, 2024
Short summary
Short summary
This study generated a high-precision dataset, locating forest harvested carbon and quantifying post-harvest wood emissions for various uses. It enhances our understanding of forest harvesting and post-harvest carbon dynamics in China, providing essential data for estimating the forest ecosystem carbon budget and emphasizing wood utilization's impact on carbon emissions.
Kai Yan, Jingrui Wang, Rui Peng, Kai Yang, Xiuzhi Chen, Gaofei Yin, Jinwei Dong, Marie Weiss, Jiabin Pu, and Ranga B. Myneni
Earth Syst. Sci. Data, 16, 1601–1622, https://doi.org/10.5194/essd-16-1601-2024, https://doi.org/10.5194/essd-16-1601-2024, 2024
Short summary
Short summary
Variations in observational conditions have led to poor spatiotemporal consistency in leaf area index (LAI) time series. Using prior knowledge, we leveraged high-quality observations and spatiotemporal correlation to reprocess MODIS LAI, thereby generating HiQ-LAI, a product that exhibits fewer abnormal fluctuations in time series. Reprocessing was done on Google Earth Engine, providing users with convenient access to this value-added data and facilitating large-scale research and applications.
Ruoque Shen, Baihong Pan, Qiongyan Peng, Jie Dong, Xuebing Chen, Xi Zhang, Tao Ye, Jianxi Huang, and Wenping Yuan
Earth Syst. Sci. Data, 15, 3203–3222, https://doi.org/10.5194/essd-15-3203-2023, https://doi.org/10.5194/essd-15-3203-2023, 2023
Short summary
Short summary
Paddy rice is the second-largest grain crop in China and plays an important role in ensuring global food security. This study developed a new rice-mapping method and produced distribution maps of single-season rice in 21 provincial administrative regions of China from 2017 to 2022 at a 10 or 20 m resolution. The accuracy was examined using 108 195 survey samples and county-level statistical data, and we found that the distribution maps have good accuracy.
Xueqin Yang, Xiuzhi Chen, Jiashun Ren, Wenping Yuan, Liyang Liu, Juxiu Liu, Dexiang Chen, Yihua Xiao, Qinghai Song, Yanjun Du, Shengbiao Wu, Lei Fan, Xiaoai Dai, Yunpeng Wang, and Yongxian Su
Earth Syst. Sci. Data, 15, 2601–2622, https://doi.org/10.5194/essd-15-2601-2023, https://doi.org/10.5194/essd-15-2601-2023, 2023
Short summary
Short summary
We developed the first time-mapped, continental-scale gridded dataset of monthly leaf area index (LAI) in three leaf age cohorts (i.e., young, mature, and old) from 2001–2018 data (referred to as Lad-LAI). The seasonality of three LAI cohorts from the new Lad-LAI product agrees well at eight sites with very fine-scale collections of monthly LAI. The proposed satellite-based approaches can provide references for mapping finer spatiotemporal-resolution LAI products with different leaf age cohorts.
Yuchan Chen, Xiuzhi Chen, Meimei Xue, Chuanxun Yang, Wei Zheng, Jun Cao, Wenting Yan, and Wenping Yuan
Hydrol. Earth Syst. Sci., 27, 1929–1943, https://doi.org/10.5194/hess-27-1929-2023, https://doi.org/10.5194/hess-27-1929-2023, 2023
Short summary
Short summary
This study addresses the quantification and estimation of the watershed-characteristic-related parameter (Pw) in the Budyko framework with the principle of hydrologically similar groups. The results show that Pw is closely related to soil moisture and fractional vegetation cover, and the relationship varies across specific hydrologic similarity groups. The overall satisfactory performance of the Pw estimation model improves the applicability of the Budyko framework for global runoff estimation.
Yidi Xu, Philippe Ciais, Le Yu, Wei Li, Xiuzhi Chen, Haicheng Zhang, Chao Yue, Kasturi Kanniah, Arthur P. Cracknell, and Peng Gong
Geosci. Model Dev., 14, 4573–4592, https://doi.org/10.5194/gmd-14-4573-2021, https://doi.org/10.5194/gmd-14-4573-2021, 2021
Short summary
Short summary
In this study, we implemented the specific morphology, phenology and harvest process of oil palm in the global land surface model ORCHIDEE-MICT. The improved model generally reproduces the same leaf area index, biomass density and life cycle fruit yield as observations. This explicit representation of oil palm in a global land surface model offers a useful tool for understanding the ecological processes of oil palm growth and assessing the environmental impacts of oil palm plantations.
Yi Zheng, Ruoque Shen, Yawen Wang, Xiangqian Li, Shuguang Liu, Shunlin Liang, Jing M. Chen, Weimin Ju, Li Zhang, and Wenping Yuan
Earth Syst. Sci. Data, 12, 2725–2746, https://doi.org/10.5194/essd-12-2725-2020, https://doi.org/10.5194/essd-12-2725-2020, 2020
Short summary
Short summary
Accurately reproducing the interannual variations in vegetation gross primary production (GPP) is a major challenge. A global GPP dataset was generated by integrating the regulations of several major environmental variables with long-term changes. The dataset can effectively reproduce the spatial, seasonal, and particularly interannual variations in global GPP. Our study will contribute to accurate carbon flux estimates at long timescales.
Yuan Zhang, Ana Bastos, Fabienne Maignan, Daniel Goll, Olivier Boucher, Laurent Li, Alessandro Cescatti, Nicolas Vuichard, Xiuzhi Chen, Christof Ammann, M. Altaf Arain, T. Andrew Black, Bogdan Chojnicki, Tomomichi Kato, Ivan Mammarella, Leonardo Montagnani, Olivier Roupsard, Maria J. Sanz, Lukas Siebicke, Marek Urbaniak, Francesco Primo Vaccari, Georg Wohlfahrt, Will Woodgate, and Philippe Ciais
Geosci. Model Dev., 13, 5401–5423, https://doi.org/10.5194/gmd-13-5401-2020, https://doi.org/10.5194/gmd-13-5401-2020, 2020
Short summary
Short summary
We improved the ORCHIDEE LSM by distinguishing diffuse and direct light in canopy and evaluated the new model with observations from 159 sites. Compared with the old model, the new model has better sunny GPP and reproduced the diffuse light fertilization effect observed at flux sites. Our simulations also indicate different mechanisms causing the observed GPP enhancement under cloudy conditions at different times. The new model has the potential to study large-scale impacts of aerosol changes.
