Articles | Volume 17, issue 4
https://doi.org/10.5194/essd-17-1461-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-1461-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
CAMELS-FR dataset: a large-sample hydroclimatic dataset for France to explore hydrological diversity and support model benchmarking
Olivier Delaigue
CORRESPONDING AUTHOR
Université Paris-Saclay, INRAE, HYCAR, Antony, France
Guilherme Mendoza Guimarães
Université Paris-Saclay, INRAE, HYCAR, Antony, France
Pierre Brigode
Université Paris-Saclay, INRAE, HYCAR, Antony, France
Université Côte d'Azur, CNRS, OCA, IRD, Géoazur, Sophia-Antipolis, France
Université de Rennes, CNRS, Géosciences Rennes, Rennes, France
Benoît Génot
Université Paris-Saclay, INRAE, HYCAR, Antony, France
now at: U.R.B.S., Saint-Étienne, France
Charles Perrin
Université Paris-Saclay, INRAE, HYCAR, Antony, France
Jean-Michel Soubeyroux
Météo-France, DCSC, Toulouse, France
Bruno Janet
Service central d'hydrométéorologie et d'appui á la prévision des inondations (MTES/DGPR/SCHAPI), Toulouse, France
Nans Addor
Fathom, Bristol, UK
Department of Geography, University of Exeter, Exeter, UK
Vazken Andréassian
Université Paris-Saclay, INRAE, HYCAR, Antony, France
Related authors
Guillaume Thirel, Léonard Santos, Olivier Delaigue, and Charles Perrin
Hydrol. Earth Syst. Sci., 28, 4837–4860, https://doi.org/10.5194/hess-28-4837-2024, https://doi.org/10.5194/hess-28-4837-2024, 2024
Short summary
Short summary
We discuss how mathematical transformations impact calibrated hydrological model simulations. We assess how 11 transformations behave over the complete range of streamflows. Extreme transformations lead to models that are specialized for extreme streamflows but show poor performance outside the range of targeted streamflows and are less robust. We show that no a priori assumption about transformations can be taken as warranted.
Cyril Thébault, Charles Perrin, Vazken Andréassian, Guillaume Thirel, Sébastien Legrand, and Olivier Delaigue
Hydrol. Earth Syst. Sci., 28, 1539–1566, https://doi.org/10.5194/hess-28-1539-2024, https://doi.org/10.5194/hess-28-1539-2024, 2024
Short summary
Short summary
Streamflow forecasting is useful for many applications, ranging from population safety (e.g. floods) to water resource management (e.g. agriculture or hydropower). To this end, hydrological models must be optimized. However, a model is inherently wrong. This study aims to analyse the contribution of a multi-model approach within a variable spatial framework to improve streamflow simulations. The underlying idea is to take advantage of the strength of each modelling framework tested.
Laurent Strohmenger, Eric Sauquet, Claire Bernard, Jérémie Bonneau, Flora Branger, Amélie Bresson, Pierre Brigode, Rémy Buzier, Olivier Delaigue, Alexandre Devers, Guillaume Evin, Maïté Fournier, Shu-Chen Hsu, Sandra Lanini, Alban de Lavenne, Thibault Lemaitre-Basset, Claire Magand, Guilherme Mendoza Guimarães, Max Mentha, Simon Munier, Charles Perrin, Tristan Podechard, Léo Rouchy, Malak Sadki, Myriam Soutif-Bellenger, François Tilmant, Yves Tramblay, Anne-Lise Véron, Jean-Philippe Vidal, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 27, 3375–3391, https://doi.org/10.5194/hess-27-3375-2023, https://doi.org/10.5194/hess-27-3375-2023, 2023
Short summary
Short summary
We present the results of a large visual inspection campaign of 674 streamflow time series in France. The objective was to detect non-natural records resulting from instrument failure or anthropogenic influences, such as hydroelectric power generation or reservoir management. We conclude that the identification of flaws in flow time series is highly dependent on the objectives and skills of individual evaluators, and we raise the need for better practices for data cleaning.
Olivier Delaigue, Pierre Brigode, Guillaume Thirel, and Laurent Coron
Hydrol. Earth Syst. Sci., 27, 3293–3327, https://doi.org/10.5194/hess-27-3293-2023, https://doi.org/10.5194/hess-27-3293-2023, 2023
Short summary
Short summary
Teaching hydrological modeling is an important, but difficult, matter. It requires appropriate tools and teaching material. In this article, we present the airGRteaching package, which is an open-source software tool relying on widely used hydrological models. This tool proposes an interface and numerous hydrological modeling exercises representing a wide range of hydrological applications. We show how this tool can be applied to simple but real-life cases.
Paul C. Astagneau, Guillaume Thirel, Olivier Delaigue, Joseph H. A. Guillaume, Juraj Parajka, Claudia C. Brauer, Alberto Viglione, Wouter Buytaert, and Keith J. Beven
Hydrol. Earth Syst. Sci., 25, 3937–3973, https://doi.org/10.5194/hess-25-3937-2021, https://doi.org/10.5194/hess-25-3937-2021, 2021
Short summary
Short summary
The R programming language has become an important tool for many applications in hydrology. In this study, we provide an analysis of some of the R tools providing hydrological models. In total, two aspects are uniformly investigated, namely the conceptualisation of the models and the practicality of their implementation for end-users. These comparisons aim at easing the choice of R tools for users and at improving their usability for hydrology modelling to support more transferable research.
Pierre Nicolle, François Besson, Olivier Delaigue, Pierre Etchevers, Didier François, Matthieu Le Lay, Charles Perrin, Fabienne Rousset, Dominique Thiéry, François Tilmant, Claire Magand, Timothée Leurent, and Élise Jacob
Proc. IAHS, 383, 381–389, https://doi.org/10.5194/piahs-383-381-2020, https://doi.org/10.5194/piahs-383-381-2020, 2020
Guillaume Evin, Benoit Hingray, Guillaume Thirel, Agnès Ducharne, Laurent Strohmenger, Lola Corre, Yves Tramblay, Jean-Philippe Vidal, Jérémie Bonneau, François Colleoni, Joël Gailhard, Florence Habets, Frédéric Hendrickx, Louis Héraut, Peng Huang, Matthieu Le Lay, Claire Magand, Paola Marson, Céline Monteil, Simon Munier, Alix Reverdy, Jean-Michel Soubeyroux, Yoann Robin, Jean-Pierre Vergnes, Mathieu Vrac, and Eric Sauquet
EGUsphere, https://doi.org/10.5194/egusphere-2025-2727, https://doi.org/10.5194/egusphere-2025-2727, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Explore2 provides hydrological projections for 1,735 French catchments. Using QUALYPSO, this study assesses uncertainties, including internal variability. By the end of the century, low flows are projected to decline in southern France under high emissions, while other indicators remain uncertain. Emission scenarios and regional climate models are key uncertainty sources. Internal variability is often as large as climate-driven changes.
Taha-Abderrahman El Ouahabi, François Bourgin, Charles Perrin, and Vazken Andréassian
EGUsphere, https://doi.org/10.5194/egusphere-2025-3586, https://doi.org/10.5194/egusphere-2025-3586, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
To improve hydrological uncertainty estimation, recent studies have explored machine learning (ML)-based post-processing approaches. Among these, quantile random forests (QRF) are increasingly used for their balance between interpretability and performance. We develop a hydrologically informed QRF trained in a multi-site setting. Our results show that the regional QRF approach is beneficial, particularly in catchments where local information is insufficient.
