Articles | Volume 16, issue 1
https://doi.org/10.5194/essd-16-701-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-701-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An 800 kyr planktonic δ18O stack for the Western Pacific Warm Pool
Christen L. Bowman
Department of Earth Science, University of California Santa Barbara, Santa Barbara, CA 93106, USA
Devin S. Rand
Department of Earth Science, University of California Santa Barbara, Santa Barbara, CA 93106, USA
Lorraine E. Lisiecki
CORRESPONDING AUTHOR
Department of Earth Science, University of California Santa Barbara, Santa Barbara, CA 93106, USA
Samantha C. Bova
Department of Earth and Environmental Sciences, San Diego State University, San Diego, CA 92182, USA
Related authors
No articles found.
Yuxin Zhou, Lorraine E. Lisiecki, Stephen R. Meyers, Taehee Lee, and Charles Lawrence
EGUsphere, https://doi.org/10.5194/egusphere-2025-3741, https://doi.org/10.5194/egusphere-2025-3741, 2025
This preprint is open for discussion and under review for Geochronology (GChron).
Short summary
Short summary
Marine sediments contain valuable information about past climate changes. However, dating Pleistocene marine sediments can be difficult, and the accuracy of the age model depends on the quality of the stratigraphic alignment target. We introduce three targets – Atlantic, Pacific, and global – with three distinct chronologies for the global target that incorporate astronomical forcing constraints to various degrees. This suite of targets offers flexibility in age model construction.
Jennifer L. Middleton, Julia Gottschalk, Gisela Winckler, Jean Hanley, Carol Knudson, Jesse R. Farmer, Frank Lamy, Lorraine E. Lisiecki, and Expedition 383 Scientists
Geochronology, 6, 125–145, https://doi.org/10.5194/gchron-6-125-2024, https://doi.org/10.5194/gchron-6-125-2024, 2024
Short summary
Short summary
We present oxygen isotope data for a new sediment core from the South Pacific and assign ages to our record by aligning distinct patterns in observed oxygen isotope changes to independently dated target records with the same patterns. We examine the age uncertainties associated with this approach caused by human vs. automated alignment and the sensitivity of outcomes to the choice of alignment target. These efforts help us understand the timing of past climate changes.
Taehee Lee, Devin Rand, Lorraine E. Lisiecki, Geoffrey Gebbie, and Charles Lawrence
Clim. Past, 19, 1993–2012, https://doi.org/10.5194/cp-19-1993-2023, https://doi.org/10.5194/cp-19-1993-2023, 2023
Short summary
Short summary
Understanding of past climate change depends, in part, on how accurately we can estimate the ages of events recorded in geologic archives. Here we present a new software package, called BIGMACS, to improve age estimates for paleoclimate data from ocean sediment cores. BIGMACS creates multiproxy age estimates that reduce age uncertainty by probabilistically combining information from direct age estimates, such as radiocarbon dates, and the alignment of regional paleoclimate time series.
Stefan Mulitza, Torsten Bickert, Helen C. Bostock, Cristiano M. Chiessi, Barbara Donner, Aline Govin, Naomi Harada, Enqing Huang, Heather Johnstone, Henning Kuhnert, Michael Langner, Frank Lamy, Lester Lembke-Jene, Lorraine Lisiecki, Jean Lynch-Stieglitz, Lars Max, Mahyar Mohtadi, Gesine Mollenhauer, Juan Muglia, Dirk Nürnberg, André Paul, Carsten Rühlemann, Janne Repschläger, Rajeev Saraswat, Andreas Schmittner, Elisabeth L. Sikes, Robert F. Spielhagen, and Ralf Tiedemann
Earth Syst. Sci. Data, 14, 2553–2611, https://doi.org/10.5194/essd-14-2553-2022, https://doi.org/10.5194/essd-14-2553-2022, 2022
Short summary
Short summary
Stable isotope ratios of foraminiferal shells from deep-sea sediments preserve key information on the variability of ocean circulation and ice volume. We present the first global atlas of harmonized raw downcore oxygen and carbon isotope ratios of various planktonic and benthic foraminiferal species. The atlas is a foundation for the analyses of the history of Earth system components, for finding future coring sites, and for teaching marine stratigraphy and paleoceanography.
