Articles | Volume 16, issue 11
https://doi.org/10.5194/essd-16-5069-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-5069-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A spectral–structural characterization of European temperate, hemiboreal, and boreal forests
Miina Rautiainen
CORRESPONDING AUTHOR
School of Engineering, Aalto University, Espoo, 00076, Finland
Aarne Hovi
School of Engineering, Aalto University, Espoo, 00076, Finland
Daniel Schraik
School of Engineering, Aalto University, Espoo, 00076, Finland
Natural Resources Institute Finland, Helsinki, 00790, Finland
Jan Hanuš
CzechGlobe Global Change Research Institute of the Czech Academy of Sciences, Brno, 60300, Czech Republic
Petr Lukeš
CzechGlobe Global Change Research Institute of the Czech Academy of Sciences, Brno, 60300, Czech Republic
Zuzana Lhotáková
Department of Experimental Plant Biology, Charles University, Prague, 12843, Czech Republic
Lucie Homolová
CzechGlobe Global Change Research Institute of the Czech Academy of Sciences, Brno, 60300, Czech Republic
Related authors
Lammert Kooistra, Katja Berger, Benjamin Brede, Lukas Valentin Graf, Helge Aasen, Jean-Louis Roujean, Miriam Machwitz, Martin Schlerf, Clement Atzberger, Egor Prikaziuk, Dessislava Ganeva, Enrico Tomelleri, Holly Croft, Pablo Reyes Muñoz, Virginia Garcia Millan, Roshanak Darvishzadeh, Gerbrand Koren, Ittai Herrmann, Offer Rozenstein, Santiago Belda, Miina Rautiainen, Stein Rune Karlsen, Cláudio Figueira Silva, Sofia Cerasoli, Jon Pierre, Emine Tanır Kayıkçı, Andrej Halabuk, Esra Tunc Gormus, Frank Fluit, Zhanzhang Cai, Marlena Kycko, Thomas Udelhoven, and Jochem Verrelst
Biogeosciences, 21, 473–511, https://doi.org/10.5194/bg-21-473-2024, https://doi.org/10.5194/bg-21-473-2024, 2024
Short summary
Short summary
We reviewed optical remote sensing time series (TS) studies for monitoring vegetation productivity across ecosystems. Methods were categorized into trend analysis, land surface phenology, and assimilation into statistical or dynamic vegetation models. Due to progress in machine learning, TS processing methods will diversify, while modelling strategies will advance towards holistic processing. We propose integrating methods into a digital twin to improve the understanding of vegetation dynamics.
Jiabin Pu, Kai Yan, Samapriya Roy, Zaichun Zhu, Miina Rautiainen, Yuri Knyazikhin, and Ranga B. Myneni
Earth Syst. Sci. Data, 16, 15–34, https://doi.org/10.5194/essd-16-15-2024, https://doi.org/10.5194/essd-16-15-2024, 2024
Short summary
Short summary
Long-term global LAI/FPAR products provide the fundamental dataset for accessing vegetation dynamics and studying climate change. This study develops a sensor-independent LAI/FPAR climate data record based on the integration of Terra-MODIS/Aqua-MODIS/VIIRS LAI/FPAR standard products and applies advanced gap-filling techniques. The SI LAI/FPAR CDR provides a valuable resource for researchers studying vegetation dynamics and their relationship to climate change in the 21st century.
Lammert Kooistra, Katja Berger, Benjamin Brede, Lukas Valentin Graf, Helge Aasen, Jean-Louis Roujean, Miriam Machwitz, Martin Schlerf, Clement Atzberger, Egor Prikaziuk, Dessislava Ganeva, Enrico Tomelleri, Holly Croft, Pablo Reyes Muñoz, Virginia Garcia Millan, Roshanak Darvishzadeh, Gerbrand Koren, Ittai Herrmann, Offer Rozenstein, Santiago Belda, Miina Rautiainen, Stein Rune Karlsen, Cláudio Figueira Silva, Sofia Cerasoli, Jon Pierre, Emine Tanır Kayıkçı, Andrej Halabuk, Esra Tunc Gormus, Frank Fluit, Zhanzhang Cai, Marlena Kycko, Thomas Udelhoven, and Jochem Verrelst
Biogeosciences, 21, 473–511, https://doi.org/10.5194/bg-21-473-2024, https://doi.org/10.5194/bg-21-473-2024, 2024
Short summary
Short summary
We reviewed optical remote sensing time series (TS) studies for monitoring vegetation productivity across ecosystems. Methods were categorized into trend analysis, land surface phenology, and assimilation into statistical or dynamic vegetation models. Due to progress in machine learning, TS processing methods will diversify, while modelling strategies will advance towards holistic processing. We propose integrating methods into a digital twin to improve the understanding of vegetation dynamics.