Related subject area
Domain: ESSD – Land | Subject: Land Cover and Land Use
U-Surf: a global 1 km spatially continuous urban surface property dataset for kilometer-scale urban-resolving Earth system modeling
The Earth Topography 2022 (ETOPO 2022) global DEM dataset
The 20 m Africa rice distribution map of 2023
A 30m resolution annual cropland extent dataset of Africa in recent decades of the 21st century
Revised and updated geospatial monitoring of 21st century forest carbon fluxes
ChatEarthNet: a global-scale image–text dataset empowering vision–language geo-foundation models
Aboveground biomass dataset from SMOS L-band vegetation optical depth and reference maps
GMIE: a global maximum irrigation extent and central pivot irrigation system dataset derived via irrigation performance during drought stress and deep learning methods
Annual vegetation maps in the Qinghai–Tibet Plateau (QTP) from 2000 to 2022 based on MODIS series satellite imagery
Time series of Landsat-based bimonthly and annual spectral indices for continental Europe for 2000–2022
EARice10: a 10 m resolution annual rice distribution map of East Asia for 2023
A Sentinel-2 machine learning dataset for tree species classification in Germany
High-resolution mapping of global winter-triticeae crops using a sample-free identification method
A flux tower site attribute dataset intended for land surface modeling
An annual 30 m cultivated pasture dataset of the Tibetan Plateau from 1988 to 2021
Advances in LUCAS Copernicus 2022: enhancing Earth observations with comprehensive in situ data on EU land cover and use
Global 30 m seamless data cube (2000–2022) of land surface reflectance generated from Landsat 5, 7, 8, and 9 and MODIS Terra constellations
Mapping rangeland health indicators in eastern Africa from 2000 to 2022
3D-GloBFP: the first global three-dimensional building footprint dataset
Enhancing high-resolution forest stand mean height mapping in China through an individual tree-based approach with close-range lidar data
Annual high-resolution grazing-intensity maps on the Qinghai–Tibet Plateau from 1990 to 2020
Global mapping of oil palm planting year from 1990 to 2021
A 28-time-point cropland area change dataset in Northeast China from 1000 to 2020
Mapping sugarcane globally at 10 m resolution using Global Ecosystem Dynamics Investigation (GEDI) and Sentinel-2
GloUCP: A global 1 km spatially continuous urban canopy parameters for the WRF model
The GIEMS-MethaneCentric database: a dynamic and comprehensive global product of methane-emitting aquatic areas
Annual maps of forest and evergreen forest in the contiguous United States during 2015–2017 from analyses of PALSAR-2 and Landsat images
Monsoon Asia Rice Calendar (MARC): a gridded rice calendar in monsoon Asia based on Sentinel-1 and Sentinel-2 images
A 100 m gridded population dataset of China's seventh census using ensemble learning and big geospatial data
Global agricultural lands in the year 2015
Annual time-series 1 km maps of crop area and types in the conterminous US (CropAT-US): cropping diversity changes during 1850–2021
Retrieval of dominant methane (CH4) emission sources, the first high-resolution (1–2 m) dataset of storage tanks of China in 2000–2021
A 10 m resolution land cover map of the Tibetan Plateau with detailed vegetation types
ChinaSoyArea10m: a dataset of soybean-planting areas with a spatial resolution of 10 m across China from 2017 to 2021
Physical, social, and biological attributes for improved understanding and prediction of wildfires: FPA FOD-Attributes dataset
Map of forest tree species for Poland based on Sentinel-2 data
The ABoVE L-band and P-band airborne synthetic aperture radar surveys
A 30 m annual cropland dataset of China from 1986 to 2021
Global 1 km land surface parameters for kilometer-scale Earth system modeling
ChinaRiceCalendar – seasonal crop calendars for early-, middle-, and late-season rice in China
Harmonized European Union subnational crop statistics can reveal climate impacts and crop cultivation shifts
GLC_FCS30D: the first global 30 m land-cover dynamics monitoring product with a fine classification system for the period from 1985 to 2022 generated using dense-time-series Landsat imagery and the continuous change-detection method
A global estimate of monthly vegetation and soil fractions from spatiotemporally adaptive spectral mixture analysis during 2001–2022
A 2020 forest age map for China with 30 m resolution
Country-level estimates of gross and net carbon fluxes from land use, land-use change and forestry
A global FAOSTAT reference database of cropland nutrient budgets and nutrient use efficiency (1961–2020): nitrogen, phosphorus and potassium
Annual maps of forest cover in the Brazilian Amazon from analyses of PALSAR and MODIS images
Global 500 m seamless dataset (2000–2022) of land surface reflectance generated from MODIS products
The first map of crop sequence types in Europe over 2012–2018
WorldCereal: a dynamic open-source system for global-scale, seasonal, and reproducible crop and irrigation mapping
Yifan Cheng, Lei Zhao, TC Chakraborty, Keith Oleson, Matthias Demuzere, Xiaoping Liu, Yangzi Che, Weilin Liao, Yuyu Zhou, and Xinchang “Cathy” Li
Earth Syst. Sci. Data, 17, 2147–2174, https://doi.org/10.5194/essd-17-2147-2025, https://doi.org/10.5194/essd-17-2147-2025, 2025
Short summary
Short summary
The absence of globally consistent and spatially continuous urban surface input has long hindered large-scale high-resolution urban climate modeling. Using remote sensing, cloud computing, and machine learning, we developed U-Surf, a 1 km dataset providing key urban surface properties worldwide. U-Surf enhances urban representation across scales and supports kilometer-scale urban-resolving Earth system modeling unprecedentedly, with broader applications in urban studies and beyond.
Michael MacFerrin, Christopher Amante, Kelly Carignan, Matthew Love, and Elliot Lim
Earth Syst. Sci. Data, 17, 1835–1849, https://doi.org/10.5194/essd-17-1835-2025, https://doi.org/10.5194/essd-17-1835-2025, 2025
Short summary
Short summary
Here we present Earth TOPOgraphy (ETOPO) 2022, the latest iteration of NOAA's global seamless topographic–bathymetric dataset. ETOPO 2022 is a significant upgrade regarding resolution and accuracy from previous ETOPO releases and is freely available in multiple data formats and resolutions for all uses (public or private), excepting navigation.
Jingling Jiang, Hong Zhang, Ji Ge, Lijun Zuo, Lu Xu, Mingyang Song, Yinhaibin Ding, Yazhe Xie, and Wenjiang Huang
Earth Syst. Sci. Data, 17, 1781–1805, https://doi.org/10.5194/essd-17-1781-2025, https://doi.org/10.5194/essd-17-1781-2025, 2025
Short summary
Short summary
This study uses temporal synthetic aperture radar (SAR) data and optical imagery to conduct rice-mapping experiments in 34 African countries with rice-planting areas exceeding 5000 ha in 2022, achieving a 20 m resolution spatial distribution mapping for 2023. The average classification accuracy based on the validation set exceeded 85 %, and the R2; values for linear fitting with existing statistical data all surpassed 0.9, demonstrating the effectiveness of the proposed mapping method.
Zihang Lou, Dailiang Peng, Zhou Shi, Hongyan Wang, Yaqiong Zhang, Xue Yan, Zhongxing Chen, Su Ye, Le Yu, Jinkang Hu, Yulong Lv, Hao Peng, Yizhou Zhang, and Bing Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-133, https://doi.org/10.5194/essd-2025-133, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
This study created the first detailed annual maps of Africa's cropland extent from 2000 to 2022 in 30 m resolution to support global efforts against hunger and sustainable farming. Our findings show Africa's cropland grew by 8.5 % over two decade, while 11.5 % of cropland was abandoned by 2018 – revealing hidden challenges in agricultural sustainability. These yearly, field-sized maps help governments track where farming grows or shrinks, plan food supplies, and protect vital cropland.
David A. Gibbs, Melissa Rose, Giacomo Grassi, Joana Melo, Simone Rossi, Viola Heinrich, and Nancy L. Harris
Earth Syst. Sci. Data, 17, 1217–1243, https://doi.org/10.5194/essd-17-1217-2025, https://doi.org/10.5194/essd-17-1217-2025, 2025
Short summary
Short summary
Updated global maps of greenhouse gas (GHG) emissions and sequestration by forests from 2001 onwards using satellite-derived data show that forests are strong net carbon sinks, capturing about as much CO2 each year on average as the USA emitted from fossil fuels in 2019. After reclassifying fluxes to countries’ reporting categories for national GHG inventories, we found that roughly two-thirds of the net CO2 flux from forests is anthropogenic and one-third is non-anthropogenic.
Zhenghang Yuan, Zhitong Xiong, Lichao Mou, and Xiao Xiang Zhu
Earth Syst. Sci. Data, 17, 1245–1263, https://doi.org/10.5194/essd-17-1245-2025, https://doi.org/10.5194/essd-17-1245-2025, 2025
Short summary
Short summary
ChatEarthNet is an image–text dataset that provides high-quality, detailed natural language descriptions for global-scale satellite data. It consists of 163 488 image-text pairs with captions generated by ChatGPT-3.5 and an additional 10 000 image-text pairs with captions generated by ChatGPT-4V(ision). This dataset has significant potential for training and evaluating vision–language geo-foundation models in remote sensing.
Simon Boitard, Arnaud Mialon, Stéphane Mermoz, Nemesio J. Rodríguez-Fernández, Philippe Richaume, Julio César Salazar-Neira, Stéphane Tarot, and Yann H. Kerr
Earth Syst. Sci. Data, 17, 1101–1119, https://doi.org/10.5194/essd-17-1101-2025, https://doi.org/10.5194/essd-17-1101-2025, 2025
Short summary
Short summary
Aboveground biomass (AGB) is a critical component of the Earth's carbon cycle. The presented dataset aims to help monitor this essential climate variable with AGB time series from 2011 onward, derived with a carefully calibrated spatial relationship between the measurements of the Soil Moisture and Ocean Salinity (SMOS) mission and pre-existing AGB maps. The produced dataset has been extensively compared with other available AGB time series and can be used in AGB studies.
Fuyou Tian, Bingfang Wu, Hongwei Zeng, Miao Zhang, Weiwei Zhu, Nana Yan, Yuming Lu, and Yifan Li
Earth Syst. Sci. Data, 17, 855–880, https://doi.org/10.5194/essd-17-855-2025, https://doi.org/10.5194/essd-17-855-2025, 2025
Short summary
Short summary
Our study introduces GMIE, a high-resolution global map of irrigated cropland at 100 m resolution, covering 403.17 Mha and utilizing irrigation performance under drought stress. We found that 23.4 % of global cropland is irrigated, with the most extensive areas in India, China, the United States, and Pakistan. We identified the distribution of central pivot systems commonly used in the United States and Saudi Arabia. This new map can better support water management and food security globally.
Guangsheng Zhou, Hongrui Ren, Lei Zhang, Xiaomin Lv, and Mengzi Zhou
Earth Syst. Sci. Data, 17, 773–797, https://doi.org/10.5194/essd-17-773-2025, https://doi.org/10.5194/essd-17-773-2025, 2025
Short summary
Short summary
This study developed a new approach to long-time continuous annual vegetation mapping from remote sensing imagery, and mapped the vegetation of the Qinghai–Tibet Plateau (QTP) from 2000 to 2022 using the MOD09A1 product. The overall accuracy of continuous annual QTP vegetation mapping reached 83.3%, with the reference annual 2020 data reaching an accuracy of 83.3% and a kappa coefficient of 0.82. The study supports the use of remote sensing data to mapping long-time continuous annual vegetation.
