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Abstract. The mass loss of glaciers outside the polar ice sheets has been accelerating during the past several
decades and has been contributing to global sea-level rise. However, many of the mechanisms of this mass
loss process are not well understood, especially the calving dynamics of marine-terminating glaciers, in part
due to a lack of high-resolution calving front observations. Svalbard is an ideal site to study the climate sen-
sitivity of glaciers as it is a region that has been undergoing amplified climate variability in both space and
time compared to the global mean. Here we present a new high-resolution calving front dataset of 149 marine-
terminating glaciers in Svalbard, comprising 124 919 glacier calving front positions during the period 1985–2023
(https://doi.org/10.5281/zenodo.10407266, Li et al., 2023). This dataset was generated using a novel automated
deep-learning framework and multiple optical and SAR satellite images from Landsat, Terra-ASTER, Sentinel-
2, and Sentinel-1 satellite missions. The overall calving front mapping uncertainty across Svalbard is 31 m. The
newly derived calving front dataset agrees well with recent decadal calving front observations between 2000 and
2020 (Kochtitzky and Copland, 2022) and an annual calving front dataset between 2008 and 2022 (Moholdt et
al., 2022). The calving fronts between our product and the latter deviate by 32± 65 m on average. The R2 of the
glacier calving front change rates between these two products is 0.98, indicating an excellent match. Using this
new calving front dataset, we identified widespread calving front retreats during the past four decades, across
most regions in Svalbard except for a handful of glaciers draining the ice caps Vestfonna and Austfonna on Nor-
daustlandet. In addition, we identified complex patterns of glacier surging events overlaid with seasonal calving
cycles. These data and findings provide insights into understanding glacier calving mechanisms and drivers. This
new dataset can help improve estimates of glacier frontal ablation as a component of the integrated mass balance
of marine-terminating glaciers.

1 Introduction

Glaciers and ice caps (GIC) distinct from the Greenland and
Antarctic ice sheets are a significant contributor to global
sea-level rise in addition to thermal expansion (Intergov-
ernmental Panel on Climate Change, 2023; Meredith et al.,
2019). Their mass loss has been accelerating during the early
twenty-first century and their thinning rates have doubled

(Hugonnet et al., 2021). Specifically, the mass loss from Arc-
tic glaciers during 2006–2015 contributed to sea-level rise at
a similar rate (0.6±0.1 mm yr−1) to the Greenland Ice Sheet
in response to the accelerated warming trend in the Arctic
(Intergovernmental Panel on Climate Change, 2023). Recent
observations show that the maximum warming rate on Earth
(> 1.25 ◦C per 10 years) during 1979–2021 lies in the Rus-
sian Arctic close to Svalbard (Rantanen et al., 2022), which
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is one of the most climatically sensitive regions in the world
(van Pelt et al., 2018; Serreze and Barry, 2011).

Svalbard is an Arctic Archipelago located near the north-
east coast of Greenland and lies close to the northern limit
of warm North Atlantic water (Nuth et al., 2010). Its cli-
mate displays extreme variability in both space and time.
The southwest region has milder and more humid condi-
tions while the northeast is colder and drier (Schuler et al.,
2020), making it an ideal region for studying the response
of glaciers to climatic forcing. In Svalbard, the warming rate
has been 1.7 ◦C per 10 years since 1991, about 7 times the
global average (Nordli et al., 2020). Glaciers on Svalbard
have been losing mass since the 1960s with a trend towards a
more negative mass balance since 2000 (Schuler et al., 2020;
Nuth et al., 2010). High-resolution regional climate models
reveal that modest atmospheric warming in the mid-1980s
forced the limit of the firn zone (the boundary between ice
and compacted snow) to the hypsometric peak, leading to
firn cover reduction, albedo reduction, and increased surface
runoff, amplifying the mass loss from all elevations (Noël et
al., 2020). By linking historical and modern glacier obser-
vations, it was predicted that the twenty-first-century glacier
thinning rates in Svalbard would be more than double the
rates of 1936–2010, with a strong dependence on air temper-
ature (Geyman et al., 2022).

Despite recent progress in estimating the mass balance
of glaciers in Svalbard, uncertainties remain, especially the
quantification of frontal ablation – a combination of calving
and basal melting. Frontal ablation is a key component of
the total mass balance of marine-terminating glaciers, with
the other being the climatic mass balance (Schuler et al.,
2020). Despite its importance, most global glacier models
do not include the frontal ablation component at all (Rounce
et al., 2023). In Svalbard, 15 % of the glaciers are marine-
terminating and in other Arctic sectors it is significantly
higher (Oppenheimer et al., 2019). They account for about
60 % of the total glacierized area (Błaszczyk et al., 2009) and
experienced one of the highest frontal ablation rates in the
Northern Hemisphere. However, there have only been two
systematic studies estimating the frontal ablation of glaciers
in Svalbard (Błaszczyk et al., 2009; Kochtitzky et al., 2022).
Błaszczyk et al. (2009) estimated the frontal ablation rates of
163 Svalbard tidewater glaciers during a short period from
2000 to 2006. Kochtitzky et al. (2022) updated this record by
estimating the frontal ablation with a decadal time resolution
for 2000–2010 and 2010–2020.

One major limitation of frontal ablation estimates is the
scarcity in calving front observations of marine-terminating
glaciers (Kochtitzky et al., 2023), which is essential for de-
termining the relative contributions of calving and subma-
rine melting (Schuler et al., 2020) and their governing pro-
cesses. A detailed understanding of the calving mechanism
and its drivers is crucial for the accurate prediction of glacier
response to future climate forcing and consequent sea-level
change (Benn et al., 2007; Kochtitzky et al., 2023). The cur-

rently available calving front datasets for marine-terminating
glaciers in Svalbard are limited to either a small sample of
glaciers (Murray et al., 2015; Strozzi et al., 2017; Holmes et
al., 2019; Nuth et al., 2019) or to low temporal resolutions
in calving front observations (Błaszczyk et al., 2009; Carr et
al., 2017; Kochtitzky and Copland, 2022; Nuth et al., 2013;
Moholdt et al., 2022).