Jiabin Pu, Kai Yan, Samapriya Roy, Zaichun Zhu, Miina Rautiainen, Yuri Knyazikhin, and Ranga B. Myneni
Earth Syst. Sci. Data, 16, 15–34, https://doi.org/10.5194/essd-16-15-2024, https://doi.org/10.5194/essd-16-15-2024, 2024
Short summary
Short summary
Long-term global LAI/FPAR products provide the fundamental dataset for accessing vegetation dynamics and studying climate change. This study develops a sensor-independent LAI/FPAR climate data record based on the integration of Terra-MODIS/Aqua-MODIS/VIIRS LAI/FPAR standard products and applies advanced gap-filling techniques. The SI LAI/FPAR CDR provides a valuable resource for researchers studying vegetation dynamics and their relationship to climate change in the 21st century.
M. Potůčková, J. Albrechtová, K. Anders, L. Červená, J. Dvořák, K. Gryguc, B. Höfle, L. Hunt, Z. Lhotáková, A. Marcinkowska-Ochtyra, A. Mayr, E. Neuwirthová, A. Ochtyra, M. Rutzinger, A. Šedová, A. Šrollerů, and L. Kupková
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 989–996, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-989-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-989-2023, 2023
O. Brovkina, D. Kopkáně, M. Polák, A. Bednařík, and J. Hanuš
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-5-W2-2023, 25–29, https://doi.org/10.5194/isprs-archives-XLVIII-5-W2-2023-25-2023, https://doi.org/10.5194/isprs-archives-XLVIII-5-W2-2023-25-2023, 2023
L. Červená, G. Pinlová, Z. Lhotáková, E. Neuwirthová, L. Kupková, M. Potůčková, J. Lysák, P. Campbell, and J. Albrechtová
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 381–388, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-381-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-381-2022, 2022
Cited articles
Aalto, J., Aalto, P., Keronen, P., Kolari, P., Rantala, P., Taipale, R., Kajos, M., Patokoski, J., Rinne, J., Ruuskanen, T., Leskinen, M., Laakso, H., Levula, J., Pohja, T., Siivola, E., Kulmala, M., and Ylivinkka, I.: SMEAR II Hyytiälä forest meteorology, greenhouse gases, air quality and soil, University of Helsinki, Institute for Atmospheric and Earth System Research [data set], https://doi.org/10.23729/23dd00b2-b9d7-467a-9cee-b4a122486039, 2023.
Fassnacht, F., White, J., Wulder, M., and Næsset, E.: Remote sensing in forestry: current challenges, considerations and directions, Forestry, 97, 11–37, https://doi.org/10.1093/forestry/cpad024, 2024.
Gastellu-Etchegorry, J., Demarez, V., Pinel, V., and Zagolski, F.: Modeling radiative transfer in heterogeneous 3-D vegetation canopies, Remote Sens. Environ., 58, 131–156, https://doi.org/10.1016/0034-4257(95)00253-7, 1996.
Gobron, N., Lanconelli, C., Urraca Valle, R., and Govaerts, Y.: RAMI workshop – Radiative transfer modelling support to EO metrology and Cal/Val activities. European Commission, Joint Research Centre, Publications Office of the European Union, https://doi.org/10.2760/23274 (last access: 11 April 2024), 2023.
Hanuš, J., Slezák, L., Fabiánek, T., Fajmon, L., Hanousek, T., Janoutová, R., Kopkáně, D., Novotný, J., Pavelka, K., Pikl, M., Zemek, F., and Homolová, L.: Flying Laboratory of Imaging Systems: Fusion of Airborne Hyperspectral and Laser Scanning for Ecosystem Research, Remote Sens.-Basel, 15, 3130, https://doi.org/10.3390/rs15123130, 2023.