Nele Reyniers, Qianyu Zha, Nans Addor, Timothy J. Osborn, Nicole Forstenhäusler, and Yi He
Earth Syst. Sci. Data, 17, 2113–2133, https://doi.org/10.5194/essd-17-2113-2025, https://doi.org/10.5194/essd-17-2113-2025, 2025
Short summary
Short summary
We present bias-corrected UK Climate Projections 2018 (UKCP18) regional datasets for temperature, precipitation, and potential evapotranspiration (1981–2080). All 12 members of the 12 km ensemble were corrected using quantile mapping and a change-preserving variant. Both methods effectively reduce biases in multiple statistics while maintaining projected climatic changes. We provide guidance on using the bias-corrected datasets for climate change impact assessment.
Eric Sauquet, Guillaume Evin, Sonia Siauve, Ryma Aissat, Patrick Arnaud, Maud Bérel, Jérémie Bonneau, Flora Branger, Yvan Caballero, François Colléoni, Agnès Ducharne, Joël Gailhard, Florence Habets, Frédéric Hendrickx, Louis Héraut, Benoît Hingray, Peng Huang, Tristan Jaouen, Alexis Jeantet, Sandra Lanini, Matthieu Le Lay, Claire Magand, Louise Mimeau, Céline Monteil, Simon Munier, Charles Perrin, Olivier Robelin, Fabienne Rousset, Jean-Michel Soubeyroux, Laurent Strohmenger, Guillaume Thirel, Flore Tocquer, Yves Tramblay, Jean-Pierre Vergnes, and Jean-Philippe Vidal
EGUsphere, https://doi.org/10.5194/egusphere-2025-1788, https://doi.org/10.5194/egusphere-2025-1788, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
The Explore2 project has provided an unprecedented set of hydrological projections in terms of the number of hydrological models used and the spatial and temporal resolution. The results have been made available through various media. Under the high-emission scenario, the hydrological models mostly agree on the decrease in seasonal flows in the south of France, confirming its hotspot status, and on the decrease in summer flows throughout France, with the exception of the northern part of France.
Vazken Andréassian, Guilherme Mendoza Guimarães, Alban de Lavenne, and Julien Lerat
EGUsphere, https://doi.org/10.5194/egusphere-2025-414, https://doi.org/10.5194/egusphere-2025-414, 2025
Short summary
Short summary
Using 4122 catchments from four continents, we investigate how annual streamflow depends on climate variables (rainfall and potential evaporation) and on the season when precipitation occurs, using and index representing the synchronicity between precipitation and potential evaporation. In all countries and under the main climates represented, synchronicity is, after precipitation, the second most important factor to explain annual streamflow variations.
Léonard Santos, Vazken Andréassian, Torben O. Sonnenborg, Göran Lindström, Alban de Lavenne, Charles Perrin, Lila Collet, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 29, 683–700, https://doi.org/10.5194/hess-29-683-2025, https://doi.org/10.5194/hess-29-683-2025, 2025
Short summary
Short summary
This work investigates how hydrological models are transferred to a period in which climate conditions are different to the ones of the period in which they were set up. The robustness assessment test built to detect dependencies between model error and climatic drivers was applied to three hydrological models in 352 catchments in Denmark, France and Sweden. Potential issues are seen in a significant number of catchments for the models, even though the catchments differ for each model.
Claudia Färber, Henning Plessow, Simon Mischel, Frederik Kratzert, Nans Addor, Guy Shalev, and Ulrich Looser
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-427, https://doi.org/10.5194/essd-2024-427, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Large-sample datasets are essential in hydrological science to support modelling studies and advance process understanding. Caravan is a community initiative to create a large-sample hydrology dataset of meteorological forcing data, catchment attributes, and discharge data for catchments around the world. This dataset is a subset of hydrological discharge data and station-based watersheds from the Global Runoff Data Centre (GRDC), which are covered by an open data policy.
Guillaume Thirel, Léonard Santos, Olivier Delaigue, and Charles Perrin
Hydrol. Earth Syst. Sci., 28, 4837–4860, https://doi.org/10.5194/hess-28-4837-2024, https://doi.org/10.5194/hess-28-4837-2024, 2024
Short summary
Short summary
We discuss how mathematical transformations impact calibrated hydrological model simulations. We assess how 11 transformations behave over the complete range of streamflows. Extreme transformations lead to models that are specialized for extreme streamflows but show poor performance outside the range of targeted streamflows and are less robust. We show that no a priori assumption about transformations can be taken as warranted.
Pierre Brigode and Ludovic Oudin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-336, https://doi.org/10.5194/hess-2024-336, 2024
Preprint under review for HESS
Short summary
Short summary
We analyzed how well two global climate datasets can simulate river flows across Europe over the last 150 years. Our results show good performance overall, revealing important long-term changes in water availability and extreme events, like floods, in different regions. This research helps us better understand past and future water trends, providing insights to manage resources and address the challenges posed by climate change.
Carlo Mologni, Marie Revel, Eric Chaumillon, Emmanuel Malet, Thibault Coulombier, Pierre Sabatier, Pierre Brigode, Gwenael Hervé, Anne-Lise Develle, Laure Schenini, Medhi Messous, Gourguen Davtian, Alain Carré, Delphine Bosch, Natacha Volto, Clément Ménard, Lamya Khalidi, and Fabien Arnaud
Clim. Past, 20, 1837–1860, https://doi.org/10.5194/cp-20-1837-2024, https://doi.org/10.5194/cp-20-1837-2024, 2024
Short summary
Short summary
The reactivity of local to regional hydrosystems to global changes remains understated in East African climate models. By reconstructing a chronicle of seasonal floods and droughts from a lacustrine sedimentary core, this paper highlights the impact of El Niño anomalies in the Awash River valley (Ethiopia). Studying regional hydrosystem feedbacks to global atmospheric anomalies is essential for better comprehending and mitigating the effects of global warming in extreme environments.
Thibault Hallouin, François Bourgin, Charles Perrin, Maria-Helena Ramos, and Vazken Andréassian
Geosci. Model Dev., 17, 4561–4578, https://doi.org/10.5194/gmd-17-4561-2024, https://doi.org/10.5194/gmd-17-4561-2024, 2024
Short summary
Short summary
The evaluation of the quality of hydrological model outputs against streamflow observations is widespread in the hydrological literature. In order to improve on the reproducibility of published studies, a new evaluation tool dedicated to hydrological applications is presented. It is open source and usable in a variety of programming languages to make it as accessible as possible to the community. Thus, authors and readers alike can use the same tool to produce and reproduce the results.
Ralph Bathelemy, Pierre Brigode, Vazken Andréassian, Charles Perrin, Vincent Moron, Cédric Gaucherel, Emmanuel Tric, and Dominique Boisson
Earth Syst. Sci. Data, 16, 2073–2098, https://doi.org/10.5194/essd-16-2073-2024, https://doi.org/10.5194/essd-16-2073-2024, 2024
Short summary
Short summary
The aim of this work is to provide the first hydroclimatic database for Haiti, a Caribbean country particularly vulnerable to meteorological and hydrological hazards. The resulting database, named Simbi, provides hydroclimatic time series for around 150 stations and 24 catchment areas.