Shannon A. Bengtson, Laurie C. Menviel, Katrin J. Meissner, Lise Missiaen, Carlye D. Peterson, Lorraine E. Lisiecki, and Fortunat Joos
Clim. Past, 17, 507–528, https://doi.org/10.5194/cp-17-507-2021, https://doi.org/10.5194/cp-17-507-2021, 2021
Short summary
Short summary
The last interglacial was a warm period that may provide insights into future climates. Here, we compile and analyse stable carbon isotope data from the ocean during the last interglacial and compare it to the Holocene. The data show that Atlantic Ocean circulation was similar during the last interglacial and the Holocene. We also establish a difference in the mean oceanic carbon isotopic ratio between these periods, which was most likely caused by burial and weathering carbon fluxes.
Cited articles
Bemis, B. E., Spero, H. J., Bijma, J., and Lea, D. W.: Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations, Paleoceanogr., 13, 150–160, https://doi.org/10.1029/98PA00070, 1998.
Bickert, T., Berger, W. H., Burke, S., Schmidt, H., and Wefer, G.: (Appendix A) Stable oxygen and carbon isotope ratios of Cibicidoides wuellerstorfi from ODP Hole 130-806B on the Ontong Java Plateau, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.696408 (last access: 27 November 2023), 1993.
Bowman, C. L., Rand, D. S., Lisiecki, L. E., and Bova, S. C.: An 800 kyr planktonic δ18O stack for the West Pacific Warm Pool, Zenodo [data set], https://doi.org/10.5281/zenodo.10211900 (last access: 27 November 2023), 2023.
Broccoli, A. J.: Tropical Cooling at the Last Glacial Maximum: An atmosphere–mixed layer ocean model simulation, J. Climate, 13, 951–976, https://doi.org/10.1175/1520-0442(2000)013<0951:TCATLG>2.0.CO;2, 2000.
Chuang, C., Lo, L., Zeeden, C., Chou, Y., Wei, K., Shen, C., Mii, H., Chang, Y., and Tung, Y.: Integrated stratigraphy of ODP Site 1115 (Solomon Sea, southwestern equatorial Pacific) over the past 3.2 Ma, Mar. Micropaleonto., 144, 25–37, https://doi.org/10.1016/j.marmicro.2018.09.003, 2018.
Chuang, C., Lo, L., Zeeden, C., Chou, Y., Wei, K., Shen, C., Mii, H., Chang, Y., and Tung, Y.: Isotopic analysis of Globigerinoides sacculifer from ODP Hole 180-1115B, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.899187 (last access: 3 May 2023), 2019.
Dang, H., Wu, J., Xiong, Z., Qiao, P., Li, T., and Jian, Z.: Orbital and sea-level changes regulate the iron-associated sediment supplies from Papua New Guinea to the equatorial Pacific, Quaternary Sci. Rev., 239, 106361, https://doi.org/10.1016/j.quascirev.2020.106361, 2020a.
Dang, H., Wu, J., Xiong, Z., Qiao, P., Li, T., and Jian, Z.: Oxygen isotopes of Globigerinoides ruber from core KX21-2 from the western equatorial Pacific over the last ∼400 ka, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.922658 (last access: 7 November 2023), 2020b.
De Deckker, P.: The Indo-Pacific Warm Pool: critical to world oceanography and world climate, Geosci. Lett., 3, 20, https://doi.org/10.1186/s40562-016-0054-3, 2016.
de Garidel-Thoron, T., Rosenthal, Y., Bassinot, F., and Beaufort, L.: Stable sea surface temperatures in the Western Pacific Warm Pool over the past 1.75 million years, Nature, 433, 294–298, https://doi.org/10.1038/nature03189, 2005a.
de Garidel-Thoron, T., Rosenthal, Y., Bassinot, F. C., and Beaufort, L.: Western Pacific Warm Pool Pleistocene paired δ18O-Mg/Ca and SST reconstruction, NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/ejer-t729 (last access: 3 May 2023), 2005b.
de Garidel-Thoron, T., Rosenthal, Y., Beaufort, L., Bard, E., Sonzogni, C., and Mix, A. C.: A multiproxy assessment of the western equatorial Pacific hydrography during the last 30 Kyr, Paleoceanogr., 22, PA3204, https://doi.org/10.1029/2006PA001269, 2007.