Calving front mapping of glaciers beyond the Greenland
Ice Sheet has primarily relied on manual delineation from
optical satellite imagery such as Landsat and ASTER (Mc-
Nabb and Hock, 2014; Kochtitzky and Copland, 2022; Cook
et al., 2019). This often results in low spatial coverage and
temporal resolution, as optical images are often influenced
by the presence of clouds and the polar night. With the avail-
ability of new optical satellite missions such as Sentinel-2
and Landsat-9, as well as the SAR satellite Sentinel-1, it is
possible to achieve a short image acquisition interval of 1–3 d
all year round. In the meantime, the growing availability of
extensive satellite catalogues imposes a challenge for man-
ual delineation. There is, therefore, a need for efficient au-
tomated methods. In recent years, deep learning has demon-
strated promising capabilities in accurately mapping glacier
calving fronts (Mohajerani et al., 2019a; Cheng et al., 2021;
Heidler et al., 2022; Loebel et al., 2023; Gourmelon et al.,
2022; Zhang et al., 2019; Baumhoer et al., 2019, 2023). Mo-
hajerani et al. (2019) pioneered the application of deep learn-
ing in glacier calving front mapping by developing a U-Net
architecture to isolate the calving front from satellite images.
The method was tested on Helheim Glacier in Greenland
with a mean deviation of 96.3 m from ground truth, which
is a manually mapped calving front from Landsat images.
Building on this, Heidler et al. (2022) proposed a novel deep-
learning framework, HED-UNet, by combing semantic seg-
mentation and edge detection, which outperforms the tradi-
tional U-Net framework. So far, these deep-learning frame-
works have only been applied to a small sample of glaciers
mainly located on the Greenland and Antarctic ice sheets.
Nonetheless, these case studies serve as a foundation for au-
tomated, high-temporal-resolution mapping of glacier termi-
nus locations on a large spatial scale for glaciers outside the
ice sheets.

Here, we introduce a novel automated processing pipeline
designed to map glacier calving fronts using a new deep-
learning framework Charting Outlines by Recurrent Adap-
tation (COBRA), which outperforms image segmentation
models by combining convolutional neural networks and ac-
tive contour models for calving front mapping (Heidler et
al., 2023). This study yields a new high-resolution glacier
calving front data product containing 124 919 calving front
traces for 149 marine-terminating glaciers in Svalbard dur-
ing the period 1985–2023 (Li et al., 2023), utilizing data from
multiple optical and SAR satellite sensors, including Land-
sat, ASTER, Sentinel-2, and Sentinel-1. This newly com-
piled dataset offers unprecedented temporal density, which
is valuable for analysing both the seasonal and interannual
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variations in glacier calving fronts, as well as capturing surge
events.

2 Data and methodology

2.1 Automated satellite image downloading from
Google Earth Engine

To generate the calving front data product, optical images
from three different satellite platforms – Landsat, Terra-
ASTER, and Sentinel-2 – along with SAR images in the Ex-
tra Wide (EW) swath mode from Sentinel-1, spanning the
period from 1972 to January 2023, were used. The reason
for using the EW mode of Sentinel-1 images instead of the
higher-resolution Interferometric Wide (IW) mode is that the
EW mode has greater coverage over Svalbard. The satellite
images were acquired from the Google Earth Engine (GEE)
platform with a diverse range of image resolutions, repeat
cycles, and operation durations shown in Table 1. The de-
tailed workflow for downloading satellite images automat-
ically for marine-terminating glaciers from different GEE
satellite image collections (Table A1 in the Appendix) is
shown in Fig. 1.

Our selection of glaciers in Svalbard is based on the tide-
water glacier terminus data product generated by Kochtitzky
and Copland (2022) which includes areal change polygons
for all marine-terminating glaciers across the Arctic in two
different periods: 2000–2010 and 2010–2020. To begin, the
Kochtitzky and Copland (2022) frontal areal change poly-
gons of each glacier were used to produce the glacier do-
main shapefiles (Box 1 in Fig. 1). For each glacier, all the
available different areal change polygons generated in two
different time periods were first merged into one single poly-
gon. Then the minimum bounding rectangle (MBR) of this
merged polygon was generated. The final glacier domain
polygon (black boxes in Fig. 2a) was produced by adding
a 1500 m buffer length to the MBR. If the final glacier do-
main polygon contained multiple polygons likely to be asso-
ciated with tributary glaciers, these polygons were then di-
vided into separate individual glacier area change polygons
and assigned unique identifiers by adding sequential letters
to its original Randolph Glacier Inventory (RGI) version 6
glacier id (RGI Consortium, 2017) as a new glacier id; this
updated glacier id was used throughout the study. In total,
we generated 220 glacier domain shapefiles (hereinafter re-
ferred to as 220 marine-terminating glaciers – we took tribu-
tary glacier as an independent glacier) (black boxes in Fig. 2).
The domain shapefile was used in defining the glacier spatial
extent to be used in querying satellite images from the GEE
API.

For each glacier domain, satellite images were retrieved
from four distinct satellite platforms, namely Landsat 1-9,
Terra-ASTER, Sentinel-2A/B, and Sentinel-1A/B (Table 1).
The images were downloaded throughout the entire time
span of each satellite mission and were used in mapping the

Figure 1. The workflow of generating glacier domain shapefiles
(box 1) and automated downloading satellite images from Google
Earth Engine (GEE) (box 2) for Svalbard marine-terminating
glaciers. The coloured geometries indicate key inputs and outputs.

glacier calving front locations. For optical satellite images
downloaded from Landsat, Terra-ASTER, and Sentinel-2, we
set a cloud filter threshold of 40 %. Furthermore, a universal
threshold for a non-data pixel ratio per image is set as 50 %
for both optical and SAR images. If the proportion of non-
data pixels in a given satellite image exceeds 50 %, it is pre-
sumed that this image may lack a sufficient number of pixels
for accurate predictions. In addition, we did not merge satel-
lite images acquired on the same day considering the large
number of data available. For the 220 marine-terminating
glacier domains in Svalbard, 1 135 074 satellite images were
downloaded for the glacier calving front prediction over the
period 1972–2023 in our study.

2.2 Deep-learning model and pre-processing

We used the deep-learning model Charting Outlines by Re-
current Adaptation (COBRA) to predict the glacier calving
front locations. The COBRA model combines a convolu-
tional neural network (CNN) for feature extraction and an ac-
tive contour model for the delineation (Heidler et al., 2023).
Unlike the traditional image segmentation models such as
CALFIN (Cheng et al., 2021) and HED-UNet (Heidler et
al., 2022) which separate an image into land-ice and ocean
classes, the COBRA model can directly output the calving
front line segment as a shapefile instead of recovering the
vectorized contour from intermediate predictions in a seman-
tic segmentation approach. Figure 3a shows the model archi-
tecture, and it comprises two different components: a back-
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Table 1. Image resolutions of different satellite sensors used in the calving front mapping.