Cyril Thébault, Charles Perrin, Vazken Andréassian, Guillaume Thirel, Sébastien Legrand, and Olivier Delaigue
Hydrol. Earth Syst. Sci., 28, 1539–1566, https://doi.org/10.5194/hess-28-1539-2024, https://doi.org/10.5194/hess-28-1539-2024, 2024
Short summary
Short summary
Streamflow forecasting is useful for many applications, ranging from population safety (e.g. floods) to water resource management (e.g. agriculture or hydropower). To this end, hydrological models must be optimized. However, a model is inherently wrong. This study aims to analyse the contribution of a multi-model approach within a variable spatial framework to improve streamflow simulations. The underlying idea is to take advantage of the strength of each modelling framework tested.
Marvin Höge, Martina Kauzlaric, Rosi Siber, Ursula Schönenberger, Pascal Horton, Jan Schwanbeck, Marius Günter Floriancic, Daniel Viviroli, Sibylle Wilhelm, Anna E. Sikorska-Senoner, Nans Addor, Manuela Brunner, Sandra Pool, Massimiliano Zappa, and Fabrizio Fenicia
Earth Syst. Sci. Data, 15, 5755–5784, https://doi.org/10.5194/essd-15-5755-2023, https://doi.org/10.5194/essd-15-5755-2023, 2023
Short summary
Short summary
CAMELS-CH is an open large-sample hydro-meteorological data set that covers 331 catchments in hydrologic Switzerland from 1 January 1981 to 31 December 2020. It comprises (a) daily data of river discharge and water level as well as meteorologic variables like precipitation and temperature; (b) yearly glacier and land cover data; (c) static attributes of, e.g, topography or human impact; and (d) catchment delineations. CAMELS-CH enables water and climate research and modeling at catchment level.
Laurent Strohmenger, Eric Sauquet, Claire Bernard, Jérémie Bonneau, Flora Branger, Amélie Bresson, Pierre Brigode, Rémy Buzier, Olivier Delaigue, Alexandre Devers, Guillaume Evin, Maïté Fournier, Shu-Chen Hsu, Sandra Lanini, Alban de Lavenne, Thibault Lemaitre-Basset, Claire Magand, Guilherme Mendoza Guimarães, Max Mentha, Simon Munier, Charles Perrin, Tristan Podechard, Léo Rouchy, Malak Sadki, Myriam Soutif-Bellenger, François Tilmant, Yves Tramblay, Anne-Lise Véron, Jean-Philippe Vidal, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 27, 3375–3391, https://doi.org/10.5194/hess-27-3375-2023, https://doi.org/10.5194/hess-27-3375-2023, 2023
Short summary
Short summary
We present the results of a large visual inspection campaign of 674 streamflow time series in France. The objective was to detect non-natural records resulting from instrument failure or anthropogenic influences, such as hydroelectric power generation or reservoir management. We conclude that the identification of flaws in flow time series is highly dependent on the objectives and skills of individual evaluators, and we raise the need for better practices for data cleaning.
Olivier Delaigue, Pierre Brigode, Guillaume Thirel, and Laurent Coron
Hydrol. Earth Syst. Sci., 27, 3293–3327, https://doi.org/10.5194/hess-27-3293-2023, https://doi.org/10.5194/hess-27-3293-2023, 2023
Short summary
Short summary
Teaching hydrological modeling is an important, but difficult, matter. It requires appropriate tools and teaching material. In this article, we present the airGRteaching package, which is an open-source software tool relying on widely used hydrological models. This tool proposes an interface and numerous hydrological modeling exercises representing a wide range of hydrological applications. We show how this tool can be applied to simple but real-life cases.
Nele Reyniers, Timothy J. Osborn, Nans Addor, and Geoff Darch
Hydrol. Earth Syst. Sci., 27, 1151–1171, https://doi.org/10.5194/hess-27-1151-2023, https://doi.org/10.5194/hess-27-1151-2023, 2023
Short summary
Short summary
In an analysis of future drought projections for Great Britain based on the Standardised Precipitation Index and the Standardised Precipitation Evapotranspiration Index, we show that the choice of drought indicator has a decisive influence on the resulting projected changes in drought characteristics, although both result in increased drying. This highlights the need to understand the interplay between increasing atmospheric evaporative demand and drought impacts under a changing climate.
Robert Vautard, Geert Jan van Oldenborgh, Rémy Bonnet, Sihan Li, Yoann Robin, Sarah Kew, Sjoukje Philip, Jean-Michel Soubeyroux, Brigitte Dubuisson, Nicolas Viovy, Markus Reichstein, Friederike Otto, and Iñaki Garcia de Cortazar-Atauri
Nat. Hazards Earth Syst. Sci., 23, 1045–1058, https://doi.org/10.5194/nhess-23-1045-2023, https://doi.org/10.5194/nhess-23-1045-2023, 2023
Short summary
Short summary
A deep frost occurred in early April 2021, inducing severe damages in grapevine and fruit trees in France. We found that such extreme frosts occurring after the start of the growing season such as those of April 2021 are currently about 2°C colder [0.5 °C to 3.3 °C] in observations than in preindustrial climate. This observed intensification of growing-period frosts is attributable, at least in part, to human-caused climate change, making the 2021 event 50 % more likely [10 %–110 %].
Reyhaneh Hashemi, Pierre Brigode, Pierre-André Garambois, and Pierre Javelle
Hydrol. Earth Syst. Sci., 26, 5793–5816, https://doi.org/10.5194/hess-26-5793-2022, https://doi.org/10.5194/hess-26-5793-2022, 2022
Short summary
Short summary
Hydrologists have long dreamed of a tool that could adequately predict runoff in catchments. Data-driven long short-term memory (LSTM) models appear very promising to the hydrology community in this respect. Here, we have sought to benefit from traditional practices in hydrology to improve the effectiveness of LSTM models. We discovered that one LSTM parameter has a hydrologic interpretation and that there is a need to increase the data and to tune two parameters, thereby improving predictions.
Alban de Lavenne, Vazken Andréassian, Louise Crochemore, Göran Lindström, and Berit Arheimer
Hydrol. Earth Syst. Sci., 26, 2715–2732, https://doi.org/10.5194/hess-26-2715-2022, https://doi.org/10.5194/hess-26-2715-2022, 2022
Short summary
Short summary
A watershed remembers the past to some extent, and this memory influences its behavior. This memory is defined by the ability to store past rainfall for several years. By releasing this water into the river or the atmosphere, it tends to forget. We describe how this memory fades over time in France and Sweden. A few watersheds show a multi-year memory. It increases with the influence of groundwater or dry conditions. After 3 or 4 years, they behave independently of the past.
Antoine Pelletier and Vazken Andréassian
Hydrol. Earth Syst. Sci., 26, 2733–2758, https://doi.org/10.5194/hess-26-2733-2022, https://doi.org/10.5194/hess-26-2733-2022, 2022
Short summary
Short summary
A large part of the water cycle takes place underground. In many places, the soil stores water during the wet periods and can release it all year long, which is particularly visible when the river level is low. Modelling tools that are used to simulate and forecast the behaviour of the river struggle to represent this. We improved an existing model to take underground water into account using measurements of the soil water content. Results allow us make recommendations for model users.
Małgorzata Chmiel, Maxime Godano, Marco Piantini, Pierre Brigode, Florent Gimbert, Maarten Bakker, Françoise Courboulex, Jean-Paul Ampuero, Diane Rivet, Anthony Sladen, David Ambrois, and Margot Chapuis
Nat. Hazards Earth Syst. Sci., 22, 1541–1558, https://doi.org/10.5194/nhess-22-1541-2022, https://doi.org/10.5194/nhess-22-1541-2022, 2022
Short summary
Short summary
On 2 October 2020, the French Maritime Alps were struck by an extreme rainfall event caused by Storm Alex. Here, we show that seismic data provide the timing and velocity of the propagation of flash-flood waves along the Vésubie River. We also detect 114 small local earthquakes triggered by the rainwater weight and/or its infiltration into the ground. This study paves the way for future works that can reveal further details of the impact of Storm Alex on the Earth’s surface and subsurface.