Xuemeng Tian, Davide Consoli, Martijn Witjes, Florian Schneider, Leandro Parente, Murat Şahin, Yu-Feng Ho, Robert Minařík, and Tomislav Hengl
Earth Syst. Sci. Data, 17, 741–772, https://doi.org/10.5194/essd-17-741-2025, https://doi.org/10.5194/essd-17-741-2025, 2025
Short summary
Short summary
Our study introduces a Landsat-based data cube simplifying access to detailed environmental data across Europe from 2000 to 2022, covering vegetation, water, soil, and crops. Our experiments demonstrate its effectiveness in developing environmental models and maps. Tailored feature selection is crucial for its effective use in environmental modeling. It aims to support comprehensive environmental monitoring and analysis, helping researchers and policy-makers in managing environmental resources.
Mingyang Song, Lu Xu, Ji Ge, Hong Zhang, Lijun Zuo, Jingling Jiang, Yinhaibin Ding, Yazhe Xie, and Fan Wu
Earth Syst. Sci. Data, 17, 661–683, https://doi.org/10.5194/essd-17-661-2025, https://doi.org/10.5194/essd-17-661-2025, 2025
Short summary
Short summary
We created a 10 m resolution rice distribution map for East Asia in 2023 (EARice10), achieving an overall accuracy (OA) of 90.48 % on validation samples. EARice10 shows strong consistency with statistical data (coefficient of determination, R2: 0.94–0.98) and existing datasets (R2: 0.79–0.98). It is the most up-to-date map, covering the four major rice-producing countries in East Asia at 10 m resolution.
Maximilian Freudenberg, Sebastian Schnell, and Paul Magdon
Earth Syst. Sci. Data, 17, 351–367, https://doi.org/10.5194/essd-17-351-2025, https://doi.org/10.5194/essd-17-351-2025, 2025
Short summary
Short summary
Classifying tree species in satellite images is an important task for environmental monitoring and forest management. Here we present a dataset containing Sentinel-2 satellite pixel time series of individual trees intended for training machine learning models. The dataset was created by merging information from the German National Forest Inventory in 2012 with satellite data. It sparsely covers the whole of Germany for the years 2015 to 2022 and comprises 48 species and 3 species groups.
Yangyang Fu, Xiuzhi Chen, Chaoqing Song, Xiaojuan Huang, Jie Dong, Qiongyan Peng, and Wenping Yuan
Earth Syst. Sci. Data, 17, 95–115, https://doi.org/10.5194/essd-17-95-2025, https://doi.org/10.5194/essd-17-95-2025, 2025
Short summary
Short summary
This study proposed the Winter-Triticeae Crops Index (WTCI), which had great performance and stable spatiotemporal transferability in identifying winter-triticeae crops in 66 countries worldwide, with an overall accuracy of 87.7 %. The first global 30 m resolution distribution maps of winter-triticeae crops from 2017 to 2022 were further produced based on the WTCI method. The product can serve as an important basis for agricultural applications.
Jiahao Shi, Hua Yuan, Wanyi Lin, Wenzong Dong, Hongbin Liang, Zhuo Liu, Jianxin Zeng, Haolin Zhang, Nan Wei, Zhongwang Wei, Shupeng Zhang, Shaofeng Liu, Xingjie Lu, and Yongjiu Dai
Earth Syst. Sci. Data, 17, 117–134, https://doi.org/10.5194/essd-17-117-2025, https://doi.org/10.5194/essd-17-117-2025, 2025
Short summary
Short summary
Flux tower data are widely recognized as benchmarking data for land surface models, but insufficient emphasis on and deficiency in site attribute data limits their true value. We collect site-observed vegetation, soil, and topography data from various sources. The final dataset encompasses 90 sites globally, with relatively complete site attribute data and high-quality flux validation data. This work has provided more reliable site attribute data, benefiting land surface model development.
Binghong Han, Jian Bi, Shengli Tao, Tong Yang, Yongli Tang, Mengshuai Ge, Hao Wang, Zhenong Jin, Jinwei Dong, Zhibiao Nan, and Jin-Sheng He
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-620, https://doi.org/10.5194/essd-2024-620, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
The Tibetan Plateau is an important pastoral area where cultivated pastures play an increasingly important role. However, little is known about the spatial distribution of the cultivated pasture due to the difficulty in distinguishing them from natural grasslands with remote sensing. For the first time, we have mapped the cultivated pastures on the plateau at a resolution of 30 meters with decent accuracy. This data set is valuable to scientists, policy makers, conservationists and pastoralists.
Raphaël d'Andrimont, Momchil Yordanov, Fernando Sedano, Astrid Verhegghen, Peter Strobl, Savvas Zachariadis, Flavia Camilleri, Alessandra Palmieri, Beatrice Eiselt, Jose Miguel Rubio Iglesias, and Marijn van der Velde
Earth Syst. Sci. Data, 16, 5723–5735, https://doi.org/10.5194/essd-16-5723-2024, https://doi.org/10.5194/essd-16-5723-2024, 2024
Short summary
Short summary
The Land Use/Cover Area frame Survey (LUCAS) Copernicus 2022 is a large and systematic in situ field survey of 137 966 polygons over the European Union in 2022. The data contain 82 land cover classes and 40 land use classes.
Shuang Chen, Jie Wang, Qiang Liu, Xiangan Liang, Rui Liu, Peng Qin, Jincheng Yuan, Junbo Wei, Shuai Yuan, Huabing Huang, and Peng Gong
Earth Syst. Sci. Data, 16, 5449–5475, https://doi.org/10.5194/essd-16-5449-2024, https://doi.org/10.5194/essd-16-5449-2024, 2024
Short summary
Short summary
The inconsistent coverage of Landsat data due to its long revisit intervals and frequent cloud cover poses challenges to large-scale land monitoring. We developed a global 30 m 23-year (2000–2022) daily seamless data cube (SDC) of surface reflectance based on Landsat 5, 7, 8, and 9 and MODIS products. The SDC exhibits enhanced capabilities for monitoring land cover changes and robust consistency in both spatial and temporal dimensions, which are important for global environmental monitoring.
Gerardo E. Soto, Steven W. Wilcox, Patrick E. Clark, Francesco P. Fava, Nathaniel D. Jensen, Njoki Kahiu, Chuan Liao, Benjamin Porter, Ying Sun, and Christopher B. Barrett
Earth Syst. Sci. Data, 16, 5375–5404, https://doi.org/10.5194/essd-16-5375-2024, https://doi.org/10.5194/essd-16-5375-2024, 2024
Short summary
Short summary
This paper uses machine learning and linear unmixing to produce rangeland health indicators: Landsat time series of land cover classes and vegetation fractional cover of photosynthetic vegetation, non-photosynthetic vegetation, and bare ground in arid and semi-arid Kenya, Ethiopia, and Somalia. This represents the first multi-decadal Landsat-resolution dataset specifically designed for mapping and monitoring rangeland health in the arid and semi-arid rangelands of this portion of eastern Africa.
Yangzi Che, Xuecao Li, Xiaoping Liu, Yuhao Wang, Weilin Liao, Xianwei Zheng, Xucai Zhang, Xiaocong Xu, Qian Shi, Jiajun Zhu, Honghui Zhang, Hua Yuan, and Yongjiu Dai
Earth Syst. Sci. Data, 16, 5357–5374, https://doi.org/10.5194/essd-16-5357-2024, https://doi.org/10.5194/essd-16-5357-2024, 2024
Short summary
Short summary
Most existing building height products are limited with respect to either spatial resolution or coverage, not to mention the spatial heterogeneity introduced by global building forms. Using Earth Observation (EO) datasets for 2020, we developed a global height dataset at the individual building scale. The dataset provides spatially explicit information on 3D building morphology, supporting both macro- and microanalysis of urban areas.
Yuling Chen, Haitao Yang, Zekun Yang, Qiuli Yang, Weiyan Liu, Guoran Huang, Yu Ren, Kai Cheng, Tianyu Xiang, Mengxi Chen, Danyang Lin, Zhiyong Qi, Jiachen Xu, Yixuan Zhang, Guangcai Xu, and Qinghua Guo
Earth Syst. Sci. Data, 16, 5267–5285, https://doi.org/10.5194/essd-16-5267-2024, https://doi.org/10.5194/essd-16-5267-2024, 2024
Short summary
Short summary
The national-scale continuous maps of arithmetic mean height and weighted mean height across China address the challenges of accurately estimating forest stand mean height using a tree-based approach. These maps produced in this study provide critical datasets for forest sustainable management in China, including climate change mitigation (e.g., terrestrial carbon estimation), forest ecosystem assessment, and forest inventory practices.
Jia Zhou, Jin Niu, Ning Wu, and Tao Lu
Earth Syst. Sci. Data, 16, 5171–5189, https://doi.org/10.5194/essd-16-5171-2024, https://doi.org/10.5194/essd-16-5171-2024, 2024
Short summary
Short summary
The study provided an annual 100 m resolution glimpse into the grazing activities across the Qinghai–Tibet Plateau. The newly minted Gridded Dataset of Grazing Intensity (GDGI) not only boasts exceptional accuracy but also acts as a pivotal resource for further research and strategic planning, with the potential to shape sustainable grazing practices, guide informed environmental stewardship, and ensure the longevity of the region’s precious ecosystems.