Satellite platform Resolution Availability Repeat cycle Band

Landsat 30 m 1972 16 d Near-infrared band
ASTER 30 m 2000 16 d Near-infrared band
Sentinel-2 10 m 2015 10 d Near-infrared band
Sentinel-1 40 m 2014 12 d HH band (EW mode)

Figure 2. (a) Examples of glacier areal change polygons (coloured outlines) generated in Kochtitzky and Copland (2022) and the glacier
domain polygons derived in this study (black boxes). The glacier areal loss during 2000–2010 is denoted as a red polygon, the glacier
areal loss during 2010–2020 is denoted as a blue polygon, and the glacier areal gain during 2010–2020 is denoted as a green polygon.
(b) The spatial distributions of 220 glacier domains generated in this study (black boxes); the orange box denotes the zoomed-in region
shown in panel (a). The background hillshade map is generated from the 50 m resolution Svalbard digital elevation model (DEM) (https:
//data.npolar.no/dataset/dce53a47-c726-4845-85c3-a65b46fe2fea, last access: 18 April 2023).

bone and a prediction head. The backbone of the COBRA
architecture utilizes a versatile two-dimensional CNN to ex-
tract meaningful semantic features from the input imagery;
here the Xception backbone was employed (Chollet, 2016;
Cheng et al., 2021). The second component consists of a pre-
diction head known as the “snake head”, which leverages the
feature map of the backbone to generate the ultimate net-
work predictions. The snake head starts with an initial calv-
ing front contour with vertices generated in the centre of the
image, then progressively refines the contour by incorporat-
ing sampled values from the feature map extracted from the
backbone network and iterating this process four times (Hei-
dler et al., 2023). The loss function of the COBRA model
is based on the dynamic time warping (DTW) loss, which
measures the similarity between the predicted contour and
the true contour (Heidler et al., 2023). The loss function is

shown as Eq. (1):

LDTW(p,t)= min
(ik,jk)k∈[K]∈k

∑
k

||pik − tik||
2
2, (1)

where the predicted contour p is represented by vertices pi
with 1≤ i ≤ V , and the true contour t is represented by ver-
tices tj with 1≤ j ≤ V . κ denotes the set of all possible re-
alignments (ik,jk)k∈[K] that satisfy the following three con-
ditions: (1) for any i ∈ {1, . . .V } there is a k with ik = i; (2)
for any j ∈ {1, . . .V } there is a k with jk = j ; and (3) the se-
quences ik and jk are non-decreasing in k.

The model was trained for 500 epochs on the CALFIN
training dataset (Cheng et al., 2021) which includes 1541
Landsat optical images and 232 Sentinel-1 SAR images for
66 Greenlandic glaciers during 1972–2019. In addition, it
was tested on three different test sets including the CALFIN
test set, the TU Dresden (TUD) (Loebel et al., 2022), which
includes 1127 Landsat optical images in 2013–2021 for 23
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glaciers, as well as the Baumhoer dataset (Baumhoer et al.,
2019), which includes 62 Sentinel-1 SAR images for glaciers
located in Antarctica. The Adam optimizer (Kingma and Ba,
2014) with an initial learning rate of 10−3 was used in the
training process. The model was implemented in JAX using
the Haiku framework (Heidler et al., 2023).

At the time of the COBRA model development, CALFIN
was the most complete glacier calving front mapping training
dataset available for the Northern Hemisphere (Cheng et al.,
2021). Although the sizes of tidewater glaciers in Greenland
are typically much larger than those in Svalbard, their geo-
morphological characteristics are similar (Benn et al., 2007).
Therefore, we used this pre-trained COBRA model to map
glacier calving fronts in Svalbard. In order to maintain the
consistency with the training dataset (Cheng et al., 2021),
the near-infrared band of the optical images and the HH band
of the SAR images were used (Table 1). Each satellite image
was initially cropped into a square shape, with the side length
equal to the shortest dimension of the original image, cen-
tred around its midpoint. Then a min–max image scaling was
applied to the cropped satellite image prior to calving front
prediction. The COBRA model predicts the entire coastline
including both the fjord boundary (green line in Fig. 3b) and
the glacier calving front (red line in Fig. 3b) (Heidler et al.,
2023); an example is shown in Fig. 3b. Therefore, the model
outputs need to be post-processed to isolate the actual calv-
ing front.

2.3 Post-processing

While deep-learning techniques have demonstrated effective-
ness in delineating glacier calving front locations (Cheng et
al., 2021; Zhang et al., 2019; Heidler et al., 2022), many
have only been trained on limited datasets, potentially miss-
ing some glacier terminus conditions in different satellite
images. Consequently, due to the well-known distributional
shift, the network may produce inaccurate predictions when
processing satellite images that are not well-represented in
the training datasets, e.g. where the calving front is less dis-
tinct, shadowing occurs, fast-ice is present or other factors.
These inaccurate predictions need to be removed from the
final glacier calving front data product. In addition, the CO-
BRA model prediction includes not only the glacier calving
front, but also the neighbouring fjord boundary which is not
needed. Here we developed an automated post-processing
pipeline to eliminate these inaccurate terminus traces and
mask out the fjord boundary (Fig. 4).

The pipeline consists of four major steps: (1) preliminary
filtering of the initial COBRA model outputs based on the
length and curvature of calving front line segments (Box 1 in
Fig. 4); (2) use of a fjord mask to exclude the fjord boundary
or the other non-calving-front features of each glacier (Box 2
in Fig. 4); (3) identification and removal of erroneous traces
based on glacier calving front line segment density and simi-
larity (Box 3 in Fig. 4); (4) utilizing a predefined glacier cen-

treline to generate a time series of calving front changes and
identifying outliers by applying a median filter to the times
series of the calving front change (Box 4 in Fig. 4).

2.3.1 Filter original model output based on length and
curvature

In cases where the glacier calving front is heavily obscured
by cloud cover or high sea-ice concentration, the calving
front may be less distinguishable in satellite images and the
COBRA model can generate inaccurate predictions. These
can manifest as either excessively short or long line segments
and can exhibit overly complicated curvature shape. The first
step of the post-processing pipeline is to remove these inac-
curate predictions according to the line segment length and
curvature complexity (Box 1 in Fig. 4). The terminus length
and curvature filtering thresholds are based on the automatic
screening module developed by Zhang et al. (2023). Two
thresholds TL and TU based on the inter-quartile range were
used for all the initial terminus trace outputs from COBRA
in each glacier domain:

TL =Q1− 1.5× (Q3−Q1) (2)
TU =Q3+ 1.5× (Q3−Q1) , (3)

whereQ3 is the 75th percentile andQ1 is the 25th percentile
of the data range. For the terminus length, we defined the ter-
minus traces from both the lower and upper thresholds TL
and TU as outliers because the terminus traces that are either
too short or too long are likely to be anomalies. Following
the length filtering of the terminus traces, we calculated the
curvature of each terminus trace as the average for the curva-
tures between two adjacent points along each terminus trace,
then eliminated the terminus traces with curvature values ex-
ceeding the upper threshold TU. The reason for only applying
an upper threshold for curvature complexity is because the
high-quality terminus trace should be smooth with minimal
curvature (Zhang et al., 2023).

2.3.2 Crop and filter glacier calving front using fjord
mask

Following the initial filtering of terminus trace outputs based
on the line segment length and curvature complexity in
Sect. 2.3.1, a fjord mask was implemented for each glacier
(yellow polygon in Fig. 3b). As the model output includes
both the fjord boundary (i.e. land–water contact) and the
glacier calving fronts, the fjord mask serves to exclude the
fjord boundary, retaining only the calving front line segment
that we are interested in (Box 2 in Fig. 4). The fjord mask
was generated by combining the ice-free zone from a binary
ice mask and the land zone from a binary land mask.