Hernández-Clemente, R., Hornero, A., Mõttus, M., Penuelas, J., González-Dugo, V., Jiménez, J., Suárez, L., Alonso, L., and Zarco-Tejada, P.: Early Diagnosis of Vegetation Health From High-Resolution Hyperspectral and Thermal Imagery: Lessons Learned From Empirical Relationships and Radiative Transfer Modelling, Springer Nature Link, 5, 169–183, https://doi.org/10.1007/s40725-019-00096-1, 2019.
Hovi, A., Mõttus, M., Juola, J., Manoocheri, F., Ikonen, E., and Rautiainen, M.: Evaluating the performance of a double integrating sphere in measurement of reflectance, transmittance, and albedo of coniferous needles, Silva Fennica, 54, 10270, https://doi.org/10.14214/sf.10270, 2020.
Hovi, A., Schraik, D., Hanuš, J., Lukeš, P., Lhotáková, Z., Homolová, L., and Rautiainen, M.: A spectral-structural characterization of European temperate, hemiboreal and boreal forests: Laboratory and field data, Aalto University [data set], https://doi.org/10.23729/9a8d90cd-73e2-438d-9230-94e10e61adc9, 2024a.
Hovi, A., Schraik, D., Hanuš, J., Lukeš, P., Lhotáková, Z., Homolová, L., and Rautiainen, M.: A spectral-structural characterization of European temperate, hemiboreal and boreal forests: Airborne data, Aalto University [data set], https://doi.org/10.23729/c6da63dd-f527-4ec9-8401-57c14f77d19f, 2024b.
Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P., Asner, G., François, C., and Ustin, S.: PROSPECT + SAIL models: A review of use for vegetation characterization, Remote Sens. Environ., 113, S56–S66, https://doi.org/10.1016/j.rse.2008.01.026, 2009.
Juola, J., Hovi, A., and Rautiainen, M.: A dataset of stem bark reflectance spectra for boreal and temperate tree species, V2, Mendeley Data [data set], https://doi.org/10.17632/pwfxgzz5fj.2, 2022.
Kooistra, L., Berger, K., Brede, B., Graf, L. V., Aasen, H., Roujean, J.-L., Machwitz, M., Schlerf, M., Atzberger, C., Prikaziuk, E., Ganeva, D., Tomelleri, E., Croft, H., Reyes Muñoz, P., Garcia Millan, V., Darvishzadeh, R., Koren, G., Herrmann, I., Rozenstein, O., Belda, S., Rautiainen, M., Rune Karlsen, S., Figueira Silva, C., Cerasoli, S., Pierre, J., Tanır Kayıkçı, E., Halabuk, A., Tunc Gormus, E., Fluit, F., Cai, Z., Kycko, M., Udelhoven, T., and Verrelst, J.: Reviews and syntheses: Remotely sensed optical time series for monitoring vegetation productivity, Biogeosciences, 21, 473–511, https://doi.org/10.5194/bg-21-473-2024, 2024.
Kuusk, A. and Nilson, T.: A directional multispectral forest reflectance model, Remote Sens. Environ., 72, 244–252, https://doi.org/10.1016/S0034-4257(99)00111-X, 2000.
Kuusk, A., Kuusk, J., and Lang, M.: A dataset for the validation of reflectance models, Remote Sens. Environ., 113, 889–892, https://doi.org/10.1016/j.rse.2009.01.005, 2009.
Leblanc, S. and Chen, J.: A windows graphic user interface (GUI) for the five-scale model for fast BRDF simulations, Remote Sens. Rev., 19, 293–305, https://doi.org/10.1080/02757250009532423, 2000.
Liang, S.: Canopy reflectance modeling. In: Quantitative remote sensing of land surfaces, Wiley, New Jersey, USA, 76-134, ISBN 0-471-28166-2, 2004.
LI-COR: LAI-2200 plant canopy analyzer instruction manual, LI-COR, Inc., publication number 984-10633, rev 2, https://www.licor.com/documents/6n3conpja6uj9aq1ruyn (last access: 11 April 2024), 2012.