Heaton, T. J., Köhler, P., Butzin, M., Bard, E., Reimer, R. W., Austin, W. E. N., Ramsey, C. B., Grootes, P. M., Hughen, K. A., Kromer, B., Reimer, P. J., Adkins, J., Burke, A., Cook, M. S., Olsen, J., and Skinner, L. C.: Marine20 – The marine radiocarbon age calibration curve (0–55,000 Cal BP), Radiocarbon, 62, 779–820, https://doi.org/10.1017/RDC.2020.68, 2020.
Hobart, B., Lisiecki, L. E., Rand, D., Lee, T., and Lawrence, C. E.: Late Pleistocene 100-kyr glacial cycles paced by precession forcing of summer insolation, Nat. Geosci., 16, 717–722, https://doi.org/10.1038/s41561-023-01235-x, 2023.
Holbourn, A., Kuhnt, W., Kawamura, H., Jian, Z., Grootes, P., Erlenkeuser, H., and Xu, J.: Orbitally paced paleoproductivity variations in the Timor Sea and Indonesian Throughflow variability during the last 460 Kyr, Paleoceanogr., 20, PA3002, https://doi.org/10.1029/2004PA001094, 2005a.
Holbourn, A. E., Kuhnt, W., Kawamura, H., Jian, Z., Grootes, P. M., Erlenkeuser, H., and Xu, J.: Stable isotopes on planktic foraminifera of sediment core MD01-2378, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.263757 (last access: 11 October 2023), 2005b.
Hollstein, M., Mohtadi, M., Rosenthal, Y., Moffa Sanchez, P., Oppo, D., Martínez Méndez, G., Steinke, S., and Hebbeln, D.: Stable oxygen isotopes and Mg/Ca in planktic foraminifera from modern surface sediments of the Western Pacific Warm Pool: Implications for thermocline reconstructions, Paleoceanogr., 32, 1174–1194, https://doi.org/10.1002/2017PA003122, 2017.
Huybers, P. and Wunsch, C.: A depth-derived Pleistocene age model: Uncertainty estimates, sedimentation variability, and nonlinear climate change, Paleoceanogr., 19, PA1028, https://doi.org/10.1029/2002PA000857, 2004.
Imbrie, J., Hays, J. D., Martinson, D. G., McIntyre A., Mix A. C., Morley, J. J., Pisias N. G., Prell, W. L., and Shackleton, N. J.: The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record, Milankovitch and Climate, Part 1, edited by: Berger, A., Imbrie, J., Kukla, G., Saltzman, B., and Reidel, D., Publishing Company, Dordrecht, the Netherlands, 269–305, ISBN 9027717915, 1984.
Jian, Z., Wang, Y., Dang, H., Mohtadi, M., Rosenthal, Y., Lea, D. W., Liu, Z., Jin, H., Ye, L., Kuhnt, W., and Wang, X.: Warm Pool ocean heat content regulates ocean–continent moisture transport, Nature, 612, 92–99, https://doi.org/10.1038/s41586-022-05302-y, 2022.
Lea, D. W.: The 100,000-Yr Cycle in tropical SST, greenhouse forcing, and climate sensitivity, J. Climate, 17, 2170–2179, https://doi.org/10.1175/1520-0442(2004)017<2170:TYCITS>2.0.CO;2, 2004.
Lea, D. W., Pak, D. K., and Spero, H. J.: Climate impact of Late Quaternary equatorial Pacific sea surface temperature variations, Science, 289, 1719–1724, https://doi.org/10.1126/science.289.5485.1719, 2000.
Lee, T., Rand, D., Lisiecki, L. E., Gebbie, G., and Lawrence, C.: Bayesian age models and stacks: combining age inferences from radiocarbon and benthic δ18O stratigraphic alignment, Clim. Past, 19, 1993–2012, https://doi.org/10.5194/cp-19-1993-2023, 2023a.
Lee, T., Rand, D., Lisiecki, L. E., Gebbie, G., and Lawrence, C.: BIGMACS, Zenodo [code], https://doi.org/10.5281/zenodo.8327654 (last access: 27 November 2023), 2023b.
Li, L., Li, Q., Tian, J., Wang, P., Wang, H., and Liu, Z.: A 4-Ma record of thermal evolution in the tropical western Pacific and its implications on climate change, Earth Planet. Sc. Lett., 309, 10–20, https://doi.org/10.1016/j.epsl.2011.04.016, 2011.