The binary land mask was created using the high-
resolution (3”; ∼ 90 m) Water Body Mask (WBM) product
– showing inland water bodies and oceans – that is sup-
plied with the Copernicus GLO-90 digital elevation model
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Figure 3. (a) The Charting Outlines by Recurrent Adaptation (COBRA) deep-learning model architecture used in this study (Heidler et al.,
2023); here only two iterations of the snake head are shown. (b) The calving front predicted by the COBRA model from Sentinel-1A SAR
image on 21 December 2022 for Tunabreen glacier (RGI60-07.01458); the glacier fjord mask is shown as a yellow polygon, the glacier
centreline is shown as a dashed black line, the model output is shown as a combination of a green and red line, the post-processed final
calving front is shown as a red line, and the glacier domain box is shown as a black outline.

Figure 4. The flowchart of post-processing workflow applied to the glacier calving front traces mapped from the pre-trained COBRA
deep-learning model. The coloured geometries indicate key inputs and outputs.

(DEM) dataset (ESA, 2021). The WBM, together with the
DEM product, is referenced on the WGS-84 ellipsoid and is
provided in 1◦× 1◦ tiles globally. We used the RGI version 6
(RGI Consortium, 2017) first-order region shapefile for Sval-
bard to compile the appropriate list of WBM tiles. After mo-
saicking all the WBM tiles for Svalbard, we converted the
original WBM product to a binary land mask by recategoriz-
ing all non-ocean pixels as land. The land mask mosaic was
then re-projected to a 250 m grid (EPSG:3574) and clipped
with the RGI region outlines. The binary ice mask was cre-
ated using RGI version 6 glacier outlines for Svalbard. These

are provided in shapefiles and then rasterized to the 250 m
resolution land mask mosaic grid, which was applied to cor-
rect for any potential mismatches (i.e. masking out the ocean)
between the RGI and Copernicus datasets.

After compiling the binary land and ice masks, we com-
bined the two to find ice free land and vectorized the re-
sulting product. As a final step we added a buffer zone of
200 m length to the merged ice-free land polygon then re-
moved this buffered polygon from the glacier domain box to
get the fjord mask that was used in subsequent steps (yellow
polygon in Fig. 3b). All the fjord masks for our glacier do-
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mains were visually checked and manually adjusted if neces-
sary to make sure the mask can cover the entire calving front
changes. The glacier calving fronts that have been clipped
using fjord masks were subsequently categorized into indi-
vidual time windows which were defined based on the obser-
vation density. During the period 1970–2015 when the data
collection was limited, we set five distinct time windows:
1 January 1970 to 1 January 1990; 1 January 1990 to 1 Jan-
uary 2000; 1 January 2000 to 1 January 2005; 1 January 2005
to 1 January 2010; and 1 January 2010 to 1 January 2015.
From January 2015 to January 2023, we set 17 time inter-
vals, each spanning 6 months.

We implemented length and curvature filters as described
in Sect. 2.3.1 prior to clipping calving fronts with fjord masks
to avoid inaccuracies. If calving fronts are clipped first, it
could result in traces with unrealistic lengths or high curva-
ture complexity still retained within the fjord masks. Con-
sequently, this could lead to the erroneous exclusion of high-
quality calving front traces by the length and curvature filters,
particularly if most of the clipped front traces are of poor
quality. This is especially problematic for smaller glaciers
with complex surface features that are not well represented
in the CALFIN training dataset.

2.3.3 Terminus filtering based on the line segment
density and similarity

Within a given time window defined in Sect. 2.3.2, we as-
sume that the contour shapes of the majority of terminus
traces are similar, and any erroneous terminus trace will sig-
nificantly deviate from this expected similarity. Guided by
this principle, we subsequently implemented two additional
filtering steps for the clipped glacier calving front line seg-
ments: kernel density estimation (KDE) and dynamic time
warping (DTW) (Box 3 in Fig. 4). KDE is a well-established
nonparametric approach to estimate the continuous density
function based on a sample dataset and can cope with an
inhomogeneous distribution of observations (Davies et al.,
2018). Here it was used to estimate the density distribution
of the glacier calving fronts. We first converted all the termi-
nus trace line segments in one glacier domain into scattered
points, then calculated their kernel-density estimates using
a Gaussian kernel. For the density map, we set the upper
threshold as 75 % percentile Q3 and extracted the contour
boundary of the area where the KDE density is higher than
Q3 – the area inside this contour was taken as the bound-
ary where glacier calving fronts are mostly likely to locate.
For every terminus trace line segment, we calculated its inter-
section with this Q3 contour. Terminus traces situated com-
pletely outside the threshold contour were identified as out-
liers and subsequently excluded from the data product. Ter-
minus traces completely enclosed within the threshold con-
tour, or those >95 % of the total trace length within the con-
tour polygon, were taken as potential valid results and re-
tained for subsequent post-processing steps.

DTW is a technique that has been used in time series anal-
ysis to measure similarity between two sequences that vary
in time and speed, and to find the optimal alignment by ac-
commodating time shifts and local shape distortions (Müller,
2007). Here we use DTW to measure the similarity between
two different terminus trace line segments. For each termi-
nus line segment, the DTW distances between this line seg-
ment and all the remaining terminus line segments were cal-
culated. The resulting mean value was taken as the ultimate
DTW distance for this terminus trace. After iterating this step
for all the terminus traces within a given time window, an
outlier detection threshold of 75 % percentile Q3 of all the
DTW distances was applied to identify the anomalous termi-
nus traces. If the DTW distance of a given terminus trace ex-
ceeds this threshold, it was eliminated from subsequent pro-
cessing.

2.3.4 Calving front change time series and median
filtering

The primary objective of measuring glacier calving front lo-
cations is to determine changes over time. Therefore, as a
final step, we generated a time series of the calving front
change for each glacier using a centreline approach and used
this to remove outliers. The centreline approach measures
the advance or retreat of the glacier calving front along a
glacier centreline in relation to their earliest position (Cheng
et al., 2021). The glacier centrelines for all the marine-
terminating glaciers analysed in this study were first derived
using the Open Global Glacier Model (OGGM) (Maussion
et al., 2019). The OGGM glacier centreline was based on
a predefined glacier domain boundary from the RGI glacier
database (Pfeffer et al., 2014), and therefore its length may
not cover all the calving front traces mapped in this study
as some glaciers undergo dramatic changes at their calving
fronts during the study period. To address this issue, we au-
tomatically extended the endpoint of each OGGM centreline
by an additional 10 km in the seaward direction, following
the direction defined by the line segment connecting the two
outermost seaward data points of the OGGM centreline. In
addition, only the main glacier centreline was extracted from
the OGGM model; for glacier domains located at the trib-
utary glaciers we manually mapped the glacier centrelines.
All the glacier centrelines were visually checked and modi-
fied when necessary to make sure it covers the entire glacier
calving front locations of a given glacier and is near perpen-
dicular to the calving front.