Adrià Descals, David L. A. Gaveau, Serge Wich, Zoltan Szantoi, and Erik Meijaard
Earth Syst. Sci. Data, 16, 5111–5129, https://doi.org/10.5194/essd-16-5111-2024, https://doi.org/10.5194/essd-16-5111-2024, 2024
Short summary
Short summary
This study provides a 10 m global oil palm extent layer for 2021 and a 30 m oil palm planting-year layer from 1990 to 2021. The oil palm extent layer was produced using a convolutional neural network that identified industrial and smallholder plantations using Sentinel-1 data. The oil palm planting year was developed using a methodology specifically designed to detect the early stages of oil palm development in the Landsat time series.
Ran Jia, Xiuqi Fang, Yundi Yang, Masayuki Yokozawa, and Yu Ye
Earth Syst. Sci. Data, 16, 4971–4994, https://doi.org/10.5194/essd-16-4971-2024, https://doi.org/10.5194/essd-16-4971-2024, 2024
Short summary
Short summary
We reconstructed a cropland area change dataset in Northeast China over the past millennium by integrating multisource data with a unified standard using the historical and archaeological record, statistical yearbook, and national land survey. Cropland in Northeast China exhibited phases of expansion–reduction–expansion over the past millennium. This dataset can be used for improving the land use and land cover change (LUCC) dataset and assessing LUCC-induced carbon emission and climate change.
Stefania Di Tommaso, Sherrie Wang, Rob Strey, and David B. Lobell
Earth Syst. Sci. Data, 16, 4931–4947, https://doi.org/10.5194/essd-16-4931-2024, https://doi.org/10.5194/essd-16-4931-2024, 2024
Short summary
Short summary
Sugarcane plays a vital role in food, biofuel, and farmer income globally, yet its cultivation faces numerous social and environmental challenges. Despite its significance, accurate mapping remains limited. Our study addresses this gap by introducing a novel 10 m global dataset of sugarcane maps spanning 2019–2022. Comparisons with field data, pre-existing maps, and official government statistics all indicate the high precision and high recall of our maps.
Weilin Liao, Yanman Li, Xiaoping Liu, Yuhao Wang, Yangzi Che, Ledi Shao, Guangzhao Chen, Hua Yuan, Ning Zhang, and Fei Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-408, https://doi.org/10.5194/essd-2024-408, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
The currently available urban canopy parameter (UCP) datasets are limited to just a few cities for urban climate simulations by the Weather Research and Forecasting (WRF) model. To address this gap, we develop a global 1 km spatially continuous UCP dataset (GloUCP), which provides superior spatial coverage and higher accuracy in capturing urban morphology across diverse regions. It has great potential to support further advancements in urban climate modeling and related applications.
Juliette Bernard, Catherine Prigent, Carlos Jimenez, Etienne Fluet-Chouinard, Bernhard Lehner, Elodie Salmon, Philippe Ciais, Zhen Zhang, Shushi Peng, and Marielle Saunois
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-466, https://doi.org/10.5194/essd-2024-466, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Wetlands are responsible for about a third of global emissions of methane, a potent greenhouse gas. We have developed the GIEMS-MethaneCentric (GIEMS-MC) dataset to represent the dynamics of wetland extent on a global scale (0.25°x0.25° resolution, monthly time step). This updated resource combines satellite data and existing wetland databases, covering 1992 to 2020. Consistent maps of other methane-emitting surface waters (lakes, rivers, reservoirs, rice paddies) are also provided.
Jie Wang, Xiangming Xiao, Yuanwei Qin, Jinwei Dong, Geli Zhang, Xuebin Yang, Xiaocui Wu, Chandrashekhar Biradar, and Yang Hu
Earth Syst. Sci. Data, 16, 4619–4639, https://doi.org/10.5194/essd-16-4619-2024, https://doi.org/10.5194/essd-16-4619-2024, 2024
Short summary
Short summary
Existing satellite-based forest maps have large uncertainties due to different forest definitions and mapping algorithms. To effectively manage forest resources, timely and accurate annual forest maps at a high spatial resolution are needed. This study improved forest maps by integrating PALSAR-2 and Landsat images. Annual evergreen and non-evergreen forest-type maps were also generated. This critical information supports the Global Forest Resources Assessment.
Xin Zhao, Kazuya Nishina, Haruka Izumisawa, Yuji Masutomi, Seima Osako, and Shuhei Yamamoto
Earth Syst. Sci. Data, 16, 3893–3911, https://doi.org/10.5194/essd-16-3893-2024, https://doi.org/10.5194/essd-16-3893-2024, 2024
Short summary
Short summary
Mapping a rice calendar in a spatially explicit manner with a consistent framework remains challenging at a global or continental scale. We successfully developed a new gridded rice calendar for monsoon Asia based on Sentinel-1 and Sentinel-2 images, which characterize transplanting and harvesting dates and the number of rice croppings in a comprehensive framework. Our rice calendar will be beneficial for rice management, production prediction, and the estimation of greenhouse gas emissions.
Yuehong Chen, Congcong Xu, Yong Ge, Xiaoxiang Zhang, and Ya'nan Zhou
Earth Syst. Sci. Data, 16, 3705–3718, https://doi.org/10.5194/essd-16-3705-2024, https://doi.org/10.5194/essd-16-3705-2024, 2024
Short summary
Short summary
Population data is crucial for human–nature interactions. Gridded population data can address limitations of census data in irregular units. In China, rapid urbanization necessitates timely and accurate population grids. However, existing datasets for China are either outdated or lack recent census data. Hence, a novel approach was developed to disaggregate China’s seventh census data into 100 m population grids. The resulting dataset outperformed the existing LandScan and WorldPop datasets.
Zia Mehrabi, Kaitai Tong, Julie Fortin, Radost Stanimirova, Mark Friedl, and Navin Ramankutty
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-279, https://doi.org/10.5194/essd-2024-279, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We present a global geospatial database of cropland and pastures representing the year 2015. We made it using machine learning models to merge satellite-based land cover data with agricultural census data that we compiled. This database is an update to an earlier version representing the year 2000. It can be used to study issues such as land use, food security, climate change and biodiversity loss. We provide a reproducible code base to easily update the product for future years.
Shuchao Ye, Peiyu Cao, and Chaoqun Lu
Earth Syst. Sci. Data, 16, 3453–3470, https://doi.org/10.5194/essd-16-3453-2024, https://doi.org/10.5194/essd-16-3453-2024, 2024
Short summary
Short summary
We reconstructed annual cropland density and crop type maps, including nine major crop types (corn, soybean, winter wheat, spring wheat, durum wheat, cotton, sorghum, barley, and rice), from 1850 to 2021 at 1 km × 1 km resolution. We found that the US total crop acreage has increased by 118 × 106 ha (118 Mha), mainly driven by corn (30 Mha) and soybean (35 Mha). Additionally, the US cropping diversity experienced an increase in the 1850s–1960s, followed by a decline over the past 6 decades.
Fang Chen, Lei Wang, Yu Wang, Haiying Zhang, Ning Wang, Pengfei Ma, and Bo Yu
Earth Syst. Sci. Data, 16, 3369–3382, https://doi.org/10.5194/essd-16-3369-2024, https://doi.org/10.5194/essd-16-3369-2024, 2024
Short summary
Short summary
Storage tanks are responsible for approximately 25 % of CH4 emissions in the atmosphere, exacerbating climate warming. Currently there is no publicly accessible storage tank inventory. We generated the first high-spatial-resolution (1–2 m) storage tank dataset (STD) over 92 typical cities in China in 2021, totaling 14 461 storage tanks with the construction year from 2000–2021. It shows significant agreement with CH4 emission spatially and temporally, promoting the CH4 control strategy proposal.
Xingyi Huang, Yuwei Yin, Luwei Feng, Xiaoye Tong, Xiaoxin Zhang, Jiangrong Li, and Feng Tian
Earth Syst. Sci. Data, 16, 3307–3332, https://doi.org/10.5194/essd-16-3307-2024, https://doi.org/10.5194/essd-16-3307-2024, 2024
Short summary
Short summary
The Tibetan Plateau, with its diverse vegetation ranging from forests to alpine grasslands, plays a key role in understanding climate change impacts. Existing maps lack detail or miss unique ecosystems. Our research, using advanced satellite technology and machine learning, produced the map TP_LC10-2022. Comparisons with other maps revealed TP_LC10-2022's excellence in capturing local variations. Our map is significant for in-depth ecological studies.
Qinghang Mei, Zhao Zhang, Jichong Han, Jie Song, Jinwei Dong, Huaqing Wu, Jialu Xu, and Fulu Tao
Earth Syst. Sci. Data, 16, 3213–3231, https://doi.org/10.5194/essd-16-3213-2024, https://doi.org/10.5194/essd-16-3213-2024, 2024
Short summary
Short summary
In order to make up for the lack of long-term soybean planting area maps in China, we firstly generated a dataset of soybean planting area with a spatial resolution of 10 m for major producing areas in China from 2017 to 2021 (ChinaSoyArea10m). Compared with existing datasets, ChinaSoyArea10m has higher consistency with census data and further improvement in spatial details. The dataset can provide reliable support for subsequent studies on yield monitoring and food security.