Linh N. Luu, Robert Vautard, Pascal Yiou, and Jean-Michel Soubeyroux
Earth Syst. Dynam., 13, 687–702, https://doi.org/10.5194/esd-13-687-2022, https://doi.org/10.5194/esd-13-687-2022, 2022
Short summary
Short summary
This study downscales climate information from EURO-CORDEX (approx. 12 km) output to a higher horizontal resolution (approx. 3 km) for the south of France. We also propose a matrix of different indices to evaluate the high-resolution precipitation output. We find that a higher resolution reproduces more realistic extreme precipitation events at both daily and sub-daily timescales. Our results and approach are promising to apply to other Mediterranean regions and climate impact studies.
Paul Royer-Gaspard, Vazken Andréassian, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 25, 5703–5716, https://doi.org/10.5194/hess-25-5703-2021, https://doi.org/10.5194/hess-25-5703-2021, 2021
Short summary
Short summary
Most evaluation studies based on the differential split-sample test (DSST) endorse the consensus that rainfall–runoff models lack climatic robustness. In this technical note, we propose a new performance metric to evaluate model robustness without applying the DSST and which can be used with a single hydrological model calibration. Our work makes it possible to evaluate the temporal transferability of any hydrological model, including uncalibrated models, at a very low computational cost.
Andrew J. Newman, Amanda G. Stone, Manabendra Saharia, Kathleen D. Holman, Nans Addor, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 25, 5603–5621, https://doi.org/10.5194/hess-25-5603-2021, https://doi.org/10.5194/hess-25-5603-2021, 2021
Short summary
Short summary
This study assesses methods that estimate flood return periods to identify when we would obtain a large flood return estimate change if the method or input data were changed (sensitivities). We include an examination of multiple flood-generating models, which is a novel addition to the flood estimation literature. We highlight the need to select appropriate flood models for the study watershed. These results will help operational water agencies develop more robust risk assessments.
Peter T. La Follette, Adriaan J. Teuling, Nans Addor, Martyn Clark, Koen Jansen, and Lieke A. Melsen
Hydrol. Earth Syst. Sci., 25, 5425–5446, https://doi.org/10.5194/hess-25-5425-2021, https://doi.org/10.5194/hess-25-5425-2021, 2021
Short summary
Short summary
Hydrological models are useful tools that allow us to predict distributions and movement of water. A variety of numerical methods are used by these models. We demonstrate which numerical methods yield large errors when subject to extreme precipitation. As the climate is changing such that extreme precipitation is more common, we find that some numerical methods are better suited for use in hydrological models. Also, we find that many current hydrological models use relatively inaccurate methods.
John P. Bloomfield, Mengyi Gong, Benjamin P. Marchant, Gemma Coxon, and Nans Addor
Hydrol. Earth Syst. Sci., 25, 5355–5379, https://doi.org/10.5194/hess-25-5355-2021, https://doi.org/10.5194/hess-25-5355-2021, 2021
Short summary
Short summary
Groundwater provides flow, known as baseflow, to surface streams and rivers. It is important as it sustains the flow of many rivers at times of water stress. However, it may be affected by water management practices. Statistical models have been used to show that abstraction of groundwater may influence baseflow. Consequently, it is recommended that information on groundwater abstraction is included in future assessments and predictions of baseflow.
Pierre Nicolle, Vazken Andréassian, Paul Royer-Gaspard, Charles Perrin, Guillaume Thirel, Laurent Coron, and Léonard Santos
Hydrol. Earth Syst. Sci., 25, 5013–5027, https://doi.org/10.5194/hess-25-5013-2021, https://doi.org/10.5194/hess-25-5013-2021, 2021
Short summary
Short summary
In this note, a new method (RAT) is proposed to assess the robustness of hydrological models. The RAT method is particularly interesting because it does not require multiple calibrations (it is therefore applicable to uncalibrated models), and it can be used to determine whether a hydrological model may be safely used for climate change impact studies. Success at the robustness assessment test is a necessary (but not sufficient) condition of model robustness.
Keirnan J. A. Fowler, Suwash Chandra Acharya, Nans Addor, Chihchung Chou, and Murray C. Peel
Earth Syst. Sci. Data, 13, 3847–3867, https://doi.org/10.5194/essd-13-3847-2021, https://doi.org/10.5194/essd-13-3847-2021, 2021
Short summary
Short summary
This paper presents the Australian edition of the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) series of datasets. CAMELS-AUS comprises data for 222 unregulated catchments with long-term monitoring, combining hydrometeorological time series (streamflow and 18 climatic variables) with 134 attributes related to geology, soil, topography, land cover, anthropogenic influence and hydroclimatology. It is freely downloadable from https://doi.pangaea.de/10.1594/PANGAEA.921850.
Peter Uhe, Daniel Mitchell, Paul D. Bates, Nans Addor, Jeff Neal, and Hylke E. Beck
Geosci. Model Dev., 14, 4865–4890, https://doi.org/10.5194/gmd-14-4865-2021, https://doi.org/10.5194/gmd-14-4865-2021, 2021
Short summary
Short summary
We present a cascade of models to compute high-resolution river flooding. This takes meteorological inputs, e.g., rainfall and temperature from observations or climate models, and takes them through a series of modeling steps. This is relevant to evaluating current day and future flood risk and impacts. The model framework uses global data sets, allowing it to be applied anywhere in the world.
Paul C. Astagneau, Guillaume Thirel, Olivier Delaigue, Joseph H. A. Guillaume, Juraj Parajka, Claudia C. Brauer, Alberto Viglione, Wouter Buytaert, and Keith J. Beven
Hydrol. Earth Syst. Sci., 25, 3937–3973, https://doi.org/10.5194/hess-25-3937-2021, https://doi.org/10.5194/hess-25-3937-2021, 2021
Short summary
Short summary
The R programming language has become an important tool for many applications in hydrology. In this study, we provide an analysis of some of the R tools providing hydrological models. In total, two aspects are uniformly investigated, namely the conceptualisation of the models and the practicality of their implementation for end-users. These comparisons aim at easing the choice of R tools for users and at improving their usability for hydrology modelling to support more transferable research.
Michael Matiu, Alice Crespi, Giacomo Bertoldi, Carlo Maria Carmagnola, Christoph Marty, Samuel Morin, Wolfgang Schöner, Daniele Cat Berro, Gabriele Chiogna, Ludovica De Gregorio, Sven Kotlarski, Bruno Majone, Gernot Resch, Silvia Terzago, Mauro Valt, Walter Beozzo, Paola Cianfarra, Isabelle Gouttevin, Giorgia Marcolini, Claudia Notarnicola, Marcello Petitta, Simon C. Scherrer, Ulrich Strasser, Michael Winkler, Marc Zebisch, Andrea Cicogna, Roberto Cremonini, Andrea Debernardi, Mattia Faletto, Mauro Gaddo, Lorenzo Giovannini, Luca Mercalli, Jean-Michel Soubeyroux, Andrea Sušnik, Alberto Trenti, Stefano Urbani, and Viktor Weilguni
The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021, https://doi.org/10.5194/tc-15-1343-2021, 2021
Short summary
Short summary
The first Alpine-wide assessment of station snow depth has been enabled by a collaborative effort of the research community which involves more than 30 partners, 6 countries, and more than 2000 stations. It shows how snow in the European Alps matches the climatic zones and gives a robust estimate of observed changes: stronger decreases in the snow season at low elevations and in spring at all elevations, however, with considerable regional differences.