To make use of the dense glacier calving front observa-
tions after 2014, a rolling window of 10 observations was
applied. Note we did not apply a rolling window for obser-
vations prior to 2014 due to the lack of sufficient terminus
traces because the available trace number within 1 year could
be less than 10 (Fig. A1). We first calculated an upper thresh-
old as the greater value between 200 m and the maximum
standard deviation of calving front changes in all rolling win-
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dows. The range between the median calving front change
distance in each rolling window above and below this thresh-
old serves as the criterion for identifying and removing out-
liers. This assumes that within a short period of time with
10 observations, the glacier calving front change distance is
likely to be less than 200 m (Luckman et al., 2015). Further-
more, utilizing the highest standard deviation of calving front
change observed across all rolling windows could accommo-
date the occurrence of large calving events. Although this
threshold may not sufficiently capture all the large calving
events which are mostly stochastic events that are difficult to
detect automatically, the calving of large tabular icebergs is
less likely to happen in Svalbard. Nonetheless, this criterion
will need to be further improved for large tidewater glaciers
in the Greenland Ice Sheet.

As a final step, all the glacier terminus traces after
the above post-processing steps were visually checked to
make sure they are correct. The examples of different post-
processed glacier calving front traces for four different
satellite sensors under different environmental conditions
are shown as solid red lines in Fig. 5. In total, 206 371
glacier calving fronts were identified by the automated post-
processing steps and 81 452 terminus traces were discarded
in the visual checking. The ratio of successful calving front
delineations (124 919) compared to all the input satellite im-
ages (1 135 074) is 12 %. The high abandonment rate could
be attributed to three factors: (1) some satellite images may
not fully capture the glacier calving front, as we did not
merge the same-day images, preventing successful delin-
eation; (2) our post-processing workflow uses multiple inter-
quartile range filters across different steps, which can sig-
nificantly reduce the output quantity; and (3) the extensive
satellite images downloaded from GEE permit a strict post-
processing regime, and this can improve our confidence in
calving front delineation and minimizing manual checks,
given that COBRA was trained on a limited training dataset
from Greenland tidewater glaciers.

3 Results

3.1 Dataset overview

Using the methodology developed in this study, we produced
a new high-resolution calving front dataset which contains
124 919 glacier calving fronts for 149 marine-terminating
glaciers (based on updated glacier ids in Sect. 2.1) in Sval-
bard over the period 1985–2023 (Li et al., 2023). The final
product includes only 149 glaciers, fewer than the 220 glacier
domains used, because glaciers that became land-terminating
during the study period were excluded, and glaciers that had
too few calving fronts due to lack of satellite images were
discarded in the rigorous post-processing steps. The dataset
is presented as a single GeoPackage file containing five dif-
ferent layers: glacier domains generated in Sect. 2.1, fjord
masks generated in Sect. 2.3.2, glacier centrelines generated

in Sect. 2.3.4, glacier calving front terminus traces mapped
in this study, and the along-centreline glacier calving front
change time series in relation to the earliest time stamp. Each
layer contains 149 different geometry features representing
149 marine-terminating glaciers. The detailed metadata pro-
vided in this GeoPackage file are shown in Table 2, includ-
ing information on glacier id, satellite platform, satellite im-
age id, satellite image acquisition date, and the glacier calv-
ing front change distance along the centreline. In addition,
we also provided spatial distribution map plots of the glacier
calving front traces and line plots depicting the time series of
calving front changes for each individual glacier. These plots
are provided in PNG file format and can be accessed in the
figures folder.

The greatest number of traces was obtained after 2014
due to the availability of Sentinel-1 and Sentinel-2 satellites
(Figs. 6, 7, and A1); the low trace number in 2023 is be-
cause we only downloaded images in January. The annual
average number of traces per glacier between 2014 and 2022
is 100, representing an average temporal resolution of 4 d.
This allows us to discern the seasonal patterns of glacier
calving front changes. We demonstrate this in the case of
five glaciers across Svalbard, including a surging glacier Os-
bornebreen, that exhibit strong seasonal signals after 2014
(Fig. 7). A glacier’s calving fronts normally retreat (upward
trend in time series) during the Arctic summer and autumn,
and readvance (downward trend in time series) during the
Arctic winter and spring. The manually mapped areal change
polygons of Kochtitzky and Copland (2022) only contain
three different calving front traces for the years 2000, 2010,
and 2020; thus, this dataset cannot resolve any seasonal cy-
cles or sudden changes in glacier calving front locations such
as the surging event shown in Fig. 7l. However, these poly-
gons align well with our calving front traces (Fig. 7b, e, h, k,
n).

3.2 Uncertainty and validation

3.2.1 Uncertainty measurement

The accuracy of the predicted calving front locations from
the COBRA deep-learning model depends on the spatial res-
olution of satellite images, the presence of cloud and shadow
in optical images, speckle noises in SAR images, and the lo-
cal sea-ice conditions in front of the glacier terminus. The
uncertainties related to the COBRA model have been eval-
uated by cross-validation on three different test datasets and
by comparing with different deep-learning models that were
trained on the same training datasets; details can be found
in Heidler et al. (2023). The average prediction error of
COBRA on the CALFIN test set is 99± 10 m, while it is
99± 12 m for the Baumhoer dataset (Heidler et al., 2023).
The rigorous post-processing steps developed in Sect. 2 were
able to eliminate the erroneous terminus trace predictions ef-
fectively. However, the measurement error still remains even
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Figure 5. Examples of the post-processed glacier calving front traces for different satellite images from four satellite platforms including
Landsat (a–d), Terra-ASTER (e–h), Sentinel-2 (i–l), and Sentinel-1 (m–p). The solid red lines are the final glacier terminus traces after
post-processing.

Table 2. Glacier calving front trace metadata recorded in the data product.

Data field Description

Glacier The Randolph Glacier Inventory (RGI) version 6 glacier id

Sensor The satellite platform used in mapping glacier calving front, including “Land-
sat”, “Terra-ASTER”, “Sentinel2” and “Sentinel1”

ImageId The image id of the satellite image used in mapping the glacier calving front

DateString The datetime string of the satellite image in the format of “YYYYMMDD”

CFL_Change The calving front location (CFL) change in metres along the glacier centreline
in relation to the earliest calving front location in the time series

after post-processing and varies with different satellite im-
ages obtained at different times as the environmental condi-
tions at the glacier calving front are different. To estimate the
calving front mapping uncertainty in our final data product,
we compare different terminus traces mapped on the same
day for a given glacier by measuring the mean distance er-
ror in their calving front locations, which is calculated as the
area between two curves normalized by the average length

of the curves (Cheng et al., 2021; Loebel et al., 2023). The
average mean distance error in days with multiple traces is
then taken as the calving front mapping uncertainty of this
glacier (Fig. 8a). This is based on the hypothesis that calv-
ing front remains unchanged over a 24 h period, and traces
generated from different images during the same day should
be the same. Mean distance error utilizes the entire calving
front trace, and therefore the estimated uncertainty is insen-
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Figure 6. Average calving front traces for all marine-terminating
glaciers analysed in this study from 1985 to January 2023 (also see
Fig. A1 for detailed trace number of each glacier).

sitive to the centreline location and is representative for the
glaciers analysed in our study. The total number of terminus
traces obtained on the same day in our data product is 17 106.
They span the entire time series but temporally cluster in the
period 2013–2022 (Fig. 8b). Nonetheless, 88 % of the evalu-
ated glaciers have uncertainty less than 50 m (Fig. 8c). On av-
erage, the mean distance error across Svalbard is 31± 30 m.