Liu, C., Calders, K., Origo, N., Disney, M., Meunier, F., Woodgate, W., Gastellu-Etchegorry, J., Nightingale, J.,Honkavaara, E., Hakala, T., Markelin, L., and Verbeeck, H.: Reconstructing the digital twin of forests from a 3D library: Quantifying trade-offs for radiative transfer modeling, Remote Sens. Environ., 292, 113832, https://doi.org/10.1016/j.rse.2023.113832, 2023.
Lukeš, P. and Homolová, L.: Optical properties of Norway spruce needles, V1, Mendeley Data [data set], https://doi.org/10.17632/vycrxc4vpz.1, 2022.
Luoma, V., Saarinen, N., Wulder, M., White, J., Vastaranta, M., Holopainen M., and Hyyppä, J.: Assessing Precision in Conventional Field Measurements of Individual Tree Attributes, Forests, 8, 38, https://doi.org/10.3390/f8020038, 2017.
Malenovský, Z., Homolová, L., Lukeš, P., Buddenbaum, H., Verrelst, J., Alonso, L., Schaepman, M., Lauret, N., and Gastellu-Etchegorry, J.: Variability and Uncertainty Challenges in Scaling Imaging Spectroscopy Retrievals and Validations from Leaves Up to Vegetation Canopies, Surv. Geophys., 40, 631–656, https://doi.org/10.1007/s10712-019-09534-y, 2019.
Myneni, R. and Ross, J.: Photon-vegetation interactions: Applications in optical remote sensing and plant ecology. Springer-Verlag, Berlin, Heidelberg, Germany, 565 pp., ISBN 978-3-642-75391-6, 1991.
NEON (National Ecological Observatory Network): https://www.neonscience.org/, last access: 11 April 2024.
Nobis, M. and Hunziker, U.: Automatic thresholding for hemispherical canopy-photographs based on edge detection, Agric. Forest Meteorol., 128, 243–250, https://doi.org/10.1016/j.agrformet.2004.10.002, 2005.
North, P.: Three-dimensional forest light interaction model using a Monte Carlo method, IEEE T. Geosci. Remote, 34, 946–956, https://doi.org/10.1109/36.508411, 1996.
Petibon, F., Czyż, E., Ghielmetti, G., Hueni, A., Kneubühler, M., Schaepman, M., and Schuman, M.: Uncertainties in measurements of leaf optical properties are small compared to the biological variation within and between individuals of European beech, Remote Sens. Environ., 264, 11260, https://doi.org/10.1016/j.rse.2021.112601, 2021.
Pettorelli, N., Wegmann, M., Skidmore, A., Mücher, S., Dawson, T. P., Fernandez, M., Lucas, R., Schaepman, M. E., Wang, T., O'Connor, B., Jongman, R. H. G., Kempeneers, P., Sonnenschein, R., Leidner, A. K., Böhm, M., He, K. S., Nagendra, H., Dubois, G., Fatoyinbo, T., Hansen, M. C., Paganini, M., de Klerk, H. M., Asner, G. P., Kerr, J. T., Estes, A. B., Schmeller, D. S., Heiden, U., Rocchini, D., Pereira, H. M., Turak, E., Fernandez, N., Lausch, A., Cho, M. A., Alcaraz-Segura, D., McGeoch, M. A., Turner, W., Mueller, A., St-Louis, V., Penner, J., Vihervaara, P., Belward, A., Reyers, B., and Geller, G. N.: Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions, Remote Sens. Ecol. Conserv., 2, 122–131, https://doi.org/10.1002/rse2.15, 2016.
Piao, S., Wang, X., Park, T., Chen C., Lian, X., He, Y., Bjerke, J., Chen, A., Ciais, P., Tommervik, H., Nemani, R., and Myneni, R.: Characteristics, drivers and feedbacks of global greening, Nat. Rev. Earth Environ., 1, 14–27, https://doi.org/10.1038/s43017-019-0001-x, 2020.
Ross, J.: The radiation regime and architecture of plant stands. Kluwer Academic Publishers, The Hague, the Netherlands, 391 pp., ISBN 9061936071, 1981.
Schaepman-Strub, G., Schaepman, M., Painter, T., Dangel, S., and Martonchik, J.: Reflectance quantities in optical remote sensing – definitions and case studies, Remote Sens. Environ., 103, 27–42, https://doi.org/10.1016/j.rse.2006.03.002, 2006.