Yavar Pourmohamad, John T. Abatzoglou, Erin J. Belval, Erica Fleishman, Karen Short, Matthew C. Reeves, Nicholas Nauslar, Philip E. Higuera, Eric Henderson, Sawyer Ball, Amir AghaKouchak, Jeffrey P. Prestemon, Julia Olszewski, and Mojtaba Sadegh
Earth Syst. Sci. Data, 16, 3045–3060, https://doi.org/10.5194/essd-16-3045-2024, https://doi.org/10.5194/essd-16-3045-2024, 2024
Short summary
Short summary
The FPA FOD-Attributes dataset provides > 300 biological, physical, social, and administrative attributes associated with > 2.3×106 wildfire incidents across the US from 1992 to 2020. The dataset can be used to (1) answer numerous questions about the covariates associated with human- and lightning-caused wildfires and (2) support descriptive, diagnostic, predictive, and prescriptive wildfire analytics, including the development of machine learning models.
Ewa Grabska-Szwagrzyk, Dirk Tiede, Martin Sudmanns, and Jacek Kozak
Earth Syst. Sci. Data, 16, 2877–2891, https://doi.org/10.5194/essd-16-2877-2024, https://doi.org/10.5194/essd-16-2877-2024, 2024
Short summary
Short summary
We accurately mapped 16 dominant tree species and genera in Poland using Sentinel-2 observations from short periods in spring, summer, and autumn (2018–2021). The classification achieved more than 80% accuracy in country-wide forest species mapping, with variation based on species, region, and observation frequency. Freely accessible resources, including the forest tree species map and training and test data, can be found at https://doi.org/10.5281/zenodo.10180469.
Charles E. Miller, Peter C. Griffith, Elizabeth Hoy, Naiara S. Pinto, Yunling Lou, Scott Hensley, Bruce D. Chapman, Jennifer Baltzer, Kazem Bakian-Dogaheh, W. Robert Bolton, Laura Bourgeau-Chavez, Richard H. Chen, Byung-Hun Choe, Leah K. Clayton, Thomas A. Douglas, Nancy French, Jean E. Holloway, Gang Hong, Lingcao Huang, Go Iwahana, Liza Jenkins, John S. Kimball, Tatiana Loboda, Michelle Mack, Philip Marsh, Roger J. Michaelides, Mahta Moghaddam, Andrew Parsekian, Kevin Schaefer, Paul R. Siqueira, Debjani Singh, Alireza Tabatabaeenejad, Merritt Turetsky, Ridha Touzi, Elizabeth Wig, Cathy J. Wilson, Paul Wilson, Stan D. Wullschleger, Yonghong Yi, Howard A. Zebker, Yu Zhang, Yuhuan Zhao, and Scott J. Goetz
Earth Syst. Sci. Data, 16, 2605–2624, https://doi.org/10.5194/essd-16-2605-2024, https://doi.org/10.5194/essd-16-2605-2024, 2024
Short summary
Short summary
NASA’s Arctic Boreal Vulnerability Experiment (ABoVE) conducted airborne synthetic aperture radar (SAR) surveys of over 120 000 km2 in Alaska and northwestern Canada during 2017, 2018, 2019, and 2022. This paper summarizes those results and provides links to details on ~ 80 individual flight lines. This paper is presented as a guide to enable interested readers to fully explore the ABoVE L- and P-band SAR data.
Ying Tu, Shengbiao Wu, Bin Chen, Qihao Weng, Yuqi Bai, Jun Yang, Le Yu, and Bing Xu
Earth Syst. Sci. Data, 16, 2297–2316, https://doi.org/10.5194/essd-16-2297-2024, https://doi.org/10.5194/essd-16-2297-2024, 2024
Short summary
Short summary
We developed the first 30 m annual cropland dataset of China (CACD) for 1986–2021. The overall accuracy of CACD reached up to 0.93±0.01 and was superior to other products. Our fine-resolution cropland maps offer valuable information for diverse applications and decision-making processes in the future.
Lingcheng Li, Gautam Bisht, Dalei Hao, and L. Ruby Leung
Earth Syst. Sci. Data, 16, 2007–2032, https://doi.org/10.5194/essd-16-2007-2024, https://doi.org/10.5194/essd-16-2007-2024, 2024
Short summary
Short summary
This study fills a gap to meet the emerging needs of kilometer-scale Earth system modeling by developing global 1 km land surface parameters for land use, vegetation, soil, and topography. Our demonstration simulations highlight the substantial impacts of these parameters on spatial variability and information loss in water and energy simulations. Using advanced explainable machine learning methods, we identified influential factors driving spatial variability and information loss.
Hui Li, Xiaobo Wang, Shaoqiang Wang, Jinyuan Liu, Yuanyuan Liu, Zhenhai Liu, Shiliang Chen, Qinyi Wang, Tongtong Zhu, Lunche Wang, and Lizhe Wang
Earth Syst. Sci. Data, 16, 1689–1701, https://doi.org/10.5194/essd-16-1689-2024, https://doi.org/10.5194/essd-16-1689-2024, 2024
Short summary
Short summary
Utilizing satellite remote sensing data, we established a multi-season rice calendar dataset named ChinaRiceCalendar. It exhibits strong alignment with field observations collected by agricultural meteorological stations across China. ChinaRiceCalendar stands as a reliable dataset for investigating and optimizing the spatiotemporal dynamics of rice phenology in China, particularly in the context of climate and land use changes.
Giulia Ronchetti, Luigi Nisini Scacchiafichi, Lorenzo Seguini, Iacopo Cerrani, and Marijn van der Velde
Earth Syst. Sci. Data, 16, 1623–1649, https://doi.org/10.5194/essd-16-1623-2024, https://doi.org/10.5194/essd-16-1623-2024, 2024
Short summary
Short summary
We present a dataset of EU-wide harmonized subnational crop area, production, and yield statistics with information on data sources, processing steps, missing and derived data, and quality checks. Statistical records (344 282) collected from 1975 to 2020 for soft and durum wheat, winter and spring barley, grain maize, sunflower, and sugar beet were aligned with the EUROSTAT crop legend and the 2016 territorial classification for 961 regions. Time series have a median length of 21 years.
Xiao Zhang, Tingting Zhao, Hong Xu, Wendi Liu, Jinqing Wang, Xidong Chen, and Liangyun Liu
Earth Syst. Sci. Data, 16, 1353–1381, https://doi.org/10.5194/essd-16-1353-2024, https://doi.org/10.5194/essd-16-1353-2024, 2024
Short summary
Short summary
This work describes GLC_FCS30D, the first global 30 m land-cover dynamics monitoring dataset, which contains 35 land-cover subcategories and covers the period of 1985–2022 in 26 time steps (its maps are updated every 5 years before 2000 and annually after 2000).
Qiangqiang Sun, Ping Zhang, Xin Jiao, Xin Lin, Wenkai Duan, Su Ma, Qidi Pan, Lu Chen, Yongxiang Zhang, Shucheng You, Shunxi Liu, Jinmin Hao, Hong Li, and Danfeng Sun
Earth Syst. Sci. Data, 16, 1333–1351, https://doi.org/10.5194/essd-16-1333-2024, https://doi.org/10.5194/essd-16-1333-2024, 2024
Short summary
Short summary
To provide multifaceted changes under climate change and anthropogenic impacts, we estimated monthly vegetation and soil fractions in 2001–2022, providing an accurate estimate of surface heterogeneous composition, better than vegetation index and vegetation continuous-field products. We find a greening trend on Earth except for the tropics. A combination of interactive changes in vegetation and soil can be adopted as a valuable measurement of climate change and anthropogenic impacts.
Kai Cheng, Yuling Chen, Tianyu Xiang, Haitao Yang, Weiyan Liu, Yu Ren, Hongcan Guan, Tianyu Hu, Qin Ma, and Qinghua Guo
Earth Syst. Sci. Data, 16, 803–819, https://doi.org/10.5194/essd-16-803-2024, https://doi.org/10.5194/essd-16-803-2024, 2024
Short summary
Short summary
To quantify forest carbon stock and its future potential accurately, we generated a 30 m resolution forest age map for China in 2020 using multisource remote sensing datasets based on machine learning and time series analysis approaches. Validation with independent field samples indicated that the mapped forest age had an R2 of 0.51--0.63. Nationally, the average forest age is 56.1 years (standard deviation of 32.7 years).
Wolfgang Alexander Obermeier, Clemens Schwingshackl, Ana Bastos, Giulia Conchedda, Thomas Gasser, Giacomo Grassi, Richard A. Houghton, Francesco Nicola Tubiello, Stephen Sitch, and Julia Pongratz
Earth Syst. Sci. Data, 16, 605–645, https://doi.org/10.5194/essd-16-605-2024, https://doi.org/10.5194/essd-16-605-2024, 2024
Short summary
Short summary
We provide and compare country-level estimates of land-use CO2 fluxes from a variety and large number of models, bottom-up estimates, and country reports for the period 1950–2021. Although net fluxes are small in many countries, they are often composed of large compensating emissions and removals. In many countries, the estimates agree well once their individual characteristics are accounted for, but in other countries, including some of the largest emitters, substantial uncertainties exist.