3.2.2 Validation with another data product

To further assess the glacier calving front dataset produced
in this study, we calculated the mean distance error by com-
paring it with the Moholdt et al. (2022) annual glacier calv-
ing front data product as part of the Copernicus Glacier
Service project. This product is the most complete glacier
calving front data product for Svalbard prior to our study.
It contains 12 years of calving front traces between 2008
and 2022 for 202 marine-terminating glaciers, and the to-
tal number of glacier terminus traces is 2419 (Table 3). Mo-
holdt et al. (2022) generated annual shapefiles of the marine-
terminating glacier calving fronts by manual delineation
from optical satellite imagery mainly available from Landsat-
8 and Sentinel-2 during the period 15 August–15 September
of each year. Using the same approach as in Sect. 3.2.1, we
calculated the mean distance error of terminus traces mapped
on the same day across these two different datasets for a
given glacier; the average mean distance error in days with
multiple traces is then taken as the calving front mapping
uncertainty of this glacier (Fig. 9a). Since the spatial cov-
erages of the terminus traces mapped on the same day be-
tween these two data products may be significantly different,
a direct comparison can result in an excessively large areal
change as well as the mean distance error. To make sure the
compared traces cover similar spatial extents, we first clipped
the longer line segment in a pair using the 500 m buffered
MBR of the shorter line segment. In total, 85 glaciers have
159 same-day terminus traces across the period 2013–2022
(Fig. 9b). The average mean distance error for these glaciers

is 32± 65 m, and 65 % of the analysed glaciers have a mean
distance error between 10 and 30 m (Fig. 9c).

Since the mean distance error calculation only covers a
limited number of glaciers over a short time period, we im-
plemented an additional assessment by comparing the long-
term calving front change rates of each glacier between these
two data products. We used the same centreline approach,
with the same centrelines, to generate the time series of the
glacier calving front changes for the Moholdt et al. (2022)
data product. Due to a mismatch in the marine-terminating
glaciers included in these two different datasets, we anal-
ysed the common subset of 129 glaciers and compared their
calving front change rates. Variations in observation densities
over time among the glaciers in our dataset could introduce a
potential bias in the linear regression analysis for estimating
the long-term calving front change rates, which is not an is-
sue for the Moholdt et al. (2022) data product with an annual
temporal resolution. In order to facilitate the comparison of
calving front change rates, we first converted the irregular
calving front positions in our dataset to daily front change
distances through linear interpolation, and then we calculated
the monthly mean glacier calving front change distances. The
calving front change rate was estimated by fitting a linear re-
gression to the interpolated monthly front change time series.
For each glacier, the calving front change rates were calcu-
lated within a common time window, which was defined by
the overlapping time period between these two data products.

There is an excellent match between the spatial distribu-
tion of glacier calving front change rates obtained from the
two products (Fig. 10a–b). The glacier calving front change
rates derived from this study show a significant near-linear
correlation with the glacier calving front change rates from
Moholdt et al. (2022) (R2

= 0.98, P -value<0.05) (Fig. 11a).
The Morsnevbreen Glacier exhibits the highest advancing
rate of around −700 m yr−1 in both products (Fig. 11a). This
glacier, known for its surging behaviour, experienced its most
recent surging event between late 2016 and late 2018, dur-
ing which it advanced approximately 5 km (Fig. A2a–c). At
the Polakkbreen Glacier, the most significant calving front
retreat rate is observed (Fig. 11a). During the period from
2016 to 2022, this glacier experienced a retreat of approxi-
mately 4 km (Fig. A2d–f). In addition, 92 % of the investi-
gated glaciers show an absolute difference in calving front
change rates of less than 25 m yr−1 between the two data
products (Figs. 10c and 11b). The Storisstraumen Glacier in
Austfonna Basin-3 exhibits the largest absolute difference in
front change rate of 77 m yr−1 (Fig. A2g–i). Our data show a
pronounced seasonal cycle in the calving front change of this
glacier during the period 2014–2023 (black line in Fig. A2i).
By contrast, the Moholdt et al. (2022) calving front measure-
ments only record the most advanced location in September
each year, resulting in an underestimation of the calving front
advancing rate.
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Figure 7. Examples of glacier calving front change time series of five different glaciers located across Svalbard. Red dots in panels (a),
(d), (g), (j), and (m) show the locations of each glacier; the basemap is the S100 topographic raster data for Svalbard (https://data.npolar.no/
dataset/44ca8c2a-22c2-49e8-a50b-972734f287e3, last access: 17 April 2023). In panels (b), (e), (h), (k), and (n), coloured line segments
are the glacier calving front traces mapped in this study for each glacier; they are overlaid with the 2000–2020 glacier areal change polygons
(Kochtitzky and Copland, 2022) denoted by dashed coloured polygons (legend at the bottom of the figure), and the binary land-ice (white)
and water mask (grey) generated in Sect. 2.3.2. Panels (c), (f), (i), (l), and (o) show the glacier calving front change time series in relation
to the earliest calving front trace at each glacier (upward trend denotes retreating while downward trend denotes advancing as illustrated in
c), blue crosses denote the calving front change observations before 2014. In panel (l), the orange box denotes the glacier surging event that
occurred around 2020.
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Figure 8. Calving front mapping mean distance error for 146 glaciers (3 glaciers do not have duplicated traces on the same day). (a) Spatial
distribution of calving front mapping mean distance error of different marine-terminating glaciers. The background hillshade map is generated
from the 50 m resolution Svalbard digital elevation model (DEM) (https://data.npolar.no/dataset/dce53a47-c726-4845-85c3-a65b46fe2fea,
last access: 18 April 2023). (b) Temporal distribution of the same-day calving front trace duplicates. (c) Histogram of different mean distance
error categories.

Table 3. Overview of two different calving front data products. “Type” indicates the type of calving front data provided in the data product.
“Method” indicates how the dataset is produced. “No. glaciers” gives the number of presented glaciers. “No. mapped fronts” gives the total
number of glacier calving front traces included in each data product.