Li, Z.; Shi, X., Chen, M.-T., Wang, H., Liu, S., Xu, J., Long, H., Troa, R. A., Zuraida, R., and Triarso, E.: Late Quaternary fingerprints of precession and sea level variation over the past 35 Kyr as revealed by sea surface temperature and upwelling records from the Indian Ocean near southernmost Sumatra, Quaternary Int., 425, 282–291, https://doi.org/10.1016/j.quaint.2016.07.013, 2016.
Linsley, B. K. and von Breymann, M. T.: Stable isotopic and geochemical record in the Sulu Sea during the last 750 k.y.: Assessment of surface water variability and paleoproductivity changes, Proceedings of the Ocean Drilling Program, Scientific Results, 24, 379–396, https://doi.org/10.2973/odp.proc.sr.124.151.1991, 1991.
Linsley, B., Rosenthal, Y., and Oppo, D.: Holocene evolution of the Indonesian Throughflow and the Western Pacific Warm Pool, Nat. Geosci., 3, 578–583, https://doi.org/10.1038/ngeo920, 2010.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanogr., 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Lisiecki, L. E. and Stern, J. V.: Regional and global benthic δ18O stacks for the last glacial cycle, Paleoceanogr., 31, 1368–1394, https://doi.org/10.1002/2016PA003002, 2016.
Lo, L.: A dataset of the Mid-Brunhes period at site MD05-2925, Solomon Sea: Surface-subsurface planktonic foraminifera stable oxygen isotope and Mg/Ca ratios, Mendeley Data [data set], https://data.mendeley.com/datasets/9c2nnpchdh/1 (last access: 14 October 2023), 2021.
Lo, L., Chang, S., Wei, K., Lee, S., Ou, T., Chen, Y., Chuang, C., Mii, H., Burr, G. S., Chen, M., Tung, Y., Tsai, M., Hodell, D. A., and Shen, C.: Nonlinear climatic sensitivity to greenhouse gases over past 4 glacial/interglacial cycles, Sci. Rep.-UK, 7, 4626, https://doi.org/10.1038/s41598-017-04031-x, 2017.
Lo, L., Chang, S., Wei, K., Lee, S., Ou, T., Chen, Y., Chuang, C., Mii, H., Burr, G. S., Chen, M., Tung, Y., Tsai, M., Hodell, D. A., and Shen, C.: Age model and oxygen isotopes of planktonic foraminifera from sediment core MD05-2925 off the Solomon Sea, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.899216 (last access: 14 October 2023), 2019.
Locarnini, R. A., Mishonov, A. V., Baranova, O. K., Boyer, T. P., Zweng, M. M., Garcia, H. E., Reagan, J. R., Seidov, D., K. Weathers, Paver, C. R., and Smolyar, I.: Temperature, world ocean atlas 2018, NOAA Atlas NESDIS 81 [data set], https://archimer.ifremer.fr/doc/00651/76338/ (last access: 7 November 2023), 2018.
Mayer, M., Haimberger L., and Balmaseda, M. A.: On the energy exchange between tropical ocean basins related to ENSO, J. Climate, 27, 6393–6403, https://doi.org/10.1175/JCLI-D-14-00123.1, 2014.
Medina-Elizalde, M. and Lea, D. W.: (Table S2) Stable oxygen isotope record and Mg/Ca ratios of Globigerinoides ruber from ODP Hole 130-806B, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.772014 (last access: 4 October 2023), 2005.
Neale, R. and Slingo J.: The Maritime Continent and its role in the global climate: A GCM study, J. Climate, 16, 834–848, https://doi.org/10.1175/1520-0442(2003)016<0834:TMCAIR>2.0.CO;2, 2003.
Oppo, D. W., Linsley, B. K., Rosenthal, Y., Dannenmann, S., and Beaufort, L.: Orbital and suborbital climate variability in the Sulu Sea, western tropical Pacific, Geochem. Geophys. Geosyst., 4, 1–20, https://doi.org/10.1029/2001GC000260, 2003a.
Oppo, D. W., Linsley, B. K., Rosenthal, Y., Dannenmann, S., and Beaufort, L.: Sulu Sea core MD97-2141 foraminiferal oxygen isotope data, NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/qqqx-kt90 (last access: 11 October 2023), 2003b.
Past Interglacials Working Group of PAGES: Interglacials of the last 800,000 years, Rev. Geophys., 54, 162–219, https://doi.org/10.1002/2015RG000482, 2016.