Cameron I. Ludemann, Nathan Wanner, Pauline Chivenge, Achim Dobermann, Rasmus Einarsson, Patricio Grassini, Armelle Gruere, Kevin Jackson, Luis Lassaletta, Federico Maggi, Griffiths Obli-Laryea, Martin K. van Ittersum, Srishti Vishwakarma, Xin Zhang, and Francesco N. Tubiello
Earth Syst. Sci. Data, 16, 525–541, https://doi.org/10.5194/essd-16-525-2024, https://doi.org/10.5194/essd-16-525-2024, 2024
Short summary
Short summary
Nutrient budgets help identify the excess or insufficient use of fertilizers and other nutrient sources in agriculture. They allow the calculation of indicators, such as the nutrient balance (surplus or deficit) and nutrient use efficiency, that help to monitor agricultural productivity and sustainability. This article describes a global cropland nutrient budget that provides data on 205 countries and territories from 1961 to 2020 (data available at https://www.fao.org/faostat/en/#data/ESB).
Yuanwei Qin, Xiangming Xiao, Hao Tang, Ralph Dubayah, Russell Doughty, Diyou Liu, Fang Liu, Yosio Shimabukuro, Egidio Arai, Xinxin Wang, and Berrien Moore III
Earth Syst. Sci. Data, 16, 321–336, https://doi.org/10.5194/essd-16-321-2024, https://doi.org/10.5194/essd-16-321-2024, 2024
Short summary
Short summary
Forest definition has two major biophysical parameters, i.e., canopy height and canopy coverage. However, few studies have assessed forest cover maps in terms of these two parameters at a large scale. Here, we assessed the annual forest cover maps in the Brazilian Amazon using 1.1 million footprints of canopy height and canopy coverage. Over 93 % of our forest cover maps are consistent with the FAO forest definition, showing the high accuracy of these forest cover maps in the Brazilian Amazon.
Xiangan Liang, Qiang Liu, Jie Wang, Shuang Chen, and Peng Gong
Earth Syst. Sci. Data, 16, 177–200, https://doi.org/10.5194/essd-16-177-2024, https://doi.org/10.5194/essd-16-177-2024, 2024
Short summary
Short summary
The state-of-the-art MODIS surface reflectance products suffer from temporal and spatial gaps, which make it difficult to characterize the continuous variation of the terrestrial surface. We proposed a framework for generating the first global 500 m daily seamless data cubes (SDC500), covering the period from 2000 to 2022. We believe that the SDC500 dataset can interest other researchers who study land cover mapping, quantitative remote sensing, and ecological science.
Rémy Ballot, Nicolas Guilpart, and Marie-Hélène Jeuffroy
Earth Syst. Sci. Data, 15, 5651–5666, https://doi.org/10.5194/essd-15-5651-2023, https://doi.org/10.5194/essd-15-5651-2023, 2023
Short summary
Short summary
Assessing the benefits of crop diversification – a key element of agroecological transition – on a large scale requires a description of current crop sequences as a baseline, which is lacking at the scale of Europe. To fill this gap, we used a dataset that provides temporally and spatially incomplete land cover information to create a map of dominant crop sequence types for Europe over 2012–2018. This map is a useful baseline for assessing the benefits of future crop diversification.
Kristof Van Tricht, Jeroen Degerickx, Sven Gilliams, Daniele Zanaga, Marjorie Battude, Alex Grosu, Joost Brombacher, Myroslava Lesiv, Juan Carlos Laso Bayas, Santosh Karanam, Steffen Fritz, Inbal Becker-Reshef, Belén Franch, Bertran Mollà-Bononad, Hendrik Boogaard, Arun Kumar Pratihast, Benjamin Koetz, and Zoltan Szantoi
Earth Syst. Sci. Data, 15, 5491–5515, https://doi.org/10.5194/essd-15-5491-2023, https://doi.org/10.5194/essd-15-5491-2023, 2023
Short summary
Short summary
WorldCereal is a global mapping system that addresses food security challenges. It provides seasonal updates on crop areas and irrigation practices, enabling informed decision-making for sustainable agriculture. Our global products offer insights into temporary crop extent, seasonal crop type maps, and seasonal irrigation patterns. WorldCereal is an open-source tool that utilizes space-based technologies, revolutionizing global agricultural mapping.
Cited articles
Belgiu, M. and Csillik, O.: Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis, Remote Sens. Environ., 204, 509–523, https://doi.org/10.1016/j.rse.2017.10.005, 2018.
Bouman, B. A. M., Humphreys, E., Tuong, T. P., and Barker, R.: Rice and Water, in: Advances in Agronomy, vol. 92, Elsevier, 187–237, https://doi.org/10.1016/S0065-2113(04)92004-4, 2007.
Che, X., Zhang, H. K., Li, Z. B., Wang, Y., Sun, Q., Luo, D., and Wang, H.: Linearly interpolating missing values in time series helps little for land cover classification using recurrent or attention networks, ISPRS J. Photogramm., 212, 73–95, https://doi.org/10.1016/j.isprsjprs.2024.04.021, 2024.
Che, Z., Purushotham, S., Cho, K., Sontag, D., and Liu, Y.: Recurrent Neural Networks for Multivariate Time Series with Missing Values, Sci. Rep., 8, 6085, https://doi.org/10.1038/s41598-018-24271-9, 2018.
Clauss, K., Yan, H., and Kuenzer, C.: Mapping Paddy Rice in China in 2002, 2005, 2010 and 2014 with MODIS Time Series, Remote Sens., 8, 434, https://doi.org/10.3390/rs8050434, 2016.
Dong, J., Xiao, X., Kou, W., Qin, Y., Zhang, G., Li, L., Jin, C., Zhou, Y., Wang, J., Biradar, C., Liu, J., and Moore, B.: Tracking the dynamics of paddy rice planting area in 1986–2010 through time series Landsat images and phenology-based algorithms, Remote Sens. Environ., 160, 99–113, https://doi.org/10.1016/j.rse.2015.01.004, 2015.
Dong, J., Xiao, X., Menarguez, M. A., Zhang, G., Qin, Y., Thau, D., Biradar, C., and Moore, B.: Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine, Remote Sens. Environ., 185, 142–154, https://doi.org/10.1016/j.rse.2016.02.016, 2016.
Dong, J., Fu, Y., Wang, J., Tian, H., Fu, S., Niu, Z., Han, W., Zheng, Y., Huang, J., and Yuan, W.: Early-season mapping of winter wheat in China based on Landsat and Sentinel images, Earth Syst. Sci. Data, 12, 3081–3095, https://doi.org/10.5194/essd-12-3081-2020, 2020.
Dong, J., Pang, Z., Fu, Y., Peng, Q., Li, X., and Yuan, W.: Annual winter wheat mapping dataset in China from 2001 to 2020, Sci Data, 11, 1218, https://doi.org/10.1038/s41597-024-04065-7, 2024.
Elert, E.: Rice by the numbers: A good grain, Nature, 514, S50–S51, https://doi.org/10.1038/514S50a, 2014.
FAO: World Food and Agriculture – Statistical Yearbook 2023, FAO, Rome, Italy, https://doi.org/10.4060/cc8166en, 2023.
Fritz, S., See, L., McCallum, I., You, L., Bun, A., Moltchanova, E., Duerauer, M., Albrecht, F., Schill, C., Perger, C., Havlik, P., Mosnier, A., Thornton, P., Wood-Sichra, U., Herrero, M., Becker-Reshef, I., Justice, C., Hansen, M., Gong, P., Abdel Aziz, S., Cipriani, A., Cumani, R., Cecchi, G., Conchedda, G., Ferreira, S., Gomez, A., Haffani, M., Kayitakire, F., Malanding, J., Mueller, R., Newby, T., Nonguierma, A., Olusegun, A., Ortner, S., Rajak, D. R., Rocha, J., Schepaschenko, D., Schepaschenko, M., Terekhov, A., Tiangwa, A., Vancutsem, C., Vintrou, E., Wenbin, W., van der Velde, M., Dunwoody, A., Kraxner, F., and Obersteiner, M.: Mapping global cropland and field size, Glob. Change Biol., 21, 1980–1992, https://doi.org/10.1111/gcb.12838, 2015.
Fu, Y., Shen, R., Song, C., Dong, J., Han, W., Ye, T., and Yuan, W.: Exploring the effects of training samples on the accuracy of crop mapping with machine learning algorithm, Science of Remote Sensing, 7, 100081, https://doi.org/10.1016/j.srs.2023.100081, 2023.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone, Remote Sens. Environ., 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031, 2017.