Gemma Coxon, Nans Addor, John P. Bloomfield, Jim Freer, Matt Fry, Jamie Hannaford, Nicholas J. K. Howden, Rosanna Lane, Melinda Lewis, Emma L. Robinson, Thorsten Wagener, and Ross Woods
Earth Syst. Sci. Data, 12, 2459–2483, https://doi.org/10.5194/essd-12-2459-2020, https://doi.org/10.5194/essd-12-2459-2020, 2020
Short summary
Short summary
We present the first large-sample catchment hydrology dataset for Great Britain. The dataset collates river flows, catchment attributes, and catchment boundaries for 671 catchments across Great Britain. We characterise the topography, climate, streamflow, land cover, soils, hydrogeology, human influence, and discharge uncertainty of each catchment. The dataset is publicly available for the community to use in a wide range of environmental and modelling analyses.
Pierre Nicolle, François Besson, Olivier Delaigue, Pierre Etchevers, Didier François, Matthieu Le Lay, Charles Perrin, Fabienne Rousset, Dominique Thiéry, François Tilmant, Claire Magand, Timothée Leurent, and Élise Jacob
Proc. IAHS, 383, 381–389, https://doi.org/10.5194/piahs-383-381-2020, https://doi.org/10.5194/piahs-383-381-2020, 2020
Vinícius B. P. Chagas, Pedro L. B. Chaffe, Nans Addor, Fernando M. Fan, Ayan S. Fleischmann, Rodrigo C. D. Paiva, and Vinícius A. Siqueira
Earth Syst. Sci. Data, 12, 2075–2096, https://doi.org/10.5194/essd-12-2075-2020, https://doi.org/10.5194/essd-12-2075-2020, 2020
Short summary
Short summary
We present a new dataset for large-sample hydrological studies in Brazil. The dataset encompasses daily observed streamflow from 3679 gauges, as well as meteorological forcing for 897 selected catchments. It also includes 65 attributes covering topographic, climatic, hydrologic, land cover, geologic, soil, and human intervention variables. CAMELS-BR is publicly available and will enable new insights into the hydrological behavior of catchments in Brazil.
Cited articles
Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017. a
Almagro, A., Oliveira, P. T. S., Meira Neto, A. A., Roy, T., and Troch, P.: CABra: a novel large-sample dataset for Brazilian catchments, Hydrol. Earth Syst. Sci., 25, 3105–3135, https://doi.org/10.5194/hess-25-3105-2021, 2021. a
Alvarez-Garreton, C., Mendoza, P. A., Boisier, J. P., Addor, N., Galleguillos, M., Zambrano-Bigiarini, M., Lara, A., Puelma, C., Cortes, G., Garreaud, R., McPhee, J., and Ayala, A.: The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset, Hydrol. Earth Syst. Sci., 22, 5817–5846, https://doi.org/10.5194/hess-22-5817-2018, 2018. a
Andréassian, V. and Perrin, C.: On the ambiguous interpretation of the Turc-Budyko nondimensional graph, Water Resour. Res., 48, W10601, https://doi.org/10.1029/2012WR012532, 2012. a
Andréassian, V., Perrin, C., Berthet, L., Le Moine, N., Lerat, J., Loumagne, C., Oudin, L., Mathevet, T., Ramos, M.-H., and Valéry, A.: HESS Opinions “Crash tests for a standardized evaluation of hydrological models”, Hydrol. Earth Syst. Sci., 13, 1757–1764, https://doi.org/10.5194/hess-13-1757-2009, 2009. a
Andréassian, V., Perrin, C., Parent, E., and Bárdossy, A.: The Court of Miracles of Hydrology: can failure stories contribute to hydrological science?, Hydrolog. Sci. J., 55, 849–856, https://doi.org/10.1080/02626667.2010.506050, 2010. a
Arnaud, P., Lavabre, J., Sol, B., and Descouches, C.: Regionalization of an hourly rainfall generating model over metropolitan France for flood hazard estimation, Hydrolog. Sci. J., 53, 34–47, https://doi.org/10.1623/hysj.53.1.34, 2008. a
Arsenault, R., Bazile, R., Ouellet Dallaire, C., and Brissette, F.: CANOPEX: A Canadian hydrometeorological watershed database, Hydrol. Process., 30, 2734–2736, https://doi.org/10.1002/hyp.10880, 2016. a
Beven, K. J. and Kirby, M. J.: A physically based, variable contributing area model of basin hydrology / Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant, Hydrol. Sci. B., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979. a
Bourgin, P.-Y., Lobligeois, F., Peschard, J., Andréassian, V., Le Moine, N., Coron, L., Perrin, C., Ramos, M.-H., and Khalifa, A.: Description des caractéristiques morphologiques, climatiques et hydrologiques de 4436 bassins versants français. Guide d'utilisation de la base de données hydro-climatique, Technical report, IRSTEA, https://hal.science/hal-02596718 (last access: 12 September 2024), 2010. a
BRGM: BDLISA. Base de donnée des limites des systèmes aquifères, version 3.0, Bureau de recherches géologiques et minières (BRGM), Eaufrance [data set], https://bdlisa.eaufrance.fr/ (last access: 12 November 2023), 2022. a
Brugeron, A., Paroissien, J., and Tillier, L.: Référentiel hydrogéologique BDLISA version 2 : Principes de construction et évolutions. Rapport final, Tech. Rep. BRGM/RP-67489-FR, Bureau de recherches géologiques et minières (BRGM), 2018. a
CFBR: CFBR website, Comité français des barrages et réservoirs (CFBR), https://www.barrages-cfbr.eu/ (last access: 15 January 2023), 2023. a
Chagas, V. B. P., Chaffe, P. L. B., Addor, N., Fan, F. M., Fleischmann, A. S., Paiva, R. C. D., and Siqueira, V. A.: CAMELS-BR: hydrometeorological time series and landscape attributes for 897 catchments in Brazil, Earth Syst. Sci. Data, 12, 2075–2096, https://doi.org/10.5194/essd-12-2075-2020, 2020. a
Coxon, G., Addor, N., Bloomfield, J. P., Freer, J., Fry, M., Hannaford, J., Howden, N. J. K., Lane, R., Lewis, M., Robinson, E. L., Wagener, T., and Woods, R.: CAMELS-GB: hydrometeorological time series and landscape attributes for 671 catchments in Great Britain, Earth Syst. Sci. Data, 12, 2459–2483, https://doi.org/10.5194/essd-12-2459-2020, 2020. a
de Lavenne, A. and Andréassian, V.: Impact of climate seasonality on catchment yield: A parameterization for commonly-used water balance formulas, J. Hydrol., 558, 266–274, https://doi.org/10.1016/j.jhydrol.2018.01.009, 2018. a, b
de Marsily, G., Combes, P., and Goblet, P.: Comment on `Ground-water models cannot be validated', by L. F. Konikow & J. D. Bredehoeft, Adv. Water Resour., 15, 367–369, https://doi.org/10.1016/0309-1708(92)90003-K, 1992. a
Delaigue, O.: hydroportail: Retrieve French Hydrological Data from Hydroportail, R package version 0.1.0.9006, INRAE [code], https://gitlab.irstea.fr/HYCAR-Hydro/hydroportail (last access: 12 November 2023), 2022. a