Dataset Data source Type Method No. No. mapped Time span Temporal resolution
glaciers fronts

This study Optical and SAR Line Neural network 149 124 919 1985–2023 Sub-weekly after 2014
Moholdt et al. (2022) Optical Line Manually 202 2419 2008–2022 Annually

3.3 Spatial and temporal calving front variability in
Svalbard

The spatial distribution of the different calving front change
trends of the 149 marine-terminating glaciers included in
the data product is shown in Fig. 12. The predominant
trend among Svalbard’s marine-terminating glaciers is re-
treat, where 123 glaciers (82.6 %) have been consistently re-
treating during the study period. Overall, 16 glaciers showed
an advancing trend (not surging); most of these glaciers
are located on the Vestfonna and Austfonna ice caps on
the island of Nordaustlanet at the northeastern limit of the
archipelago, where warm North Atlantic waters are less ac-
cessible (Fig. 12) (Skogseth et al., 2005). There are an ad-
ditional 10 glaciers that displayed surge behaviour and they
have a widespread distribution across different regions.

Svalbard is one of the most prominent regions of surge-
type glaciers, with approximately 13 % showing this be-
haviour (Jiskoot et al., 2000). Using our extensive satellite
data catalogue, we were able to capture the exact timing of
surge-type events (Figs. 7j–l and 13) and identify surging
events that are unknown from previous calving front data
products (Kochtitzky and Copland, 2022; Moholdt et al.,
2022). For example, Tunabreen is a quiescent-phase surge-
type glacier which terminates in Temperfjorden, a shallow
fjord with limited connection to the warm ocean currents
(Luckman et al., 2015). During our study period, we ob-
served two individual surging events at Tunabreen, one dur-
ing 2002–2004, and the other during 2017–2019 (orange
boxes in Fig. 13d). During both events, the Tunabreen calv-
ing front advanced more than 1.5 km in less than 2 years. By
comparison, Moholdt et al. (2022) only identified the sec-
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Figure 9. Calving front mapping mean distance error for 85 glaciers between data products generated in this study and by Moholdt
et al. (2022). (a) Spatial distribution of calving front mapping mean distance error of different marine-terminating glaciers. The back-
ground hillshade map is generated from the 50 m resolution Svalbard digital elevation model (DEM) (https://data.npolar.no/dataset/
dce53a47-c726-4845-85c3-a65b46fe2fea, last access: 18 April 2023). (b) Temporal distribution of the calving front traces mapped on the
same day. (c) Histogram of different mean distance error categories.

Figure 10. The calving front change rates between 2008 and 2022 for the calving front data product generated in this study (a), the calving
front data product by Moholdt et al. (2022) (b), and the calving front change rate difference between these two calving front data products
(c). The background hillshade map is generated from the 50 m resolution Svalbard digital elevation model (DEM) (https://data.npolar.no/
dataset/dce53a47-c726-4845-85c3-a65b46fe2fea, last access: 18 April 2023).
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Figure 11. Comparison of glacier calving front change rates be-
tween product generated in this study and the Moholdt et al. (2022)
calving front data product. Panel (a) shows the correlation between
the glacier calving front change rates between these two different
data products. Panel (b) shows the histogram of absolute difference
in glacier front change rates between these two different calving
front data products.

ond surging event (Fig. 13e), and they were also unable to
capture the seasonal cycles of the calving events. This exam-
ple demonstrates the power of our highly automated multi-
sensor calving front mapping scheme, which can uncover
previously unknown events in unprecedented detail and can
aid future investigations on calving front dynamics and the
mass balance of tidewater glaciers.

4 Discussion

Our calving front dataset of Svalbard marine-terminating
glaciers during 1985–2023 is the first to provide calving front
observations of large and comprehensive spatial coverage,

Figure 12. Spatial distribution of different calving front change
trends of marine-terminating glaciers in Svalbard derived from
the calving front data product generated in this study, and the
main current circulation around the Svalbard archipelago (Skogseth
et al., 2005; Misund et al., 2016). The orange, green, and
pink polygons represent surging glaciers, non-surging-type ad-
vancing glaciers, and retreating glaciers, respectively. The back-
ground hillshade map is generated from the 50 m resolution Sval-
bard digital elevation model (DEM) (https://data.npolar.no/dataset/
dce53a47-c726-4845-85c3-a65b46fe2fea, last access: 18 April
2023).

high temporal resolution, and a long time span of 38 years.
It not only captures the spatial pattern of evolving marine-
terminating glacier calving fronts, but also provides insights
at different time scales. This dataset can be used to study
glacier mass balance, understand calving mechanisms, and
predict glacier dynamics.

The calving front data product is mapped using the novel
COBRA deep-learning model (Heidler et al., 2023). This
model has been proven to outperform the previous calving
front mapping models such as HED-UNet (Heidler et al.,
2022), which was used for the IceLine Antarctic ice shelf
front dataset (Baumhoer et al., 2023), CALFIN (Cheng et al.,
2021), as well as the UNet model (Mohajerani et al., 2019).
While the geomorphological features of tidewater glaciers in
Svalbard and Greenland exhibit general similarities, it is im-
portant to note that the calving styles and neighbouring fjords
can vary significantly among certain glaciers. Therefore, the
CALFIN training dataset used in our model development
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Figure 13. Calving front change time series of Tunabreen
surging glacier (RGI60-07.01458). (a) Red dot shows the
location of Tunabreen overlaid on the basemap from the
S100 topographic raster data for Svalbard (https://data.npolar.
no/dataset/44ca8c2a-22c2-49e8-a50b-972734f287e3, last access:
17 April 2023); (b) The coloured lines are the calving front traces
derived in this study overlaid on the binary land-ice (white) and wa-
ter mask (grey) generated in Sect. 2.3.2; the solid green lines are
the calving front traces mapped in the Moholdt et al. (2022) data
product; the glacier centreline is denoted by dashed black line. (c)
The zoomed-in map of calving front traces inside the grey box in
(b). (d) The glacier calving front change time series included in
this study, with the orange transparent boxes denoting two individ-
ual surging events. (e) The glacier calving front change time series
from the Moholdt et al. (2022) data product; black crosses denote
the calving front measurements.

may not be universally applicable to all Svalbard glaciers.
To enhance the predictive capabilities of deep-learning mod-
els and simplify post-processing procedures, future research
should focus on generating extensive training datasets for
glacier calving fronts encompassing a wider range of geo-
graphical regions and glacier types.

Several external datasets were needed as inputs for the
pre-processing and post-processing pipelines, including the
Kochtitzky and Copland (2022) glacier front areal change
polygon and the glacier centreline. The Kochtitzky and Cop-
land (2022) areal change polygon serves the primary pur-

pose of defining the glacier’s bounding box for satellite im-
age queries from GEE platform. Given that this areal change
polygon only covers a limited period between 2000 and
2020, the fixed buffer length of 1.5 km used in Sect. 2.1
may not fully cover the entire calving front changes dur-
ing 1985–2023. While this is less likely to be an issue in
Svalbard given the relatively smaller scale and size of the
marine-terminating glaciers, the buffer length will need to
be adjusted when applying the processing pipeline to larger
glaciers in different regions, such as the Greenland Ice Sheet.
The glacier centreline is used in filtering out the abnormal
front traces and producing the front change time series. Al-
though only one centreline is used for each glacier, the cen-
trelines are placed in areas with substantial calving front
changes, making it effective and representative for filtering
and quantifying the front changes over time.