Han, J., Zhang, Z., Luo, Y., Cao, J., Zhang, L., Cheng, F., Zhuang, H., Zhang, J., and Tao, F.: NESEA-Rice10: high-resolution annual paddy rice maps for Northeast and Southeast Asia from 2017 to 2019, Earth Syst. Sci. Data, 13, 5969–5986, https://doi.org/10.5194/essd-13-5969-2021, 2021.
Han, J., Zhang, Z., Luo, Y., Cao, J., Zhang, L., Zhuang, H., Cheng, F., Zhang, J., and Tao, F.: Annual paddy rice planting area and cropping intensity datasets and their dynamics in the Asian monsoon region from 2000 to 2020, Agr. Syst., 200, 103437, https://doi.org/10.1016/j.agsy.2022.103437, 2022.
Hu, J., Chen, Y., Cai, Z., Wei, H., Zhang, X., Zhou, W., Wang, C., You, L., and Xu, B.: Mapping Diverse Paddy Rice Cropping Patterns in South China Using Harmonized Landsat and Sentinel-2 Data, Remote Sens., 15, 1034, https://doi.org/10.3390/rs15041034, 2023.
Jiang, M., Li, X., Xin, L., and Tan, M.: Paddy rice multiple cropping index changes in Southern China: Impacts on national grain production capacity and policy implications, J. Geogr. Sci., 29, 1773–1787, https://doi.org/10.1007/s11442-019-1689-8, 2019.
Jiang, R., Sanchez-Azofeifa, A., Laakso, K., Xu, Y., Zhou, Z., Luo, X., Huang, J., Chen, X., and Zang, Y.: Cloud Cover throughout All the Paddy Rice Fields in Guangdong, China: Impacts on Sentinel 2 MSI and Landsat 8 OLI Optical Observations, Remote Sens., 13, 2961, https://doi.org/10.3390/rs13152961, 2021.
Li, J. and Chen, B.: Global Revisit Interval Analysis of Landsat-8 -9 and Sentinel-2A -2B Data for Terrestrial Monitoring, Sensors, 20, 6631, https://doi.org/10.3390/s20226631, 2020.
Li, X., Peng, Q., Zheng, Y., Lin, S., He, B., Qiu, Y., Chen, J., Chen, Y., and Yuan, W.: Incorporating environmental variables into spatiotemporal fusion model to reconstruct high-quality vegetation index data, IEEE T. Geosci. Remote, 62, 4401812, https://doi.org/10.1109/TGRS.2024.3349513, 2024.
Liu, Z., Li, Z., Tang, P., Li, Z., Wu, W., Yang, P., You, L., and Tang, H.: Change analysis of rice area and production in China during the past three decades, J. Geogr. Sci., 23, 1005–1018, https://doi.org/10.1007/s11442-013-1059-x, 2013.
Luo, Y., Zhang, Z., Li, Z., Chen, Y., Zhang, L., Cao, J., and Tao, F.: Identifying the spatiotemporal changes of annual harvesting areas for three staple crops in China by integrating multi-data sources, Environ. Res. Lett., 15, 074003, https://doi.org/10.1088/1748-9326/ab80f0, 2020.
Mansaray, L. R., Wang, F., Huang, J., Yang, L., and Kanu, A. S.: Accuracies of support vector machine and random forest in rice mapping with Sentinel-1A, Landsat-8 and Sentinel-2A datasets, Geocarto Int., 35, 1088–1108, https://doi.org/10.1080/10106049.2019.1568586, 2020.
Meng, L., Li, Y., Shen, R., Zheng, Y., Pan, B., Yuan, W., Li, J., and Zhuo, L.: Large-scale and high-resolution paddy rice intensity mapping using downscaling and phenology-based algorithms on Google Earth Engine, Int. J. Appl. Earth Obs., 128, 103725, https://doi.org/10.1016/j.jag.2024.103725, 2024.
Millard, K. and Richardson, M.: On the Importance of Training Data Sample Selection in Random Forest Image Classification: A Case Study in Peatland Ecosystem Mapping, Remote Sens., 7, 8489–8515, https://doi.org/10.3390/rs70708489, 2015.
Mohammadi, A., Khoshnevisan, B., Venkatesh, G., and Eskandari, S.: A Critical Review on Advancement and Challenges of Biochar Application in Paddy Fields: Environmental and Life Cycle Cost Analysis, Processes, 8, 1275, https://doi.org/10.3390/pr8101275, 2020.
National Bureau of Statistics of China: China Statistical Yearbook 2023, China Statistics Press, ISBN 978-7-5230-0190-5, 2023.
Nguyen, D. B., Gruber, A., and Wagner, W.: Mapping rice extent and cropping scheme in the Mekong Delta using Sentinel-1A data, Remote Sens. Lett., 7, 1209–1218, https://doi.org/10.1080/2150704X.2016.1225172, 2016.
Oguro, Y., Suga, Y., Takeuchi, S., Ogawa, M., Konishi, T., and Tsuchiya, K.: Comparison of SAR and optical sensor data for monitoring of rice plant around Hiroshima, Adv. Space Res., 28, 195–200, https://doi.org/10.1016/S0273-1177(01)00345-3, 2001.
Oliver, C. and Quegan, S. (Eds.): Understanding synthetic aperture radar images, SciTech Publishing, Raleigh, NC, 479 pp., ISBN 978-1-891121-31-9, 2004.
Ouyang, Z., Jackson, R. B., McNicol, G., Fluet-Chouinard, E., Runkle, B. R. K., Papale, D., Knox, S. H., Cooley, S., Delwiche, K. B., Feron, S., Irvin, J. A., Malhotra, A., Muddasir, M., Sabbatini, S., Alberto, Ma. C. R., Cescatti, A., Chen, C.-L., Dong, J., Fong, B. N., Guo, H., Hao, L., Iwata, H., Jia, Q., Ju, W., Kang, M., Li, H., Kim, J., Reba, M. L., Nayak, A. K., Roberti, D. R., Ryu, Y., Swain, C. K., Tsuang, B., Xiao, X., Yuan, W., Zhang, G., and Zhang, Y.: Paddy rice methane emissions across Monsoon Asia, Remote Sens. Environ., 284, 113335, https://doi.org/10.1016/j.rse.2022.113335, 2023.
Pan, B., Zheng, Y., Shen, R., Ye, T., Zhao, W., Dong, J., Ma, H., and Yuan, W.: A 10 m Resolution Distribution Dataset of Double-Season Paddy Rice in China from 2016 to 2020, National Ecosystem Science Data Center [data set], https://doi.org/10.12199/nesdc.ecodb.rs.2022.012, 2021a (in Chinese).
Pan, B., Zheng, Y., Shen, R., Ye, T., Zhao, W., Dong, J., Ma, H., and Yuan, W.: High Resolution Distribution Dataset of Double-Season Paddy Rice in China, Remote Sens., 13, 4609, https://doi.org/10.3390/rs13224609, 2021b.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, É.: Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011.
Peng, Q., Shen, R., Li, X., Ye, T., Dong, J., Fu, Y., and Yuan, W.: A twenty-year dataset of high-resolution maize distribution in China, Sci. Data, 10, 658, https://doi.org/10.1038/s41597-023-02573-6, 2023.
Phan, H., Le Toan, T., Bouvet, A., Nguyen, L., Pham Duy, T., and Zribi, M.: Mapping of Rice Varieties and Sowing Date Using X-Band SAR Data, Sensors, 18, 316, https://doi.org/10.3390/s18010316, 2018.
Rahimi, E. and Jung, C.: Evaluating the applicability of landsat 8 data for global time series analysis, Front. Remote Sens., 5, https://doi.org/10.3389/frsen.2024.1492534, 2024.
Savitzky, A. and Golay, M. J. E.: Smoothing and Differentiation of Data by Simplified Least Squares Procedures, Anal. Chem., 36, 1627–1639, https://doi.org/10.1021/ac60214a047, 1964.
Shen, R.: Codes of a rice mapping method to generate CCD-Rice product, Zenodo [code], https://doi.org/10.5281/zenodo.15468566, 2025.
Shen, R., Dong, J., Yuan, W., Han, W., Ye, T., and Zhao, W.: A 30 m Resolution Distribution Map of Maize for China Based on Landsat and Sentinel Images, J. Remote Sens., 2022, 9846712, https://doi.org/10.34133/2022/9846712, 2022.
Shen, R., Pan, B., Peng, Q., Dong, J., Chen, X., Zhang, X., Ye, T., Huang, J., and Yuan, W.: High-resolution distribution maps of single-season rice in China from 2017 to 2022, Earth Syst. Sci. Data, 15, 3203–3222, https://doi.org/10.5194/essd-15-3203-2023, 2023a.
Shen, R., Pan, B., Peng, Q., Dong, J., Chen, X., Zhang, X., Ye, T., Huang, J., and Yuan, W.: High-resolution distribution maps of single-season rice in China from 2017 to 2022, Science Data Bank [data set], https://doi.org/10.57760/sciencedb.06963, 2023b.