Delaigue, O., Brigode, P., Lobligeois, F., Bourgin, P.-Y., and Guimarães, G. M.: CAMELS-FR graphical fact sheets, V1, Recherche Data Gouv [data set], https://doi.org/10.57745/KK2SVJ, 2024a. a, b, c
Delaigue, O., Guimarães, G. M., Brigode, P., Andréassian, V., Payan, J.-L., Steinbach, P., and Kreutzenberger, K.: MADAM: Metropolitan Area Dams, V1, Recherche Data Gouv [data set], https://doi.org/10.57745/N98NEN, 2024b. a
Delaigue, O., Guimarães, G. M., Brigode, P., Génot, B., Perrin, C., and Andréassian, V.: CAMELS-FR dataset, V1, Recherche Data Gouv [data set], https://doi.org/10.57745/WH7FJR, 2024c. a, b
Delaigue, O., Génot, B., and Guimarães, G. M.: CAMELS-FR time series dynamic graphs, V1, Recherche Data Gouv [data set], https://doi.org/10.57745/HBQWP5, 2024d. a, b, c
do Nascimento, T. V. M., Rudlang, J., Höge, M., van der Ent, R., Chappon, M., Seibert, J., Hrachowitz, M., and Fenicia, F.: EStreams: An Integrated Dataset and Catalogue of Streamflow, Hydro-Climatic Variables and Landscape Descriptors for Europe, Zenodo [data set], https://doi.org/10.5281/zenodo.13961394, 2024a. a
do Nascimento, T. V. M., Rudlang, J., Höge, M., van der Ent, R., Chappon, M., Seibert, J., Hrachowitz, M., and Fenicia, F.: EStreams: An integrated dataset and catalogue of streamflow, hydro-climatic and landscape variables for Europe, Scientific Data, 11, 879, https://doi.org/10.1038/s41597-024-03706-1, 2024b. a
Ducharne, A.: Reducing scale dependence in TOPMODEL using a dimensionless topographic index, Hydrol. Earth Syst. Sci., 13, 2399–2412, https://doi.org/10.5194/hess-13-2399-2009, 2009. a
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.: The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183, 2007. a
Fitzpatrick, F. A.: Watershed Geomorphological Characteristics, in: Handbook of applied hydrology, 2nd Edn., edited by: Singh, V. P., McGraw-Hill Education, New York, 44-1–44-12, ISBN 9780071835091, 2017. a
Fowler, K. J. A., Acharya, S. C., Addor, N., Chou, C., and Peel, M. C.: CAMELS-AUS: hydrometeorological time series and landscape attributes for 222 catchments in Australia, Earth Syst. Sci. Data, 13, 3847–3867, https://doi.org/10.5194/essd-13-3847-2021, 2021. a
French Ministry of the Environment: CORINE Land Cover. Occupation des sols en France, version 2018, Data Gouv [data set], https://www.data.gouv.fr/fr/datasets/corine-land-cover-occupation-des-sols-en-france/ (last access: 12 November 2023), 2018. a
French water agencies: BD Carthage: Régions hydrographiques de Métropole 2017, version 2021-06-09, Eaufrance [data set], https://www.sandre.eaufrance.fr/atlas/srv/fre/catalog.search#/metadata/485cfb8d (last access: 12 November 2023), 2017a. a, b
French water agencies: BD Carthage: Cours d'eau de Métropole 2017, version 2019-10-24, Eaufrance [data set], https://www.sandre.eaufrance.fr/atlas/srv/fre/catalog.search#/metadata/7381de46-42f7-42df-9abe-0ecd4b946034 (last access: 12 November 2023), 2017b. a, b
Giuntoli, I., Renard, B., Vidal, J.-P., and Bard, A.: Low flows in France and their relationship to large-scale climate indices, J. Hydrol., 482, 105–118, https://doi.org/10.1016/j.jhydrol.2012.12.038, 2013. a
Gupta, H. V., Perrin, C., Blöschl, G., Montanari, A., Kumar, R., Clark, M., and Andréassian, V.: Large-sample hydrology: a need to balance depth with breadth, Hydrol. Earth Syst. Sci., 18, 463–477, https://doi.org/10.5194/hess-18-463-2014, 2014. a, b
Gustard, A. and Tallaksen, L. M.: Low-Flow indices, in: Manual on Low-flow Estimation and Prediction, vol. 50 of Operational hydrology report, edited by: Gustard, A. and Demuth, S., WMO, Geneva, p. 138, https://library.wmo.int/records/item/32176-manual-on-low-flow-estimation-and-prediction (last access: 4 April 2025), 2008. a
Hartmann, J. and Moosdorf, N.: Global Lithological Map Database v1.0 (gridded to 0.5° spatial resolution), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.788537, 2012a. a, b
Hartmann, J. and Moosdorf, N.: The new global lithological map database GLiM: A representation of rock properties at the Earth surface, Geochem. Geophy. Geosy., 13, Q12004, https://doi.org/10.1029/2012GC004370, 2012b. a, b
Hauffe, C., Brandes, C., Lei, K., Pahner, S., Körner, P., Kronenberg, R., and Schuetze, N.: CAMELS-SAX: A meteorological and hydrological dataset for spatially distributed modeling of catchments in Saxony, https://doi.org/10.5194/egusphere-egu23-14357, conference Name: EGU23, 2023. a
Hodgkins, G. A., Renard, B., Whitfield, P. H., Laaha, G., Stahl, K., Hannaford, J., Burn, D. H., Westra, S., Fleig, A. K., Araújo Lopes, W. T., Murphy, C., Mediero, L., and Hanel, M.: Climate Driven Trends in Historical Extreme Low Streamflows on Four Continents, Water Resour. Res., 60, e2022WR034326, https://doi.org/10.1029/2022WR034326, 2024. a
Höge, M., Kauzlaric, M., Siber, R., Schönenberger, U., Horton, P., Schwanbeck, J., Floriancic, M. G., Viviroli, D., Wilhelm, S., Sikorska-Senoner, A. E., Addor, N., Brunner, M., Pool, S., Zappa, M., and Fenicia, F.: Höge, M., Kauzlaric, M., Siber, R., Schönenberger, U., Horton, P., Schwanbeck, J., Floriancic, M. G., Viviroli, D., Wilhelm, S., Sikorska-Senoner, A. E., Addor, N., Brunner, M., Pool, S., Zappa, M., and Fenicia, F.: CAMELS-CH: hydro-meteorological time series and landscape attributes for 331 catchments in hydrologic Switzerland, Earth Syst. Sci. Data, 15, 5755–5784, https://doi.org/10.5194/essd-15-5755-2023, 2023. a
Horton, R. E.: Drainage-basin characteristics, Eos T. Am. Geophys. Un., 13, 350–361, https://doi.org/10.1029/TR013i001p00350, 1932. a, b
Huscroft, J., Gleeson, T., Hartmann, J., and Börker, J.: Compiling and mapping global permeability of the unconsolidated and consolidated Earth: GLobal HYdrogeology MaPS (GLHYMPS), version 2.0, Borealis [data set], https://doi.org/10.5683/SP2/TTJNIU, 2018. a
IGN: BD ALTI, version 1.0., Institut national de l'information géographique et forestière (IGN) [data set], https://geoservices.ign.fr/bdalti/ (last access: 12 November 2023), 2001. a
IGN: Plan IGN, version 2.0, Institut national de l'information géographique et forestière (IGN) [data set], https://geoservices.ign.fr/planign (last access: 12 November 2023), 2020. a
