Articles | Volume 16, issue 2
https://doi.org/10.5194/essd-16-919-2024
https://doi.org/10.5194/essd-16-919-2024
Data description paper
 | 
20 Feb 2024
Data description paper |  | 20 Feb 2024

A high-resolution calving front data product for marine-terminating glaciers in Svalbard

Tian Li, Konrad Heidler, Lichao Mou, Ádám Ignéczi, Xiao Xiang Zhu, and Jonathan L. Bamber

Related authors

Active subglacial lakes in the Canadian Arctic identified by multi-annual ice elevation changes
Whyjay Zheng, Wesley Van Wychen, Tian Li, and Tsutomu Yamanokuchi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2707,https://doi.org/10.5194/egusphere-2025-2707, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
A Six-year circum-Antarctic icebergs dataset (2018–2023)
Zilong Chen, Xuying Liu, Zhenfu Guan, Teng Li, Xiao Cheng, Tian Li, Yan Liu, Qi Liang, Lei Zheng, and Jiping Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-51,https://doi.org/10.5194/essd-2025-51, 2025
Preprint under review for ESSD
Short summary
Totten Ice Shelf history over the past century interpreted from satellite imagery
Bertie W. J. Miles, Tian Li, and Robert G. Bingham
EGUsphere, https://doi.org/10.5194/egusphere-2024-3964,https://doi.org/10.5194/egusphere-2024-3964, 2025
Short summary
Grounding line retreat and tide-modulated ocean channels at Moscow University and Totten Glacier ice shelves, East Antarctica
Tian Li, Geoffrey J. Dawson, Stephen J. Chuter, and Jonathan L. Bamber
The Cryosphere, 17, 1003–1022, https://doi.org/10.5194/tc-17-1003-2023,https://doi.org/10.5194/tc-17-1003-2023, 2023
Short summary
A high-resolution Antarctic grounding zone product from ICESat-2 laser altimetry
Tian Li, Geoffrey J. Dawson, Stephen J. Chuter, and Jonathan L. Bamber
Earth Syst. Sci. Data, 14, 535–557, https://doi.org/10.5194/essd-14-535-2022,https://doi.org/10.5194/essd-14-535-2022, 2022
Short summary

Related subject area

Domain: ESSD – Ice | Subject: Glaciology
Antarctic Ice Sheet grounding line discharge from 1996–2024
Benjamin J. Davison, Anna E. Hogg, Thomas Slater, Richard Rigby, and Nicolaj Hansen
Earth Syst. Sci. Data, 17, 3259–3281, https://doi.org/10.5194/essd-17-3259-2025,https://doi.org/10.5194/essd-17-3259-2025, 2025
Short summary
A high-resolution pan-Arctic meltwater discharge dataset from 1950 to 2021
Adam Igneczi and Jonathan Louis Bamber
Earth Syst. Sci. Data, 17, 3203–3218, https://doi.org/10.5194/essd-17-3203-2025,https://doi.org/10.5194/essd-17-3203-2025, 2025
Short summary
Smoothed monthly Greenland ice sheet elevation changes during 2003–2023
Shfaqat A. Khan, Helene Seroussi, Mathieu Morlighem, William Colgan, Veit Helm, Gong Cheng, Danjal Berg, Valentina R. Barletta, Nicolaj K. Larsen, William Kochtitzky, Michiel van den Broeke, Kurt H. Kjær, Andy Aschwanden, Brice Noël, Jason E. Box, Joseph A. MacGregor, Robert S. Fausto, Kenneth D. Mankoff, Ian M. Howat, Kuba Oniszk, Dominik Fahrner, Anja Løkkegaard, Eigil Y. H. Lippert, Alicia Bråtner, and Javed Hassan
Earth Syst. Sci. Data, 17, 3047–3071, https://doi.org/10.5194/essd-17-3047-2025,https://doi.org/10.5194/essd-17-3047-2025, 2025
Short summary
A revised and expanded deep radiostratigraphy of the Greenland Ice Sheet from airborne radar sounding surveys between 1993 and 2019
Joseph A. MacGregor, Mark A. Fahnestock, John D. Paden, Jilu Li, Jeremy P. Harbeck, and Andy Aschwanden
Earth Syst. Sci. Data, 17, 2911–2931, https://doi.org/10.5194/essd-17-2911-2025,https://doi.org/10.5194/essd-17-2911-2025, 2025
Short summary
Annual mass change of the world's glaciers from 1976 to 2024 by temporal downscaling of satellite data with in situ observations
Inés Dussaillant, Romain Hugonnet, Matthias Huss, Etienne Berthier, Jacqueline Bannwart, Frank Paul, and Michael Zemp
Earth Syst. Sci. Data, 17, 1977–2006, https://doi.org/10.5194/essd-17-1977-2025,https://doi.org/10.5194/essd-17-1977-2025, 2025
Short summary

Cited articles

Baumhoer, C. A., Dietz, A. J., Kneisel, C., and Kuenzer, C.: Automated extraction of antarctic glacier and ice shelf fronts from Sentinel-1 imagery using deep learning, Remote Sens., 11, 2529, https://doi.org/10.3390/rs11212529, 2019. 
Baumhoer, C. A., Dietz, A. J., Heidler, K., and Kuenzer, C.: IceLines – A new data set of Antarctic ice shelf front positions, Sci. Data, 10, 138, https://doi.org/10.1038/s41597-023-02045-x, 2023. 
Benn, D. I. and Åström, J. A.: Calving glaciers and ice shelves, Adv. Phys. X, 3, 1048–1076, https://doi.org/10.1080/23746149.2018.1513819, 2018. 
Benn, D. I., Warren, C. R., and Mottram, R. H.: Calving processes and the dynamics of calving glaciers, Earth-Sci. Rev., 82, 143–179, https://doi.org/10.1016/J.EARSCIREV.2007.02.002, 2007. 
Błaszczyk, M., Jacek, J., and Jon, O. H.: Tidewater Glaciers of Svalbard: Recent changes and estimates of calving fluxes, Polish Polar Res., 30, 85–142, https://opus.us.edu.pl/info/article/USL749ae2908280495bb99a7e046bb7cef1/ (last access: 9 August 2023), 2009. 
Download
Short summary
Our study uses deep learning to produce a new high-resolution calving front dataset for 149 marine-terminating glaciers in Svalbard from 1985 to 2023, containing 124 919 terminus traces. This dataset offers insights into understanding calving mechanisms and can help improve glacier frontal ablation estimates as a component of the integrated mass balance assessment.
Share
Altmetrics
Final-revised paper
Preprint