Shen, R., Peng, Q., Li, X., Chen, X., and Yuan, W.: CCD-Rice: A paddy rice distribution dataset in China from 1990 to 2016 at 30 m resolution, Science Data Bank [data set], https://doi.org/10.57760/sciencedb.15865, 2024a.
Shen, R., Peng, Q., and Yuan, W.: Several samples visually interpreted from the very high-resolution images from Google Earth for rice mapping research in China, figshare [data set], https://doi.org/10.6084/m9.figshare.25515019.v3, 2024b.
Shen, R., Peng, Q., Li, X., Chen, X., and Yuan, W.: CCD-Rice: A paddy rice distribution dataset in China from 1990 to 2016 at 30 m resolution, https://ee-shenrq.projects.earthengine.app/view/ccd-rice, last access: 20 May 2025.
Sudmanns, M., Tiede, D., Augustin, H., and Lang, S.: Assessing global Sentinel-2 coverage dynamics and data availability for operational Earth observation (EO) applications using the EO-Compass, Int. J. Digit. Earth, 13, 768–784, https://doi.org/10.1080/17538947.2019.1572799, 2020.
Sun, C., Zhang, H., Xu, L., Ge, J., Jiang, J., Zuo, L., and Wang, C.: Twenty-meter annual paddy rice area map for mainland Southeast Asia using Sentinel-1 synthetic-aperture-radar data, Earth Syst. Sci. Data, 15, 1501–1520, https://doi.org/10.5194/essd-15-1501-2023, 2023.
Tan, S., Heerink, N., and Qu, F.: Land fragmentation and its driving forces in China, Land Use Policy, 23, 272–285, https://doi.org/10.1016/j.landusepol.2004.12.001, 2006.
Tian, X., Bai, Y., Li, G., Yang, X., Huang, J., and Chen, Z.: An Adaptive Feature Fusion Network with Superpixel Optimization for Crop Classification Using Sentinel-2 Imagery, Remote Sens., 15, 1990, https://doi.org/10.3390/rs15081990, 2023.
Valero, S., Morin, D., Inglada, J., Sepulcre, G., Arias, M., Hagolle, O., Dedieu, G., Bontemps, S., Defourny, P., and Koetz, B.: Production of a Dynamic Cropland Mask by Processing Remote Sensing Image Series at High Temporal and Spatial Resolutions, Remote Sens., 8, 55, https://doi.org/10.3390/rs8010055, 2016.
Veloso, A., Mermoz, S., Bouvet, A., Le Toan, T., Planells, M., Dejoux, J.-F., and Ceschia, E.: Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications, Remote Sens. Environ., 199, 415–426, https://doi.org/10.1016/j.rse.2017.07.015, 2017.
Waleed, M., Mubeen, M., Ahmad, A., Habib-ur-Rahman, M., Amin, A., Farid, H. U., Hussain, S., Ali, M., Qaisrani, S. A., Nasim, W., Javeed, H. M. R., Masood, N., Aziz, T., Mansour, F., and El Sabagh, A.: Evaluating the efficiency of coarser to finer resolution multispectral satellites in mapping paddy rice fields using GEE implementation, Sci. Rep., 12, 13210, https://doi.org/10.1038/s41598-022-17454-y, 2022.
Wen, Y., Li, X., Mu, H., Zhong, L., Chen, H., Zeng, Y., Miao, S., Su, W., Gong, P., Li, B., and Huang, J.: Mapping corn dynamics using limited but representative samples with adaptive strategies, ISPRS J. Photogramm., 190, 252–266, https://doi.org/10.1016/j.isprsjprs.2022.06.012, 2022.
Xiao, X., Boles, S., Liu, J., Zhuang, D., Frolking, S., Li, C., Salas, W., and Moore, B.: Mapping paddy rice agriculture in southern China using multi-temporal MODIS images, Remote Sens. Environ., 95, 480–492, https://doi.org/10.1016/j.rse.2004.12.009, 2005.
Xiao, X., Boles, S., Frolking, S., Li, C., Babu, J. Y., Salas, W., and Moore, B.: Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images, Remote Sens. Environ., 100, 95–113, https://doi.org/10.1016/j.rse.2005.10.004, 2006.
Xin, F., Xiao, X., Dong, J., Zhang, G., Zhang, Y., Wu, X., Li, X., Zou, Z., Ma, J., Du, G., Doughty, R. B., Zhao, B., and Li, B.: Large increases of paddy rice area, gross primary production, and grain production in Northeast China during 2000–2017, Sci. Total Environ., 711, 135183, https://doi.org/10.1016/j.scitotenv.2019.135183, 2020.
Xu, S., Zhu, X., Chen, J., Zhu, X., Duan, M., Qiu, B., Wan, L., Tan, X., Xu, Y. N., and Cao, R.: A robust index to extract paddy fields in cloudy regions from SAR time series, Remote Sens. Environ., 285, 113374, https://doi.org/10.1016/j.rse.2022.113374, 2023.
Xuan, F., Dong, Y., Li, J., Li, X., Su, W., Huang, X., Huang, J., Xie, Z., Li, Z., Liu, H., Tao, W., Wen, Y., and Zhang, Y.: Mapping crop type in Northeast China during 2013–2021 using automatic sampling and tile-based image classification, Int. J. Appl. Earth Obs., 117, 103178, https://doi.org/10.1016/j.jag.2022.103178, 2023.
Yan, J., Yang, Z., Li, Z., Li, X., Xin, L., and Sun, L.: Drivers of cropland abandonment in mountainous areas: A household decision model on farming scale in Southwest China, Land Use Policy, 57, 459–469, https://doi.org/10.1016/j.landusepol.2016.06.014, 2016.
Yang, J. and Huang, X.: The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019, Earth Syst. Sci. Data, 13, 3907–3925, https://doi.org/10.5194/essd-13-3907-2021, 2021.
Yang, J. and Huang, X.: The 30 m annual land cover datasets and its dynamics in China from 1985 to 2022, Zenodo [data set], https://doi.org/10.5281/zenodo.8176941, 2023.
You, N., Dong, J., Huang, J., Du, G., Zhang, G., He, Y., Yang, T., Di, Y., and Xiao, X.: The 10-m crop type maps in Northeast China during 2017–2019, Sci. Data, 8, 41, https://doi.org/10.1038/s41597-021-00827-9, 2021.
Zhang, C., Zhang, H., and Tian, S.: Phenology-assisted supervised paddy rice mapping with the Landsat imagery on Google Earth Engine: Experiments in Heilongjiang Province of China from 1990 to 2020, Comput. Electron. Agr., 212, 108105, https://doi.org/10.1016/j.compag.2023.108105, 2023a.
Zhang, G., Xiao, X., Biradar, C. M., Dong, J., Qin, Y., Menarguez, M. A., Zhou, Y., Zhang, Y., Jin, C., Wang, J., Doughty, R. B., Ding, M., and Moore, B.: Spatiotemporal patterns of paddy rice croplands in China and India from 2000 to 2015, Sci. Total Environ., 579, 82–92, https://doi.org/10.1016/j.scitotenv.2016.10.223, 2017.
Zhang, G., Xiao, X., Dong, J., Xin, F., Zhang, Y., Qin, Y., Doughty, R. B., and Moore, B.: Fingerprint of rice paddies in spatial–temporal dynamics of atmospheric methane concentration in monsoon Asia, Nat. Commun., 11, 554, https://doi.org/10.1038/s41467-019-14155-5, 2020.
Zhang, H. K. and Roy, D. P.: Using the 500m MODIS land cover product to derive a consistent continental scale 30m Landsat land cover classification, Remote Sens. Environ., 197, 15–34, https://doi.org/10.1016/j.rse.2017.05.024, 2017.
Zhang, X., Shen, R., Zhu, X., Pan, B., Fu, Y., Zheng, Y., Chen, X., Peng, Q., and Yuan, W.: Sample-free automated mapping of double-season rice in China using Sentinel-1 SAR imagery, Front. Environ. Sci., 11, https://doi.org/10.3389/fenvs.2023.1207882, 2023b.
Zhao, Q., Ding, X., Zhu, C., Zhao, W., Fan, S., Zhao, L., and Yu, D.: Healthy Diets in China, in: 2023 China and Global Food Policy Report, http://agfep.cau.edu.cn/art/2023/5/23/art_39584_960277.html (last access: 20 May 2025), 2023.
Zhou, Y., Dong, J., Liu, J., Metternicht, G., Shen, W., You, N., Zhao, G., and Xiao, X.: Are There Sufficient Landsat Observations for Retrospective and Continuous Monitoring of Land Cover Changes in China?, Remote Sens., 11, 1808, https://doi.org/10.3390/rs11151808, 2019.
Short summary
Rice is a vital staple crop that plays a crucial role in food security in China. However, long-term high-resolution rice distribution maps in China are lacking. This study developed a new rice-mapping method, mitigating the impact of cloud contamination and missing data in optical remote sensing observations on rice mapping. The resulting dataset, CCD-Rice (China Crop Dataset-Rice), achieved high accuracy and showed a strong correlation with statistical data.
Rice is a vital staple crop that plays a crucial role in food security in China. However,...
Altmetrics
Final-revised paper
Preprint