Schneider, F. D., Morsdorf, F., Schmid, B., Petchey, O., Hueni, A., Schimel, D., and Schaepman, M.: Mapping functional diversity from remotely sensed morphological and physiological forest traits, Nat. Commun., 8, 1441, https://doi.org/10.1038/s41467-017-01530-3, 2017.
Sellers, P., Hall, F., Kelly, R., Black, A., Baldocchi, D., Berry, J., Ryan, M., Ranson, J., Crill, P., Lettenmaier, D., Margolis, H., Cihlar, J., Newcomer, J., Fitzjarrald, D., Jarvis, P., Gower, S., Halliwell, D., Williams, D., Goodison, B., Wickland, D., and Guertin, F.: BOREAS in 1997: Experiment overview, scientific results, and future directions, J. Geophys. Res.-Atmos., 102, 28731–28769, https://doi.org/10.1029/97JD03300, 1997.
Stenberg, P., Mõttus, M., and Rautiainen, M.: Modeling the spectral signature of forests: application of remote sensing models to coniferous canopies. In (Ed. S. Liang): Advances in Land remote Sensing: System, Modeling, Inversion and Application, Springer-Verlag, 147–171, ISBN 978-1-4020-6449-4, 2008.
Stenberg, P., Mõttus, M., and Rautiainen, M.: Photon recollision probability in modelling the radiation regime of canopies – A review, Remote Sens. Environ., 183, 98–108, https://doi.org/10.1016/j.rse.2016.05.013, 2016.
Verhoef, W.: Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model, Remote Sens. Environ., 16, 125–141, https://doi.org/10.1016/0034-4257(84)90057-9, 1984.
Vicent, J., Sabater, N., Tenjo, C., Acarreta, J., Ramón, J., Manzano, M., Rivera, J. Jurado, P. Franco, R. Alonso, L., Verrelst, J., and Moreno, J.: FLEX End-to-End Mission Performance Simulator, IEEE T. Geosci. Remote Sens., 54, 4215–4223, https://doi.org/10.1109/TGRS.2016.2538300, 2015.
Widlowski, J.-L., Mio, C., Disney, M., Adams, J., Andredaki,s I., Atzberger, C., Brennan, J., Busetto, L., Chelle, M., Ceccherini, G., Colombo, R., Côté, J-F., Eenmäe, A., Essery, R., Gastellu-Etchegorry, J. P., Gobron, N., Grau, E., Haverd, V., Homolová, L., Huang, H., Hunt, L., Kobayashi, H., Koetz, B., Kuusk, A., Kuusk, J., Lang, M., Lewis, P., Lovell, J. L., Malenovsky, Z., Meroni, M., Morsdorf, F., Mõttus, M., Ni-Meister, W., Pinty, B., Rautiainen, M., Schlerf, M., Somers, B., Stuckens, J., Verstraete, M. M., Yang, W., Zhao, F., and Zenone, T.: The fourth phase of the radiative transfer model intercomparison (RAMI) exercise: Actual canopy scenarios and conformity testing, Remote Sens. Environ., 169, 418–437, https://doi.org/10.1016/j.rse.2015.08.016, 2015.
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., Da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., Hoen, P. A. C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., Van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M,A,, Thompson, M., Van Der Lei, J., Van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.: The FAIR Guiding Principles for scientific data management and stewardship, Sci. Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18, 2016.
Yáñez-Rausell, L., Schaepman, S., Clevers, J., and Malenovský, Z.: Minimizing Measurement Uncertainties of Coniferous Needle-Leaf Optical Properties, Part I: Methodological Review, IEEE J. Sel. Top. Appl. Earth Obs., 7, 399–405, https://doi.org/10.1109/JSTARS.2013.2272890, 2014.
Short summary
Radiative transfer models play a key role in monitoring vegetation using remote sensing data such as satellite or airborne images. The development of these models has been hindered by a lack of comprehensive ground reference data on structural and spectral characteristics of forests. Here, we reported datasets on the structural and spectral properties of temperate, hemiboreal, and boreal European forest stands. We anticipate that these data will have wide use in remote sensing applications.
Radiative transfer models play a key role in monitoring vegetation using remote sensing data...
Altmetrics
Final-revised paper
Preprint