The calving front changes of marine-terminating glaciers
in our study are consistent with earlier observations by
Kochtitzky and Copland (2022) and by Moholdt et al. (2022),
although the temporal resolutions are different among these
three products. The mean difference between our data prod-
uct and the Moholdt et al. (2022) dataset is 32± 65 m, com-
parable to the calving front mapping uncertainty of 31 m in
our dataset. In addition, the comparison of our glacier calving
rates with the Moholdt et al. (2022) annual calving front data
product shows an excellent match with R2

= 0.98 during the
period 2008–2022. The most significant mismatch in calv-
ing front change rate is located in Storisstraumen Glacier,
and this is because the Moholdt et al. (2022) annual calv-
ing front dataset fails to capture the seasonal calving cy-
cles. This example demonstrates the importance of consid-
ering seasonal calving front changes when estimating the
long-term front change rates. Both datasets exhibit a clear
and predominant trend of glacier retreat across Svalbard, in
agreement with the Kochtitzky and Copland (2022) study
of decadal glacier calving front change during 2000–2020,
which shows that the net area change of glaciers in Sval-
bard is−26.76±0.54 km2 yr−1. This spatial pattern was also
reported by Geyman et al. (2022) by reconstructing DEMs
using an archive of historical aerial imagery from 1936 and
1938. They showed that the mass balance in Svalbard during
1936–2010 was dominantly negative with an average thin-
ning rate of 0.35± 0.03 m yr−1. Glaciers in most of the re-
gions experienced thinning rates exceeding 0.5 m yr−1, ex-
cept the northeast Svalbard which remained stable during
these 70 years.

Being able to assess calving front variability at multiple
time scales is important in identifying drivers governing calv-
ing front changes and resolving mass balance estimations
accurately (Benn and Åström, 2018; Rounce et al., 2023;
Kochtitzky et al., 2022, 2023; Schuler et al., 2020; Luckman
et al., 2015; Nuth et al., 2019; Strozzi et al., 2017; Cowton et
al., 2018). Observations and theory show that increased calv-
ing can be driven by both atmospheric and oceanic warming.
Increased surface melting and runoff can accelerate calving
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through hydrofracturing of near-terminus crevasses. It can
also increase subglacial discharge which, along with ocean
warming, can drive submarine melting and accelerate termi-
nus calving (Carr et al., 2013; Catania et al., 2020). Glacier
calving processes in Svalbard, however, are not well under-
stood due in part to a lack of comprehensive glacier calv-
ing front observations. Although Holmes et al. (2019) and
Luckman et al. (2015) claimed that calving rates of marine-
terminating glaciers in Svalbard vary strongly with ocean
temperature, their results must be interpreted with caution –
especially over large areas or long time scales – as they only
used a small sample of glaciers (n≤ 3) within a short period
of 2 years. The large number of investigated glaciers, along
with the high temporal resolution and long time span (1985–
2023) of our data product, provides a good basis for gaining
new insights into the governing mechanisms in calving pro-
cesses in Svalbard.

5 Code and data availability

The source code of COBRA model v1.0.0 and infer-
ence examples are accessible at https://github.com/khdlr/
COBRA/releases/tag/v1.0.0 (last access: 10 January 2023),
its DOI is https://doi.org/10.5281/zenodo.8407566 (Hei-
dler, 2023). The Svalbard calving front dataset produced
in this study is available at the Zenodo data repository:
https://doi.org/10.5281/zenodo.10407266 (Li et al., 2023).

6 Conclusion

In this study, we produced a new high-resolution glacier calv-
ing front dataset, including 124 919 individual calving fronts,
for 149 marine-terminating glaciers in Svalbard covering the
period 1985–2023. This represents a significant increase in
glacier calving front observation density compared to simi-
lar products. This data product was derived using automated
processing methods developed in this study, which incorpo-
rate a novel deep-learning framework, multiple optical and
SAR satellite images (Landsat, Terra-ASTER, Sentinel-1 and
Sentinel-2) curated and downloaded via the Google Earth
Engine platform, and a bespoke post-processing algorithm.
The data product is validated with the latest Svalbard annual
calving front dataset produced by Moholdt et al. (2022) by
calculating the mean difference in calving front locations and
comparing the calving front change rates over the same pe-
riod of time. The results show a strong correlation in calving
front change rates between the two products with anR2 value
of 0.98, while their mean difference is only 32± 65 m. In ad-
dition, our results show that calving front retreat has been
dominant across most of Svalbard in the past four decades,
except the northeast region comprising Vestfonna and Aust-
fonna, consistent with the overall negative glacier mass bal-
ance identified in Svalbard. This new dataset will contribute
to a better understanding of glacier calving front mechanisms

and more accurate frontal ablation estimates in Svalbard.
This is essential in calculating glacier mass balance and pre-
dicting the contribution to future sea-level rise, especially in
the context of the ongoing Arctic warming.

Appendix A

Table A1. The Google Earth Engine (GEE) image collections for
different satellites used in this study.

Satellite GEE image collection

ASTER ASTER/AST_L1T_003
Landsat-1 LANDSAT/LM01/C02/T1
Landsat-2 LANDSAT/LM02/C02/T1
Landsat-3 LANDSAT/LM03/C02/T1
Landsat-4 LANDSAT/LT04/C02/T1
Landsat-5 LANDSAT/LT05/C02/T1
Landsat-7 LANDSAT/LE07/C02/T1
Landsat-8 LANDSAT/LC08/C02/T1
Landsat-9 LANDSAT/LC09/C02/T1
Sentinel-2 COPERNICUS/S2_HARMONIZED
Sentinel-1 COPERNICUS/S1_GRD
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Figure A1. Heatmap of glacier traces of each marine-terminating glacier analysed in this study from 1985 to 2023 January. Each column
represents one glacier, and each row represents 1 year ranging from 1985 to 2023. The colour corresponds to the number of traces for one
glacier per year.
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Figure A2. Examples of glacier calving front change comparison during a common time period between calving front data products gener-
ated in this study and by Moholdt et al. (2022) for Morsnevbreen Glacier (panels a–c), Polakkbreen Glacier (panels d–f), and Storisstraumen
Glacier in Austfonna Basin-3 (panels g–i). Red dots in panels (a), (d), and (g) show the locations of each glacier, the basemap is the S100
topographic raster data for Svalbard (https://data.npolar.no/dataset/44ca8c2a-22c2-49e8-a50b-972734f287e3, last access: 17 April 2023). In
panels (b), (e), and (h), coloured line segments are the glacier calving front traces mapped in this study; they are overlaid with the calving
front traces mapped in Moholdt et al. (2022) denoted by solid green lines, and the binary land-ice (white) and water mask (grey) generated
in Sect. 2.3.2. Panels (c), (f), and (i) show the glacier calving front change time series in relation to the earliest calving front trace during the
data comparison time window; solid black lines show the front change time series generated in this study and the solid red lines show the
Moholdt et al. (2022) front change time series.
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