INRAE: Base de données SHYREG-pluie, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE) [data set], https://shyreg.pluie.recover.inrae.fr/ (last access: 8 November 2016), 2016. a
JRC, IES, and Hiederer, R.: Mapping soil properties for Europe – Spatial representation of soil database attributes, Tech. rep., Joint Research Centre and Institute for Environment and Sustainability, https://doi.org/10.2788/94128, 2013a. a
JRC, IES, and Hiederer, R.: Mapping soil typologies – Spatial decision support applied to the European Soil Database, Tech. rep., Joint Research Centre and Institute for Environment and Sustainability, https://doi.org/10.2788/87286, 2013b. a
Klingler, C., Schulz, K., and Herrnegger, M.: LamaH-CE: LArge-SaMple DAta for Hydrology and Environmental Sciences for Central Europe, Earth Syst. Sci. Data, 13, 4529–4565, https://doi.org/10.5194/essd-13-4529-2021, 2021. a
Koch, J.: Catchment Dataset Denmark, version 1.0, GEUS Dataverse [data set], https://doi.org/10.22008/FK2/YCQXTR, 2021. a
Kratzert, F., Nearing, G., Addor, N., Erickson, T., Gauch, M., Gilon, O., Gudmundsson, L., Hassidim, A., Klotz, D., Nevo, S., Shalev, G., and Matias, Y.: Caravan – A global community dataset for large-sample hydrology, Scientific Data, 10, 61, https://doi.org/10.1038/s41597-023-01975-w, 2023. a
Laaha, G. and Koffler, D.: lfstat: Calculation of Low Flow Statistics for Daily Stream Flow Data, R package version 0.9.12, CRAN [code], https://doi.org/10.32614/CRAN.package.lfstat, 2022. a
Ladson, A. R., Brown, R., Neal, B., and Nathan, R.: A Standard Approach to Baseflow Separation Using The Lyne and Hollick Filter, Australasian Journal of Water Resources, 17, 25–34, https://doi.org/10.7158/13241583.2013.11465417, 2013. a
Le Bas, C.: Carte de la Réserve Utile en eau issue de la Base de Données Géographique des Sols de France, version 2.3, Recherche Data Gouv [data set], https://doi.org/10.15454/JPB9RB, 2021. a
Le Moigne, P., Besson, F., Martin, E., Boé, J., Boone, A., Decharme, B., Etchevers, P., Faroux, S., Habets, F., Lafaysse, M., Leroux, D., and Rousset-Regimbeau, F.: The latest improvements with SURFEX v8.0 of the Safran–Isba–Modcou hydrometeorological model for France, Geosci. Model Dev., 13, 3925–3946, https://doi.org/10.5194/gmd-13-3925-2020, 2020. a, b
Lehner, B. and Grill, G.: Global river hydrography and network routing: baseline data and new approaches to study the world's large river systems, Hydrol. Process., 27, 2171–2186, https://doi.org/10.1002/hyp.9740, 2013. a, b, c
Lehner, B., Verdin, K., and Jarvis, A.: New Global Hydrography Derived From Spaceborne Elevation Data, Eos T. Am. Geophys. Un., 89, 93–94, https://doi.org/10.1029/2008EO100001, 2008. a, b, c
Linsley, R.: Rainfall-runoff models: an overview, in: Rainfall-runoff relationship, edited by: Singh, V. P., Water Resources Publications, Chelsea, Michigan, US, bookcrafters inc. edn., meeting Name: International Symposium on Rainfall Runoff Modeling, 3–22, ISBN 9780918334459, 1982. a
Liu, J., Koch, J., Stisen, S., Troldborg, L., Højberg, A. L., Thodsen, H., Hansen, M. F. T., and Schneider, R. J. M.: CAMELS-DK: Hydrometeorological Time Series and Landscape Attributes for 3330 Catchments in Denmark, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-292, in review, 2024. a
Loritz, R., Dolich, A., Acuña Espinoza, E., Ebeling, P., Guse, B., Götte, J., Hassler, S. K., Hauffe, C., Heidbüchel, I., Kiesel, J., Mälicke, M., Müller-Thomy, H., Stölzle, M., and Tarasova, L.: Loritz, R., Dolich, A., Acuña Espinoza, E., Ebeling, P., Guse, B., Götte, J., Hassler, S. K., Hauffe, C., Heidbüchel, I., Kiesel, J., Mälicke, M., Müller-Thomy, H., Stölzle, M., and Tarasova, L.: CAMELS-DE: hydro-meteorological time series and attributes for 1582 catchments in Germany, Earth Syst. Sci. Data, 16, 5625–5642, https://doi.org/10.5194/essd-16-5625-2024, 2024. a
Miller, V. C. A.: Quantitative Geomorphic Study of Drainage Basin Characteristics in the Clinch Mountain Area, Virginia and Tennessee, Tech. Rep. 3, Columbia University, Department of Geology, New York, 1953. a
Newman, A. J., Clark, M. P., Sampson, K., Wood, A., Hay, L. E., Bock, A., Viger, R. J., Blodgett, D., Brekke, L., Arnold, J. R., Hopson, T., and Duan, Q.: Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: data set characteristics and assessment of regional variability in hydrologic model performance, Hydrol. Earth Syst. Sci., 19, 209–223, https://doi.org/10.5194/hess-19-209-2015, 2015. a
OFB and partners: Géoréférenceur des obstacles [Application GEOBS, en ligne], Référentiel des obstacles à l'écoulement (Module 1, ROE) et Base de données complémentaire sur les obstacles à l'écoulement (Module 3, BDOe), version 2023-02-21, Office français de la biodiversité (OFB), Eaufrance [data set], https://geobs.eaufrance.fr/, (last access: 12 November 2023), 2023. a
Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V., Anctil, F., and Loumagne, C.: Which potential evapotranspiration input for a lumped rainfall–runoff model?: Part 2-Towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling, J. Hydrol., 303, 290–306, https://doi.org/10.1016/j.jhydrol.2004.08.026, 00236, 2005. a, b
Payan, J.-L.: Prise en compte de barrages-réservoirs dans un modèle global pluie-débit, PhD thesis, ENGREF (AgroParisTech), http://theses.hal.science/pastel-00003555 (last access: 4 April 2025), 2007. a
Payan, J.-L., Perrin, C., Andréassian, V., and Michel, C.: How can man-made water reservoirs be accounted for in a lumped rainfall-runoff model?, Water Resour. Res., 44, W03420, https://doi.org/10.1029/2007WR005971, 2008. a, b
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007. a
Pelletier, A.: Nappes et rivières: la piézométrie peut-elle améliorer la prévision des étiages des cours d'eau?, PhD thesis, Sorbonne Université, Paris, France, https://theses.hal.science/tel-03783485 (last access: 4 April 2025), 2021. a
Pelletier, A. and Andréassian, V.: Hydrograph separation: an impartial parametrisation for an imperfect method, Hydrol. Earth Syst. Sci., 24, 1171–1187, https://doi.org/10.5194/hess-24-1171-2020, 2020. a, b
Pelletier, A., Andréassian, V., and Delaigue, O.: baseflow: Computes Hydrograph Separation, R package version 0.13.2, Recherche Data Gouv [code], https://doi.org/10.15454/Z9IK5N, 2021. a