Regoli, F., de Garidel-Thoron, T., Tachikawa, K., Jian, Z., Ye, L., Droxler, A. W., Lenoir, G., Crucifix, M., Barbarin, N., and Beaufort, L.: Progressive shoaling of the equatorial Pacific thermocline over the last eight glacial periods, Paleoceanogr., 30, 439–455, https://doi.org/10.1002/2014PA002696, 2015.
Rosenthal, Y., Oppo, D. W., and Linsley, B. K.: The amplitude and phasing of climate change during the last deglaciation in the Sulu Sea, western equatorial Pacific, Geophys. Res. Lett., 30, 1428, https://doi.org/10.1029/2002GL016612, 2003.
Sadekov, A., Eggins, S. M., De Deckker, P., Ninnemann, U., Kuhnt, W., and Bassinot, F.: Surface and subsurface seawater temperature reconstruction using Mg/Ca microanalysis of planktonic foraminifera Globigerinoides ruber, Globigerinoides sacculifer, and Pulleniatina obliquiloculata, Paleoceanogr., 24, PA3201, https://doi.org/10.1029/2008PA001664, 2009.
Shakun, J. D., Lea, D. W., Lisiecki, L. E., and Raymo, M. E.: An 800-Kyr record of global surface ocean δ18O and implications for ice volume-temperature coupling, Earth Planet. Sc. Lett., 426, 58–68, https://doi.org/10.1016/j.epsl.2015.05.042, 2015.
Spero, H. J., Mielke, K. M., Kalve, E. M., Lea, D. W., and Pak, D. K.: Multispecies approach to reconstructing eastern equatorial Pacific thermocline hydrography during the past 360 Kyr, Paleoceanogr., 18, 1022, https://doi.org/10.1029/2002PA000814, 2003.
Spratt, R. M. and Lisiecki, L. E.: A Late Pleistocene sea level stack, Clim. Past, 12, 1079–1092, https://doi.org/10.5194/cp-12-1079-2016, 2016.
Tachikawa, K., Timmermann, A., Vidal, L., Sonzogni, C., and Timm, O. E.: CO2 radiative forcing and Intertropical Convergence Zone influences on Western Pacific Warm Pool climate over the past 400 ka, Quaternay Sci. Rev., 86, 24–34, https://doi.org/10.1016/j.quascirev.2013.12.018, 2014.
The MathWorks Inc.: MATLAB version: 9.14.0 (R2023a), Natick, Massachusetts: The MathWorks Inc., https://www.mathworks.com (last access: 30 November 2023), 2023.
Tian, J. Pak, Dorothy K., Wang, P., Lea, D. W., Cheng, X., and Zhao, Q.: (Appendix 1) Stable oxygen isotope ratios of Globigerinoides ruber and benthic foraminifera from ODP Site 184-1143, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.707833 (last access: 14 October 2023), 2006.
Visser, K., Thunell, R., and Stott, L.: Magnitude and timing of temperature change in the Indo-Pacific Warm Pool during deglaciation, Nature, 421, 152–155, https://doi.org/10.1038/nature01297, 2003.
Wefer, G. and Berger, W. H.: Isotope paleontology: Growth and composition of extant calcareous species, Mar. Geol., 100, 207–248, https://doi.org/10.1016/0025-3227(91)90234-U, 1991
Xu, J., Holbourn, A., Kuhnt, W., Jian, Z., and Kawamura, H.: Changes in the thermocline structure of the Indonesian Outflow during terminations I and II, Earth Planet. Sc. Lett., 273, 152–162, https://doi.org/10.1016/j.epsl.2008.06.029, 2008.
Zhang, S., Yu, Z., Gong, X., Wang, Y., Chang, F., and Li, T.: Sable oxygen isotope and Mg/Ca ratios of planktonic foraminifera from KX97322-4 (KX22-4), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.939377 (last access: 11 October 2023), 2021.
Short summary
We estimate an average (stack) of Western Pacific Warm Pool (WPWP) sea surface climate records over the last 800 kyr from 10 ocean sediment cores. To better understand glacial–interglacial differences between the tropical WPWP and high-latitude climate change, we compare our WPWP stack to global and North Atlantic deep-ocean stacks. Although we see similar timing in glacial–interglacial change between the stacks, the WPWP exhibits less amplitude of change.
We estimate an average (stack) of Western Pacific Warm Pool (WPWP) sea surface climate records...
Altmetrics
Final-revised paper
Preprint