Pelletier, J. D., Broxton, P. D., Hazenberg, P., Zeng, X., Troch, P. A., Niu, G., Williams, Z. C., Brunke, M. A., and Gochis, D.: Global 1-km Gridded Thickness of Soil, Regolith, and Sedimentary Deposit Layers, ORNL DAAC, https://doi.org/10.3334/ORNLDAAC/1304, 2016. a
Penman, H. L.: Natural evaporation from open water, bare soil and grass, P. Roy. Soc. Lond. A Mat., 193, 120–145, https://doi.org/10.1098/rspa.1948.0037, 1948. a, b
Perrin, C., Michel, C., and Andréassian, V.: Improvement of a parsimonious model for streamflow simulation, J. Hydrol., 279, 275–289, https://doi.org/10.1016/S0022-1694(03)00225-7, 2003. a
Poncelet, C.: Du bassin au paramètre: jusqu'où peut-on régionaliser un modèle hydrologique conceptuel?, PhD thesis, Université Pierre et Marie Curie – Paris VI, Antony, France, https://theses.hal.science/tel-01529196 (last access: 4 April 2025), 2016. a
Pushpalatha, R., Perrin, C., Le Moine, N., Mathevet, T., and Andréassian, V.: A downward structural sensitivity analysis of hydrological models to improve low-flow simulation, J. Hydrol., 411, 66–76, https://doi.org/10.1016/j.jhydrol.2011.09.034, 2011. a
Quintana-Segui, P., Le Moigne, P., Durand, Y., Martin, E., Habets, F., Baillon, M., Canellas, C., Franchisteguy, L., and Morel, S.: Analysis of near-surface atmospheric variables: Validation of the SAFRAN analysis over France, J. Appl. Meteorol. Clim., 47, 92–107, https://doi.org/10.1175/2007JAMC1636.1, 2008. a, b
Rabus, B., Eineder, M., Roth, A., and Bamler, R.: The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar, ISPRS J. Photogramm., 57, 241–262, https://doi.org/10.1016/S0924-2716(02)00124-7, 2003. a
Refsgaard, J. C. and Hansen, J. R.: A good-looking catchment can turn into a modeller's nightmare, Hydrolog. Sci. J., 55, 899–912, https://doi.org/10.1080/02626667.2010.505571, 2010. a
Roman Dobarco, M., Bourennane, H., Arrouays, D., Saby, N., Cousin, I., and Martin, M. P.: Réservoir utile des sols de la France métropolitaine, version 1.2, Recherche Data Gouv [data set], https://doi.org/10.15454/9IRARJ, 2021. a
Schaake, J., Cong, S., and Duan, Q.: The US mopex data set, IAHS Publication Series, 307, 9–28, Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States), https://www.osti.gov/biblio/899413 (last access: 4 April 2025), 2006. a
SCHAPI: Hydroportail. Site de référence d'accès aux données hydrométriques et hydrologiques en France, Service central d'hydrométéorologie et d'appui à la prévision des inondations (SCHAPI), Eaufrance [data set], https://www.hydro.eaufrance.fr/ (last access: 20 January 2025), 2022. a
Schumm, S. A.: Evolution of Drainage Systems & Slopes in Badlands at Perth, New Jersey, Geol. Soc. Am. Bull., 67, 597, https://doi.org/10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2, 1956. a
Strohmenger, L., Sauquet, E., Bernard, C., Bonneau, J., Branger, F., Bresson, A., Brigode, P., Buzier, R., Delaigue, O., Devers, A., Evin, G., Fournier, M., Hsu, S.-C., Lanini, S., de Lavenne, A., Lemaitre-Basset, T., Magand, C., Mendoza Guimarães, G., Mentha, M., Munier, S., Perrin, C., Podechard, T., Rouchy, L., Sadki, M., Soutif-Bellenger, M., Tilmant, F., Tramblay, Y., Véron, A.-L., Vidal, J.-P., and Thirel, G.: On the visual detection of non-natural records in streamflow time series: challenges and impacts, Hydrol. Earth Syst. Sci., 27, 3375–3391, https://doi.org/10.5194/hess-27-3375-2023, 2023. a
Strohmenger, L., Collet, L., Andréassian, V., Corre, L., Rousset, F., and Thirel, G.: Köppen–Geiger climate classification across France based on an ensemble of high-resolution climate projections, CR Geosci., 356, 67–82, https://doi.org/10.5802/crgeos.263, 2024. a
Subramanya, K.: Engineering Hydrology, 4th edn., McGraw Hill Education, New Delhi, ISBN 9781259029974, 2013. a
Tóth, B., Weynants, M., Pásztor, L., and Hengl, T.: 3D soil hydraulic database of Europe at 250 m resolution, Hydrol. Process., 31, 2662–2666, https://doi.org/10.1002/hyp.11203, 2017. a
Tramblay, Y., Rouché, N., Paturel, J.-E., Mahé, G., Boyer, J.-F., Amoussou, E., Bodian, A., Dacosta, H., Dakhlaoui, H., Dezetter, A., Hughes, D., Hanich, L., Peugeot, C., Tshimanga, R., and Lachassagne, P.: ADHI: the African Database of Hydrometric Indices (1950–2018), Earth Syst. Sci. Data, 13, 1547–1560, https://doi.org/10.5194/essd-13-1547-2021, 2021. a
Valéry, A., Andréassian, V., and Perrin, C.: `As simple as possible but not simpler': What is useful in a temperature-based snow-accounting routine? Part 1 – Comparison of six snow accounting routines on 380 catchments, J. Hydrol., 517, 1166–1175, https://doi.org/10.1016/j.jhydrol.2014.04.059, 2014a. a
Valéry, A., Andréassian, V., and Perrin, C.: `As simple as possible but not simpler': What is useful in a temperature-based snow-accounting routine? Part 2 – Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, J. Hydrol., 517, 1176–1187, https://doi.org/10.1016/j.jhydrol.2014.04.058, 2014b. a
Vidal, J., Martin, E., Franchistéguy, L., Baillon, M., and Soubeyroux, J.: A 50-year high-resolution atmospheric reanalysis over France with the Safran system, Int. J. Climatol., 30, 1627–1644, https://doi.org/10.1002/joc.2003, 2010. a, b, c
Vincent, C., Peyaud, V., Laarman, O., Six, D., Gilbert, A., Gillet-Chaulet, F., Berthier, E., Morin, S., Verfaillie, D., Rabatel, A., Jourdain, B., and Bolibar, J.: Déclin des deux plus grands glaciers des Alpes françaises au cours du XXIe siècle : Argentière et Mer de Glace, La Météorologie, 106, 49–58, https://doi.org/10.4267/2042/70369, 2019. a
Wessel, P. and Smith, W. H. F.: A global, self-consistent, hierarchical, high-resolution shoreline database, J. Geophys. Res.-Sol. Ea., 101, 8741–8743, https://doi.org/10.1029/96JB00104, 1996. a, b, c
Zăvoianu, I.: Morfometria bazinelor hidrografice, Editura Academiei Republicii Socialiste România, Bucharest, ISBN 9780080870113, 1978. a
Short summary
This dataset covers 654 rivers all flowing in France. The provided time series and catchment attributes will be of interest to those modelers wishing to analyze hydrological behavior and perform model assessments.
This dataset covers 654 rivers all flowing in France. The provided time series and catchment...
Altmetrics
Final-revised paper
Preprint